| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coeq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
| Ref | Expression |
|---|---|
| coeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| coeq2i | ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | coeq2 5801 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∘ ccom 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3920 df-br 5093 df-opab 5155 df-co 5628 |
| This theorem is referenced by: coeq12i 5806 cocnvcnv2 6207 co01 6210 dfpo2 6244 fcoi1 6698 f1ofvswap 7243 dftpos2 8176 tposco 8190 cottrcl 9615 canthp1 10548 cats1co 14763 isoval 17672 mvdco 19324 evlsval 21991 evl1fval1lem 22215 evl1var 22221 pf1ind 22240 rhmply1vr1 22272 rhmply1vsca 22273 imasdsf1olem 24259 hoico1 31700 hoid1i 31733 pjclem1 32139 pjclem3 32141 pjci 32144 cycpmconjv 33084 cycpmconjs 33098 poimirlem9 37613 cdlemk45 40930 cononrel1 43571 trclubgNEW 43595 trclrelexplem 43688 relexpaddss 43695 cotrcltrcl 43702 cortrcltrcl 43717 corclrtrcl 43718 cotrclrcl 43719 cortrclrcl 43720 cotrclrtrcl 43721 cortrclrtrcl 43722 brco3f1o 44010 clsneibex 44079 neicvgbex 44089 subsaliuncl 46343 meadjiun 46451 fundcmpsurinjimaid 47399 dftpos5 48862 tposrescnv 48867 |
| Copyright terms: Public domain | W3C validator |