| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coeq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
| Ref | Expression |
|---|---|
| coeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| coeq2i | ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | coeq2 5825 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∘ ccom 5645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ss 3934 df-br 5111 df-opab 5173 df-co 5650 |
| This theorem is referenced by: coeq12i 5830 cocnvcnv2 6234 co01 6237 dfpo2 6272 fcoi1 6737 f1ofvswap 7284 dftpos2 8225 tposco 8239 cottrcl 9679 canthp1 10614 cats1co 14829 isoval 17734 mvdco 19382 evlsval 22000 evl1fval1lem 22224 evl1var 22230 pf1ind 22249 rhmply1vr1 22281 rhmply1vsca 22282 imasdsf1olem 24268 hoico1 31692 hoid1i 31725 pjclem1 32131 pjclem3 32133 pjci 32136 cycpmconjv 33106 cycpmconjs 33120 poimirlem9 37630 cdlemk45 40948 cononrel1 43590 trclubgNEW 43614 trclrelexplem 43707 relexpaddss 43714 cotrcltrcl 43721 cortrcltrcl 43736 corclrtrcl 43737 cotrclrcl 43738 cortrclrcl 43739 cotrclrtrcl 43740 cortrclrtrcl 43741 brco3f1o 44029 clsneibex 44098 neicvgbex 44108 subsaliuncl 46363 meadjiun 46471 fundcmpsurinjimaid 47416 dftpos5 48866 tposrescnv 48871 |
| Copyright terms: Public domain | W3C validator |