Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coprprop Structured version   Visualization version   GIF version

Theorem coprprop 32714
Description: Composition of two pairs of ordered pairs with matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Hypotheses
Ref Expression
brprop.a (𝜑𝐴𝑉)
brprop.b (𝜑𝐵𝑊)
brprop.c (𝜑𝐶𝑉)
brprop.d (𝜑𝐷𝑊)
mptprop.1 (𝜑𝐴𝐶)
coprprop.e (𝜑𝐸𝑋)
coprprop.f (𝜑𝐹𝑋)
coprprop.1 (𝜑𝐸𝐹)
Assertion
Ref Expression
coprprop (𝜑 → ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∘ {⟨𝐸, 𝐴⟩, ⟨𝐹, 𝐶⟩}) = {⟨𝐸, 𝐵⟩, ⟨𝐹, 𝐷⟩})

Proof of Theorem coprprop
StepHypRef Expression
1 coundir 6270 . . . 4 (({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) ∘ {⟨𝐸, 𝐴⟩}) = (({⟨𝐴, 𝐵⟩} ∘ {⟨𝐸, 𝐴⟩}) ∪ ({⟨𝐶, 𝐷⟩} ∘ {⟨𝐸, 𝐴⟩}))
2 brprop.a . . . . . . 7 (𝜑𝐴𝑉)
3 brprop.b . . . . . . 7 (𝜑𝐵𝑊)
4 coprprop.e . . . . . . 7 (𝜑𝐸𝑋)
52, 3, 4cosnop 32710 . . . . . 6 (𝜑 → ({⟨𝐴, 𝐵⟩} ∘ {⟨𝐸, 𝐴⟩}) = {⟨𝐸, 𝐵⟩})
6 brprop.d . . . . . . 7 (𝜑𝐷𝑊)
7 mptprop.1 . . . . . . . 8 (𝜑𝐴𝐶)
87necomd 2994 . . . . . . 7 (𝜑𝐶𝐴)
96, 4, 8cosnopne 32709 . . . . . 6 (𝜑 → ({⟨𝐶, 𝐷⟩} ∘ {⟨𝐸, 𝐴⟩}) = ∅)
105, 9uneq12d 4179 . . . . 5 (𝜑 → (({⟨𝐴, 𝐵⟩} ∘ {⟨𝐸, 𝐴⟩}) ∪ ({⟨𝐶, 𝐷⟩} ∘ {⟨𝐸, 𝐴⟩})) = ({⟨𝐸, 𝐵⟩} ∪ ∅))
11 un0 4400 . . . . 5 ({⟨𝐸, 𝐵⟩} ∪ ∅) = {⟨𝐸, 𝐵⟩}
1210, 11eqtrdi 2791 . . . 4 (𝜑 → (({⟨𝐴, 𝐵⟩} ∘ {⟨𝐸, 𝐴⟩}) ∪ ({⟨𝐶, 𝐷⟩} ∘ {⟨𝐸, 𝐴⟩})) = {⟨𝐸, 𝐵⟩})
131, 12eqtrid 2787 . . 3 (𝜑 → (({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) ∘ {⟨𝐸, 𝐴⟩}) = {⟨𝐸, 𝐵⟩})
14 coundir 6270 . . . 4 (({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) ∘ {⟨𝐹, 𝐶⟩}) = (({⟨𝐴, 𝐵⟩} ∘ {⟨𝐹, 𝐶⟩}) ∪ ({⟨𝐶, 𝐷⟩} ∘ {⟨𝐹, 𝐶⟩}))
15 coprprop.f . . . . . . 7 (𝜑𝐹𝑋)
163, 15, 7cosnopne 32709 . . . . . 6 (𝜑 → ({⟨𝐴, 𝐵⟩} ∘ {⟨𝐹, 𝐶⟩}) = ∅)
17 brprop.c . . . . . . 7 (𝜑𝐶𝑉)
1817, 6, 15cosnop 32710 . . . . . 6 (𝜑 → ({⟨𝐶, 𝐷⟩} ∘ {⟨𝐹, 𝐶⟩}) = {⟨𝐹, 𝐷⟩})
1916, 18uneq12d 4179 . . . . 5 (𝜑 → (({⟨𝐴, 𝐵⟩} ∘ {⟨𝐹, 𝐶⟩}) ∪ ({⟨𝐶, 𝐷⟩} ∘ {⟨𝐹, 𝐶⟩})) = (∅ ∪ {⟨𝐹, 𝐷⟩}))
20 0un 4402 . . . . 5 (∅ ∪ {⟨𝐹, 𝐷⟩}) = {⟨𝐹, 𝐷⟩}
2119, 20eqtrdi 2791 . . . 4 (𝜑 → (({⟨𝐴, 𝐵⟩} ∘ {⟨𝐹, 𝐶⟩}) ∪ ({⟨𝐶, 𝐷⟩} ∘ {⟨𝐹, 𝐶⟩})) = {⟨𝐹, 𝐷⟩})
2214, 21eqtrid 2787 . . 3 (𝜑 → (({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) ∘ {⟨𝐹, 𝐶⟩}) = {⟨𝐹, 𝐷⟩})
2313, 22uneq12d 4179 . 2 (𝜑 → ((({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) ∘ {⟨𝐸, 𝐴⟩}) ∪ (({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) ∘ {⟨𝐹, 𝐶⟩})) = ({⟨𝐸, 𝐵⟩} ∪ {⟨𝐹, 𝐷⟩}))
24 df-pr 4634 . . . 4 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
25 df-pr 4634 . . . 4 {⟨𝐸, 𝐴⟩, ⟨𝐹, 𝐶⟩} = ({⟨𝐸, 𝐴⟩} ∪ {⟨𝐹, 𝐶⟩})
2624, 25coeq12i 5877 . . 3 ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∘ {⟨𝐸, 𝐴⟩, ⟨𝐹, 𝐶⟩}) = (({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) ∘ ({⟨𝐸, 𝐴⟩} ∪ {⟨𝐹, 𝐶⟩}))
27 coundi 6269 . . 3 (({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) ∘ ({⟨𝐸, 𝐴⟩} ∪ {⟨𝐹, 𝐶⟩})) = ((({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) ∘ {⟨𝐸, 𝐴⟩}) ∪ (({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) ∘ {⟨𝐹, 𝐶⟩}))
2826, 27eqtri 2763 . 2 ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∘ {⟨𝐸, 𝐴⟩, ⟨𝐹, 𝐶⟩}) = ((({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) ∘ {⟨𝐸, 𝐴⟩}) ∪ (({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) ∘ {⟨𝐹, 𝐶⟩}))
29 df-pr 4634 . 2 {⟨𝐸, 𝐵⟩, ⟨𝐹, 𝐷⟩} = ({⟨𝐸, 𝐵⟩} ∪ {⟨𝐹, 𝐷⟩})
3023, 28, 293eqtr4g 2800 1 (𝜑 → ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∘ {⟨𝐸, 𝐴⟩, ⟨𝐹, 𝐶⟩}) = {⟨𝐸, 𝐵⟩, ⟨𝐹, 𝐷⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wne 2938  cun 3961  c0 4339  {csn 4631  {cpr 4633  cop 4637  ccom 5693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570
This theorem is referenced by:  cycpm2tr  33122
  Copyright terms: Public domain W3C validator