| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coeq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
| Ref | Expression |
|---|---|
| coeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| coeq2i | ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | coeq2 5822 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∘ ccom 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3931 df-br 5108 df-opab 5170 df-co 5647 |
| This theorem is referenced by: coeq12i 5827 cocnvcnv2 6231 co01 6234 dfpo2 6269 fcoi1 6734 f1ofvswap 7281 dftpos2 8222 tposco 8236 cottrcl 9672 canthp1 10607 cats1co 14822 isoval 17727 mvdco 19375 evlsval 21993 evl1fval1lem 22217 evl1var 22223 pf1ind 22242 rhmply1vr1 22274 rhmply1vsca 22275 imasdsf1olem 24261 hoico1 31685 hoid1i 31718 pjclem1 32124 pjclem3 32126 pjci 32129 cycpmconjv 33099 cycpmconjs 33113 poimirlem9 37623 cdlemk45 40941 cononrel1 43583 trclubgNEW 43607 trclrelexplem 43700 relexpaddss 43707 cotrcltrcl 43714 cortrcltrcl 43729 corclrtrcl 43730 cotrclrcl 43731 cortrclrcl 43732 cotrclrtrcl 43733 cortrclrtrcl 43734 brco3f1o 44022 clsneibex 44091 neicvgbex 44101 subsaliuncl 46356 meadjiun 46464 fundcmpsurinjimaid 47412 dftpos5 48862 tposrescnv 48867 |
| Copyright terms: Public domain | W3C validator |