Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coeq2i | Structured version Visualization version GIF version |
Description: Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
Ref | Expression |
---|---|
coeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
coeq2i | ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | coeq2 5704 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∘ ccom 5532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-in 3867 df-ss 3877 df-br 5037 df-opab 5099 df-co 5537 |
This theorem is referenced by: coeq12i 5709 cocnvcnv2 6093 co01 6096 fcoi1 6542 f1ofvswap 7060 dftpos2 7925 tposco 7939 canthp1 10127 cats1co 14278 isoval 17108 mvdco 18654 evlsval 20863 evl1fval1lem 21063 evl1var 21069 pf1ind 21088 imasdsf1olem 23089 hoico1 29652 hoid1i 29685 pjclem1 30091 pjclem3 30093 pjci 30096 cycpmconjv 30948 cycpmconjs 30962 dfpo2 33251 poimirlem9 35381 cdlemk45 38558 cononrel1 40712 trclubgNEW 40736 trclrelexplem 40830 relexpaddss 40837 cotrcltrcl 40844 cortrcltrcl 40859 corclrtrcl 40860 cotrclrcl 40861 cortrclrcl 40862 cotrclrtrcl 40863 cortrclrtrcl 40864 brco3f1o 41154 clsneibex 41223 neicvgbex 41233 subsaliuncl 43409 meadjiun 43516 fundcmpsurinjimaid 44355 |
Copyright terms: Public domain | W3C validator |