![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coeq2i | Structured version Visualization version GIF version |
Description: Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
Ref | Expression |
---|---|
coeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
coeq2i | ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | coeq2 5872 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∘ ccom 5693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ss 3980 df-br 5149 df-opab 5211 df-co 5698 |
This theorem is referenced by: coeq12i 5877 cocnvcnv2 6280 co01 6283 dfpo2 6318 fcoi1 6783 f1ofvswap 7326 dftpos2 8267 tposco 8281 cottrcl 9757 canthp1 10692 cats1co 14892 isoval 17813 mvdco 19478 evlsval 22128 evl1fval1lem 22350 evl1var 22356 pf1ind 22375 rhmply1vr1 22407 rhmply1vsca 22408 imasdsf1olem 24399 hoico1 31785 hoid1i 31818 pjclem1 32224 pjclem3 32226 pjci 32229 cycpmconjv 33145 cycpmconjs 33159 poimirlem9 37616 cdlemk45 40930 cononrel1 43584 trclubgNEW 43608 trclrelexplem 43701 relexpaddss 43708 cotrcltrcl 43715 cortrcltrcl 43730 corclrtrcl 43731 cotrclrcl 43732 cortrclrcl 43733 cotrclrtrcl 43734 cortrclrtrcl 43735 brco3f1o 44023 clsneibex 44092 neicvgbex 44102 subsaliuncl 46314 meadjiun 46422 fundcmpsurinjimaid 47336 |
Copyright terms: Public domain | W3C validator |