| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coeq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
| Ref | Expression |
|---|---|
| coeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| coeq2i | ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | coeq2 5797 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∘ ccom 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ss 3914 df-br 5090 df-opab 5152 df-co 5623 |
| This theorem is referenced by: coeq12i 5802 cocnvcnv2 6206 co01 6209 dfpo2 6243 fcoi1 6697 f1ofvswap 7240 dftpos2 8173 tposco 8187 cottrcl 9609 canthp1 10545 cats1co 14763 isoval 17672 mvdco 19357 evlsval 22021 evl1fval1lem 22245 evl1var 22251 pf1ind 22270 rhmply1vr1 22302 rhmply1vsca 22303 imasdsf1olem 24288 hoico1 31736 hoid1i 31769 pjclem1 32175 pjclem3 32177 pjci 32180 cycpmconjv 33111 cycpmconjs 33125 poimirlem9 37679 cdlemk45 41056 cononrel1 43697 trclubgNEW 43721 trclrelexplem 43814 relexpaddss 43821 cotrcltrcl 43828 cortrcltrcl 43843 corclrtrcl 43844 cotrclrcl 43845 cortrclrcl 43846 cotrclrtrcl 43847 cortrclrtrcl 43848 brco3f1o 44136 clsneibex 44205 neicvgbex 44215 subsaliuncl 46466 meadjiun 46574 fundcmpsurinjimaid 47521 dftpos5 48984 tposrescnv 48989 |
| Copyright terms: Public domain | W3C validator |