![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coeq2i | Structured version Visualization version GIF version |
Description: Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
Ref | Expression |
---|---|
coeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
coeq2i | ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | coeq2 5883 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∘ ccom 5704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ss 3993 df-br 5167 df-opab 5229 df-co 5709 |
This theorem is referenced by: coeq12i 5888 cocnvcnv2 6289 co01 6292 dfpo2 6327 fcoi1 6795 f1ofvswap 7342 dftpos2 8284 tposco 8298 cottrcl 9788 canthp1 10723 cats1co 14905 isoval 17826 mvdco 19487 evlsval 22133 evl1fval1lem 22355 evl1var 22361 pf1ind 22380 rhmply1vr1 22412 rhmply1vsca 22413 imasdsf1olem 24404 hoico1 31788 hoid1i 31821 pjclem1 32227 pjclem3 32229 pjci 32232 cycpmconjv 33135 cycpmconjs 33149 poimirlem9 37589 cdlemk45 40904 cononrel1 43556 trclubgNEW 43580 trclrelexplem 43673 relexpaddss 43680 cotrcltrcl 43687 cortrcltrcl 43702 corclrtrcl 43703 cotrclrcl 43704 cortrclrcl 43705 cotrclrtrcl 43706 cortrclrtrcl 43707 brco3f1o 43995 clsneibex 44064 neicvgbex 44074 subsaliuncl 46279 meadjiun 46387 fundcmpsurinjimaid 47285 |
Copyright terms: Public domain | W3C validator |