| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coeq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
| Ref | Expression |
|---|---|
| coeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| coeq2i | ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | coeq2 5838 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∘ ccom 5658 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ss 3943 df-br 5120 df-opab 5182 df-co 5663 |
| This theorem is referenced by: coeq12i 5843 cocnvcnv2 6247 co01 6250 dfpo2 6285 fcoi1 6752 f1ofvswap 7299 dftpos2 8242 tposco 8256 cottrcl 9733 canthp1 10668 cats1co 14875 isoval 17778 mvdco 19426 evlsval 22044 evl1fval1lem 22268 evl1var 22274 pf1ind 22293 rhmply1vr1 22325 rhmply1vsca 22326 imasdsf1olem 24312 hoico1 31737 hoid1i 31770 pjclem1 32176 pjclem3 32178 pjci 32181 cycpmconjv 33153 cycpmconjs 33167 poimirlem9 37653 cdlemk45 40966 cononrel1 43618 trclubgNEW 43642 trclrelexplem 43735 relexpaddss 43742 cotrcltrcl 43749 cortrcltrcl 43764 corclrtrcl 43765 cotrclrcl 43766 cortrclrcl 43767 cotrclrtrcl 43768 cortrclrtrcl 43769 brco3f1o 44057 clsneibex 44126 neicvgbex 44136 subsaliuncl 46387 meadjiun 46495 fundcmpsurinjimaid 47425 dftpos5 48849 tposrescnv 48854 |
| Copyright terms: Public domain | W3C validator |