| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coeq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
| Ref | Expression |
|---|---|
| coeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| coeq2i | ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | coeq2 5812 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∘ ccom 5635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3928 df-br 5103 df-opab 5165 df-co 5640 |
| This theorem is referenced by: coeq12i 5817 cocnvcnv2 6219 co01 6222 dfpo2 6257 fcoi1 6716 f1ofvswap 7263 dftpos2 8199 tposco 8213 cottrcl 9648 canthp1 10583 cats1co 14798 isoval 17703 mvdco 19351 evlsval 21969 evl1fval1lem 22193 evl1var 22199 pf1ind 22218 rhmply1vr1 22250 rhmply1vsca 22251 imasdsf1olem 24237 hoico1 31658 hoid1i 31691 pjclem1 32097 pjclem3 32099 pjci 32102 cycpmconjv 33072 cycpmconjs 33086 poimirlem9 37596 cdlemk45 40914 cononrel1 43556 trclubgNEW 43580 trclrelexplem 43673 relexpaddss 43680 cotrcltrcl 43687 cortrcltrcl 43702 corclrtrcl 43703 cotrclrcl 43704 cortrclrcl 43705 cotrclrtrcl 43706 cortrclrtrcl 43707 brco3f1o 43995 clsneibex 44064 neicvgbex 44074 subsaliuncl 46329 meadjiun 46437 fundcmpsurinjimaid 47385 dftpos5 48835 tposrescnv 48840 |
| Copyright terms: Public domain | W3C validator |