Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coeq2i | Structured version Visualization version GIF version |
Description: Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
Ref | Expression |
---|---|
coeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
coeq2i | ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | coeq2 5756 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∘ ccom 5584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-br 5071 df-opab 5133 df-co 5589 |
This theorem is referenced by: coeq12i 5761 cocnvcnv2 6151 co01 6154 dfpo2 6188 fcoi1 6632 f1ofvswap 7158 dftpos2 8030 tposco 8044 canthp1 10341 cats1co 14497 isoval 17394 mvdco 18968 evlsval 21206 evl1fval1lem 21406 evl1var 21412 pf1ind 21431 imasdsf1olem 23434 hoico1 30019 hoid1i 30052 pjclem1 30458 pjclem3 30460 pjci 30463 cycpmconjv 31311 cycpmconjs 31325 cottrcl 33705 poimirlem9 35713 cdlemk45 38888 cononrel1 41091 trclubgNEW 41115 trclrelexplem 41208 relexpaddss 41215 cotrcltrcl 41222 cortrcltrcl 41237 corclrtrcl 41238 cotrclrcl 41239 cortrclrcl 41240 cotrclrtrcl 41241 cortrclrtrcl 41242 brco3f1o 41532 clsneibex 41601 neicvgbex 41611 subsaliuncl 43787 meadjiun 43894 fundcmpsurinjimaid 44751 |
Copyright terms: Public domain | W3C validator |