Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coeq2i | Structured version Visualization version GIF version |
Description: Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
Ref | Expression |
---|---|
coeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
coeq2i | ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | coeq2 5767 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∘ ccom 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-br 5075 df-opab 5137 df-co 5598 |
This theorem is referenced by: coeq12i 5772 cocnvcnv2 6162 co01 6165 dfpo2 6199 fcoi1 6648 f1ofvswap 7178 dftpos2 8059 tposco 8073 cottrcl 9477 canthp1 10410 cats1co 14569 isoval 17477 mvdco 19053 evlsval 21296 evl1fval1lem 21496 evl1var 21502 pf1ind 21521 imasdsf1olem 23526 hoico1 30118 hoid1i 30151 pjclem1 30557 pjclem3 30559 pjci 30562 cycpmconjv 31409 cycpmconjs 31423 poimirlem9 35786 cdlemk45 38961 cononrel1 41202 trclubgNEW 41226 trclrelexplem 41319 relexpaddss 41326 cotrcltrcl 41333 cortrcltrcl 41348 corclrtrcl 41349 cotrclrcl 41350 cortrclrcl 41351 cotrclrtrcl 41352 cortrclrtrcl 41353 brco3f1o 41643 clsneibex 41712 neicvgbex 41722 subsaliuncl 43897 meadjiun 44004 fundcmpsurinjimaid 44863 |
Copyright terms: Public domain | W3C validator |