Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coprprop Structured version   Visualization version   GIF version

Theorem coprprop 32708
Description: Composition of two pairs of ordered pairs with matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Hypotheses
Ref Expression
brprop.a (𝜑𝐴𝑉)
brprop.b (𝜑𝐵𝑊)
brprop.c (𝜑𝐶𝑉)
brprop.d (𝜑𝐷𝑊)
mptprop.1 (𝜑𝐴𝐶)
coprprop.e (𝜑𝐸𝑋)
coprprop.f (𝜑𝐹𝑋)
coprprop.1 (𝜑𝐸𝐹)
Assertion
Ref Expression
coprprop (𝜑 → ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∘ {⟨𝐸, 𝐴⟩, ⟨𝐹, 𝐶⟩}) = {⟨𝐸, 𝐵⟩, ⟨𝐹, 𝐷⟩})

Proof of Theorem coprprop
StepHypRef Expression
1 coundir 6268 . . . 4 (({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) ∘ {⟨𝐸, 𝐴⟩}) = (({⟨𝐴, 𝐵⟩} ∘ {⟨𝐸, 𝐴⟩}) ∪ ({⟨𝐶, 𝐷⟩} ∘ {⟨𝐸, 𝐴⟩}))
2 brprop.a . . . . . . 7 (𝜑𝐴𝑉)
3 brprop.b . . . . . . 7 (𝜑𝐵𝑊)
4 coprprop.e . . . . . . 7 (𝜑𝐸𝑋)
52, 3, 4cosnop 32704 . . . . . 6 (𝜑 → ({⟨𝐴, 𝐵⟩} ∘ {⟨𝐸, 𝐴⟩}) = {⟨𝐸, 𝐵⟩})
6 brprop.d . . . . . . 7 (𝜑𝐷𝑊)
7 mptprop.1 . . . . . . . 8 (𝜑𝐴𝐶)
87necomd 2996 . . . . . . 7 (𝜑𝐶𝐴)
96, 4, 8cosnopne 32703 . . . . . 6 (𝜑 → ({⟨𝐶, 𝐷⟩} ∘ {⟨𝐸, 𝐴⟩}) = ∅)
105, 9uneq12d 4169 . . . . 5 (𝜑 → (({⟨𝐴, 𝐵⟩} ∘ {⟨𝐸, 𝐴⟩}) ∪ ({⟨𝐶, 𝐷⟩} ∘ {⟨𝐸, 𝐴⟩})) = ({⟨𝐸, 𝐵⟩} ∪ ∅))
11 un0 4394 . . . . 5 ({⟨𝐸, 𝐵⟩} ∪ ∅) = {⟨𝐸, 𝐵⟩}
1210, 11eqtrdi 2793 . . . 4 (𝜑 → (({⟨𝐴, 𝐵⟩} ∘ {⟨𝐸, 𝐴⟩}) ∪ ({⟨𝐶, 𝐷⟩} ∘ {⟨𝐸, 𝐴⟩})) = {⟨𝐸, 𝐵⟩})
131, 12eqtrid 2789 . . 3 (𝜑 → (({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) ∘ {⟨𝐸, 𝐴⟩}) = {⟨𝐸, 𝐵⟩})
14 coundir 6268 . . . 4 (({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) ∘ {⟨𝐹, 𝐶⟩}) = (({⟨𝐴, 𝐵⟩} ∘ {⟨𝐹, 𝐶⟩}) ∪ ({⟨𝐶, 𝐷⟩} ∘ {⟨𝐹, 𝐶⟩}))
15 coprprop.f . . . . . . 7 (𝜑𝐹𝑋)
163, 15, 7cosnopne 32703 . . . . . 6 (𝜑 → ({⟨𝐴, 𝐵⟩} ∘ {⟨𝐹, 𝐶⟩}) = ∅)
17 brprop.c . . . . . . 7 (𝜑𝐶𝑉)
1817, 6, 15cosnop 32704 . . . . . 6 (𝜑 → ({⟨𝐶, 𝐷⟩} ∘ {⟨𝐹, 𝐶⟩}) = {⟨𝐹, 𝐷⟩})
1916, 18uneq12d 4169 . . . . 5 (𝜑 → (({⟨𝐴, 𝐵⟩} ∘ {⟨𝐹, 𝐶⟩}) ∪ ({⟨𝐶, 𝐷⟩} ∘ {⟨𝐹, 𝐶⟩})) = (∅ ∪ {⟨𝐹, 𝐷⟩}))
20 0un 4396 . . . . 5 (∅ ∪ {⟨𝐹, 𝐷⟩}) = {⟨𝐹, 𝐷⟩}
2119, 20eqtrdi 2793 . . . 4 (𝜑 → (({⟨𝐴, 𝐵⟩} ∘ {⟨𝐹, 𝐶⟩}) ∪ ({⟨𝐶, 𝐷⟩} ∘ {⟨𝐹, 𝐶⟩})) = {⟨𝐹, 𝐷⟩})
2214, 21eqtrid 2789 . . 3 (𝜑 → (({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) ∘ {⟨𝐹, 𝐶⟩}) = {⟨𝐹, 𝐷⟩})
2313, 22uneq12d 4169 . 2 (𝜑 → ((({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) ∘ {⟨𝐸, 𝐴⟩}) ∪ (({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) ∘ {⟨𝐹, 𝐶⟩})) = ({⟨𝐸, 𝐵⟩} ∪ {⟨𝐹, 𝐷⟩}))
24 df-pr 4629 . . . 4 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
25 df-pr 4629 . . . 4 {⟨𝐸, 𝐴⟩, ⟨𝐹, 𝐶⟩} = ({⟨𝐸, 𝐴⟩} ∪ {⟨𝐹, 𝐶⟩})
2624, 25coeq12i 5874 . . 3 ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∘ {⟨𝐸, 𝐴⟩, ⟨𝐹, 𝐶⟩}) = (({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) ∘ ({⟨𝐸, 𝐴⟩} ∪ {⟨𝐹, 𝐶⟩}))
27 coundi 6267 . . 3 (({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) ∘ ({⟨𝐸, 𝐴⟩} ∪ {⟨𝐹, 𝐶⟩})) = ((({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) ∘ {⟨𝐸, 𝐴⟩}) ∪ (({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) ∘ {⟨𝐹, 𝐶⟩}))
2826, 27eqtri 2765 . 2 ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∘ {⟨𝐸, 𝐴⟩, ⟨𝐹, 𝐶⟩}) = ((({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) ∘ {⟨𝐸, 𝐴⟩}) ∪ (({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) ∘ {⟨𝐹, 𝐶⟩}))
29 df-pr 4629 . 2 {⟨𝐸, 𝐵⟩, ⟨𝐹, 𝐷⟩} = ({⟨𝐸, 𝐵⟩} ∪ {⟨𝐹, 𝐷⟩})
3023, 28, 293eqtr4g 2802 1 (𝜑 → ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∘ {⟨𝐸, 𝐴⟩, ⟨𝐹, 𝐶⟩}) = {⟨𝐸, 𝐵⟩, ⟨𝐹, 𝐷⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wne 2940  cun 3949  c0 4333  {csn 4626  {cpr 4628  cop 4632  ccom 5689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568
This theorem is referenced by:  cycpm2tr  33139
  Copyright terms: Public domain W3C validator