| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coeq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
| Ref | Expression |
|---|---|
| coeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| coeq2i | ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | coeq2 5812 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∘ ccom 5635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3928 df-br 5103 df-opab 5165 df-co 5640 |
| This theorem is referenced by: coeq12i 5817 cocnvcnv2 6219 co01 6222 dfpo2 6257 fcoi1 6716 f1ofvswap 7263 dftpos2 8199 tposco 8213 cottrcl 9648 canthp1 10583 cats1co 14798 isoval 17707 mvdco 19359 evlsval 22026 evl1fval1lem 22250 evl1var 22256 pf1ind 22275 rhmply1vr1 22307 rhmply1vsca 22308 imasdsf1olem 24294 hoico1 31735 hoid1i 31768 pjclem1 32174 pjclem3 32176 pjci 32179 cycpmconjv 33114 cycpmconjs 33128 poimirlem9 37616 cdlemk45 40934 cononrel1 43576 trclubgNEW 43600 trclrelexplem 43693 relexpaddss 43700 cotrcltrcl 43707 cortrcltrcl 43722 corclrtrcl 43723 cotrclrcl 43724 cortrclrcl 43725 cotrclrtrcl 43726 cortrclrtrcl 43727 brco3f1o 44015 clsneibex 44084 neicvgbex 44094 subsaliuncl 46349 meadjiun 46457 fundcmpsurinjimaid 47405 dftpos5 48855 tposrescnv 48860 |
| Copyright terms: Public domain | W3C validator |