Step | Hyp | Ref
| Expression |
1 | | mdetfval.d |
. . . 4
⊢ 𝐷 = (𝑁 maDet 𝑅) |
2 | | mdetfval.a |
. . . 4
⊢ 𝐴 = (𝑁 Mat 𝑅) |
3 | | mdetfval.b |
. . . 4
⊢ 𝐵 = (Base‘𝐴) |
4 | | mdetfval.p |
. . . 4
⊢ 𝑃 =
(Base‘(SymGrp‘𝑁)) |
5 | | mdetfval.y |
. . . 4
⊢ 𝑌 = (ℤRHom‘𝑅) |
6 | | mdetfval.s |
. . . 4
⊢ 𝑆 = (pmSgn‘𝑁) |
7 | | mdetfval.t |
. . . 4
⊢ · =
(.r‘𝑅) |
8 | | mdetfval.u |
. . . 4
⊢ 𝑈 = (mulGrp‘𝑅) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | mdetleib 21644 |
. . 3
⊢ (𝑀 ∈ 𝐵 → (𝐷‘𝑀) = (𝑅 Σg (𝑞 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑞) · (𝑈 Σg (𝑦 ∈ 𝑁 ↦ ((𝑞‘𝑦)𝑀𝑦))))))) |
10 | 9 | adantl 481 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐷‘𝑀) = (𝑅 Σg (𝑞 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑞) · (𝑈 Σg (𝑦 ∈ 𝑁 ↦ ((𝑞‘𝑦)𝑀𝑦))))))) |
11 | | eqid 2738 |
. . 3
⊢
(Base‘𝑅) =
(Base‘𝑅) |
12 | | crngring 19710 |
. . . . 5
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
13 | | ringcmn 19735 |
. . . . 5
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
14 | 12, 13 | syl 17 |
. . . 4
⊢ (𝑅 ∈ CRing → 𝑅 ∈ CMnd) |
15 | 14 | adantr 480 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ CMnd) |
16 | 2, 3 | matrcl 21469 |
. . . . . 6
⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
17 | 16 | adantl 481 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
18 | 17 | simpld 494 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑁 ∈ Fin) |
19 | | eqid 2738 |
. . . . 5
⊢
(SymGrp‘𝑁) =
(SymGrp‘𝑁) |
20 | 19, 4 | symgbasfi 18901 |
. . . 4
⊢ (𝑁 ∈ Fin → 𝑃 ∈ Fin) |
21 | 18, 20 | syl 17 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ Fin) |
22 | 12 | ad2antrr 722 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑞 ∈ 𝑃) → 𝑅 ∈ Ring) |
23 | 5, 6 | coeq12i 5761 |
. . . . . . . . 9
⊢ (𝑌 ∘ 𝑆) = ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) |
24 | | zrhpsgnmhm 20701 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) →
((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))
∈ ((SymGrp‘𝑁)
MndHom (mulGrp‘𝑅))) |
25 | 23, 24 | eqeltrid 2843 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → (𝑌 ∘ 𝑆) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅))) |
26 | 12, 18, 25 | syl2an2r 681 |
. . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑌 ∘ 𝑆) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅))) |
27 | | eqid 2738 |
. . . . . . . . 9
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
28 | 27, 11 | mgpbas 19641 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘(mulGrp‘𝑅)) |
29 | 4, 28 | mhmf 18350 |
. . . . . . 7
⊢ ((𝑌 ∘ 𝑆) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → (𝑌 ∘ 𝑆):𝑃⟶(Base‘𝑅)) |
30 | 26, 29 | syl 17 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑌 ∘ 𝑆):𝑃⟶(Base‘𝑅)) |
31 | 30 | ffvelrnda 6943 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑞 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝑞) ∈ (Base‘𝑅)) |
32 | 8, 11 | mgpbas 19641 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑈) |
33 | 8 | crngmgp 19706 |
. . . . . . 7
⊢ (𝑅 ∈ CRing → 𝑈 ∈ CMnd) |
34 | 33 | ad2antrr 722 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑞 ∈ 𝑃) → 𝑈 ∈ CMnd) |
35 | 18 | adantr 480 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑞 ∈ 𝑃) → 𝑁 ∈ Fin) |
36 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) |
37 | 2, 11, 3 | matbas2i 21479 |
. . . . . . . . . 10
⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
38 | | elmapi 8595 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
39 | 36, 37, 38 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
40 | 39 | ad2antrr 722 |
. . . . . . . 8
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑞 ∈ 𝑃) ∧ 𝑦 ∈ 𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
41 | 19, 4 | symgbasf1o 18897 |
. . . . . . . . . . 11
⊢ (𝑞 ∈ 𝑃 → 𝑞:𝑁–1-1-onto→𝑁) |
42 | 41 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑞 ∈ 𝑃) → 𝑞:𝑁–1-1-onto→𝑁) |
43 | | f1of 6700 |
. . . . . . . . . 10
⊢ (𝑞:𝑁–1-1-onto→𝑁 → 𝑞:𝑁⟶𝑁) |
44 | 42, 43 | syl 17 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑞 ∈ 𝑃) → 𝑞:𝑁⟶𝑁) |
45 | 44 | ffvelrnda 6943 |
. . . . . . . 8
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑞 ∈ 𝑃) ∧ 𝑦 ∈ 𝑁) → (𝑞‘𝑦) ∈ 𝑁) |
46 | | simpr 484 |
. . . . . . . 8
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑞 ∈ 𝑃) ∧ 𝑦 ∈ 𝑁) → 𝑦 ∈ 𝑁) |
47 | 40, 45, 46 | fovrnd 7422 |
. . . . . . 7
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑞 ∈ 𝑃) ∧ 𝑦 ∈ 𝑁) → ((𝑞‘𝑦)𝑀𝑦) ∈ (Base‘𝑅)) |
48 | 47 | ralrimiva 3107 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑞 ∈ 𝑃) → ∀𝑦 ∈ 𝑁 ((𝑞‘𝑦)𝑀𝑦) ∈ (Base‘𝑅)) |
49 | 32, 34, 35, 48 | gsummptcl 19483 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑞 ∈ 𝑃) → (𝑈 Σg (𝑦 ∈ 𝑁 ↦ ((𝑞‘𝑦)𝑀𝑦))) ∈ (Base‘𝑅)) |
50 | 11, 7 | ringcl 19715 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ ((𝑌 ∘ 𝑆)‘𝑞) ∈ (Base‘𝑅) ∧ (𝑈 Σg (𝑦 ∈ 𝑁 ↦ ((𝑞‘𝑦)𝑀𝑦))) ∈ (Base‘𝑅)) → (((𝑌 ∘ 𝑆)‘𝑞) · (𝑈 Σg (𝑦 ∈ 𝑁 ↦ ((𝑞‘𝑦)𝑀𝑦)))) ∈ (Base‘𝑅)) |
51 | 22, 31, 49, 50 | syl3anc 1369 |
. . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑞 ∈ 𝑃) → (((𝑌 ∘ 𝑆)‘𝑞) · (𝑈 Σg (𝑦 ∈ 𝑁 ↦ ((𝑞‘𝑦)𝑀𝑦)))) ∈ (Base‘𝑅)) |
52 | 51 | ralrimiva 3107 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∀𝑞 ∈ 𝑃 (((𝑌 ∘ 𝑆)‘𝑞) · (𝑈 Σg (𝑦 ∈ 𝑁 ↦ ((𝑞‘𝑦)𝑀𝑦)))) ∈ (Base‘𝑅)) |
53 | | eqid 2738 |
. . 3
⊢ (𝑞 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑞) · (𝑈 Σg (𝑦 ∈ 𝑁 ↦ ((𝑞‘𝑦)𝑀𝑦))))) = (𝑞 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑞) · (𝑈 Σg (𝑦 ∈ 𝑁 ↦ ((𝑞‘𝑦)𝑀𝑦))))) |
54 | | eqid 2738 |
. . . 4
⊢
(invg‘(SymGrp‘𝑁)) =
(invg‘(SymGrp‘𝑁)) |
55 | 19 | symggrp 18923 |
. . . . 5
⊢ (𝑁 ∈ Fin →
(SymGrp‘𝑁) ∈
Grp) |
56 | 18, 55 | syl 17 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (SymGrp‘𝑁) ∈ Grp) |
57 | 4, 54, 56 | grpinvf1o 18560 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) →
(invg‘(SymGrp‘𝑁)):𝑃–1-1-onto→𝑃) |
58 | 11, 15, 21, 52, 53, 57 | gsummptfif1o 19484 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑅 Σg (𝑞 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑞) · (𝑈 Σg (𝑦 ∈ 𝑁 ↦ ((𝑞‘𝑦)𝑀𝑦)))))) = (𝑅 Σg ((𝑞 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑞) · (𝑈 Σg (𝑦 ∈ 𝑁 ↦ ((𝑞‘𝑦)𝑀𝑦))))) ∘
(invg‘(SymGrp‘𝑁))))) |
59 | | f1of 6700 |
. . . . . . 7
⊢
((invg‘(SymGrp‘𝑁)):𝑃–1-1-onto→𝑃 →
(invg‘(SymGrp‘𝑁)):𝑃⟶𝑃) |
60 | 57, 59 | syl 17 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) →
(invg‘(SymGrp‘𝑁)):𝑃⟶𝑃) |
61 | 60 | ffvelrnda 6943 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) →
((invg‘(SymGrp‘𝑁))‘𝑝) ∈ 𝑃) |
62 | 60 | feqmptd 6819 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) →
(invg‘(SymGrp‘𝑁)) = (𝑝 ∈ 𝑃 ↦
((invg‘(SymGrp‘𝑁))‘𝑝))) |
63 | | eqidd 2739 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑞 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑞) · (𝑈 Σg (𝑦 ∈ 𝑁 ↦ ((𝑞‘𝑦)𝑀𝑦))))) = (𝑞 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑞) · (𝑈 Σg (𝑦 ∈ 𝑁 ↦ ((𝑞‘𝑦)𝑀𝑦)))))) |
64 | | fveq2 6756 |
. . . . . 6
⊢ (𝑞 =
((invg‘(SymGrp‘𝑁))‘𝑝) → ((𝑌 ∘ 𝑆)‘𝑞) = ((𝑌 ∘ 𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝))) |
65 | | fveq1 6755 |
. . . . . . . . 9
⊢ (𝑞 =
((invg‘(SymGrp‘𝑁))‘𝑝) → (𝑞‘𝑦) =
(((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)) |
66 | 65 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝑞 =
((invg‘(SymGrp‘𝑁))‘𝑝) → ((𝑞‘𝑦)𝑀𝑦) =
((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) |
67 | 66 | mpteq2dv 5172 |
. . . . . . 7
⊢ (𝑞 =
((invg‘(SymGrp‘𝑁))‘𝑝) → (𝑦 ∈ 𝑁 ↦ ((𝑞‘𝑦)𝑀𝑦)) = (𝑦 ∈ 𝑁 ↦
((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))) |
68 | 67 | oveq2d 7271 |
. . . . . 6
⊢ (𝑞 =
((invg‘(SymGrp‘𝑁))‘𝑝) → (𝑈 Σg (𝑦 ∈ 𝑁 ↦ ((𝑞‘𝑦)𝑀𝑦))) = (𝑈 Σg (𝑦 ∈ 𝑁 ↦
((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)))) |
69 | 64, 68 | oveq12d 7273 |
. . . . 5
⊢ (𝑞 =
((invg‘(SymGrp‘𝑁))‘𝑝) → (((𝑌 ∘ 𝑆)‘𝑞) · (𝑈 Σg (𝑦 ∈ 𝑁 ↦ ((𝑞‘𝑦)𝑀𝑦)))) = (((𝑌 ∘ 𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) · (𝑈 Σg (𝑦 ∈ 𝑁 ↦
((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))))) |
70 | 61, 62, 63, 69 | fmptco 6983 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝑞 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑞) · (𝑈 Σg (𝑦 ∈ 𝑁 ↦ ((𝑞‘𝑦)𝑀𝑦))))) ∘
(invg‘(SymGrp‘𝑁))) = (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) · (𝑈 Σg (𝑦 ∈ 𝑁 ↦
((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)))))) |
71 | 19, 4, 54 | symginv 18925 |
. . . . . . . . 9
⊢ (𝑝 ∈ 𝑃 →
((invg‘(SymGrp‘𝑁))‘𝑝) = ◡𝑝) |
72 | 71 | adantl 481 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) →
((invg‘(SymGrp‘𝑁))‘𝑝) = ◡𝑝) |
73 | 72 | fveq2d 6760 |
. . . . . . 7
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) = ((𝑌 ∘ 𝑆)‘◡𝑝)) |
74 | 12 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) → 𝑅 ∈ Ring) |
75 | 18 | adantr 480 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) → 𝑁 ∈ Fin) |
76 | | simpr 484 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) → 𝑝 ∈ 𝑃) |
77 | 4, 5, 6 | zrhpsgninv 20702 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑝 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘◡𝑝) = ((𝑌 ∘ 𝑆)‘𝑝)) |
78 | 74, 75, 76, 77 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘◡𝑝) = ((𝑌 ∘ 𝑆)‘𝑝)) |
79 | 73, 78 | eqtrd 2778 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) = ((𝑌 ∘ 𝑆)‘𝑝)) |
80 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝑈) =
(Base‘𝑈) |
81 | 33 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) → 𝑈 ∈ CMnd) |
82 | 39 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) ∧ 𝑦 ∈ 𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
83 | 71 | ad2antlr 723 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) ∧ 𝑦 ∈ 𝑁) →
((invg‘(SymGrp‘𝑁))‘𝑝) = ◡𝑝) |
84 | 83 | fveq1d 6758 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) ∧ 𝑦 ∈ 𝑁) →
(((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦) = (◡𝑝‘𝑦)) |
85 | 19, 4 | symgbasf1o 18897 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 ∈ 𝑃 → 𝑝:𝑁–1-1-onto→𝑁) |
86 | 85 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) → 𝑝:𝑁–1-1-onto→𝑁) |
87 | | f1ocnv 6712 |
. . . . . . . . . . . . . 14
⊢ (𝑝:𝑁–1-1-onto→𝑁 → ◡𝑝:𝑁–1-1-onto→𝑁) |
88 | | f1of 6700 |
. . . . . . . . . . . . . 14
⊢ (◡𝑝:𝑁–1-1-onto→𝑁 → ◡𝑝:𝑁⟶𝑁) |
89 | 86, 87, 88 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) → ◡𝑝:𝑁⟶𝑁) |
90 | 89 | ffvelrnda 6943 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) ∧ 𝑦 ∈ 𝑁) → (◡𝑝‘𝑦) ∈ 𝑁) |
91 | 84, 90 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) ∧ 𝑦 ∈ 𝑁) →
(((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦) ∈ 𝑁) |
92 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) ∧ 𝑦 ∈ 𝑁) → 𝑦 ∈ 𝑁) |
93 | 82, 91, 92 | fovrnd 7422 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) ∧ 𝑦 ∈ 𝑁) →
((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦) ∈ (Base‘𝑅)) |
94 | 93, 32 | eleqtrdi 2849 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) ∧ 𝑦 ∈ 𝑁) →
((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦) ∈ (Base‘𝑈)) |
95 | 94 | ralrimiva 3107 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) → ∀𝑦 ∈ 𝑁
((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦) ∈ (Base‘𝑈)) |
96 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝑁 ↦
((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) = (𝑦 ∈ 𝑁 ↦
((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) |
97 | 80, 81, 75, 95, 96, 86 | gsummptfif1o 19484 |
. . . . . . 7
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) → (𝑈 Σg (𝑦 ∈ 𝑁 ↦
((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))) = (𝑈 Σg ((𝑦 ∈ 𝑁 ↦
((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) ∘ 𝑝))) |
98 | | f1of 6700 |
. . . . . . . . . . . 12
⊢ (𝑝:𝑁–1-1-onto→𝑁 → 𝑝:𝑁⟶𝑁) |
99 | 86, 98 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) → 𝑝:𝑁⟶𝑁) |
100 | 99 | ffvelrnda 6943 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) ∧ 𝑥 ∈ 𝑁) → (𝑝‘𝑥) ∈ 𝑁) |
101 | 99 | feqmptd 6819 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) → 𝑝 = (𝑥 ∈ 𝑁 ↦ (𝑝‘𝑥))) |
102 | | eqidd 2739 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) → (𝑦 ∈ 𝑁 ↦
((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) = (𝑦 ∈ 𝑁 ↦
((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))) |
103 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑝‘𝑥) →
(((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦) =
(((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝‘𝑥))) |
104 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑝‘𝑥) → 𝑦 = (𝑝‘𝑥)) |
105 | 103, 104 | oveq12d 7273 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑝‘𝑥) →
((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦) =
((((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝‘𝑥))𝑀(𝑝‘𝑥))) |
106 | 100, 101,
102, 105 | fmptco 6983 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) → ((𝑦 ∈ 𝑁 ↦
((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) ∘ 𝑝) = (𝑥 ∈ 𝑁 ↦
((((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝‘𝑥))𝑀(𝑝‘𝑥)))) |
107 | 71 | ad2antlr 723 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) ∧ 𝑥 ∈ 𝑁) →
((invg‘(SymGrp‘𝑁))‘𝑝) = ◡𝑝) |
108 | 107 | fveq1d 6758 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) ∧ 𝑥 ∈ 𝑁) →
(((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝‘𝑥)) = (◡𝑝‘(𝑝‘𝑥))) |
109 | | f1ocnvfv1 7129 |
. . . . . . . . . . . . 13
⊢ ((𝑝:𝑁–1-1-onto→𝑁 ∧ 𝑥 ∈ 𝑁) → (◡𝑝‘(𝑝‘𝑥)) = 𝑥) |
110 | 86, 109 | sylan 579 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) ∧ 𝑥 ∈ 𝑁) → (◡𝑝‘(𝑝‘𝑥)) = 𝑥) |
111 | 108, 110 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) ∧ 𝑥 ∈ 𝑁) →
(((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝‘𝑥)) = 𝑥) |
112 | 111 | oveq1d 7270 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) ∧ 𝑥 ∈ 𝑁) →
((((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝‘𝑥))𝑀(𝑝‘𝑥)) = (𝑥𝑀(𝑝‘𝑥))) |
113 | 112 | mpteq2dva 5170 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) → (𝑥 ∈ 𝑁 ↦
((((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝‘𝑥))𝑀(𝑝‘𝑥))) = (𝑥 ∈ 𝑁 ↦ (𝑥𝑀(𝑝‘𝑥)))) |
114 | 106, 113 | eqtrd 2778 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) → ((𝑦 ∈ 𝑁 ↦
((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) ∘ 𝑝) = (𝑥 ∈ 𝑁 ↦ (𝑥𝑀(𝑝‘𝑥)))) |
115 | 114 | oveq2d 7271 |
. . . . . . 7
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) → (𝑈 Σg ((𝑦 ∈ 𝑁 ↦
((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) ∘ 𝑝)) = (𝑈 Σg (𝑥 ∈ 𝑁 ↦ (𝑥𝑀(𝑝‘𝑥))))) |
116 | 97, 115 | eqtrd 2778 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) → (𝑈 Σg (𝑦 ∈ 𝑁 ↦
((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))) = (𝑈 Σg (𝑥 ∈ 𝑁 ↦ (𝑥𝑀(𝑝‘𝑥))))) |
117 | 79, 116 | oveq12d 7273 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑝 ∈ 𝑃) → (((𝑌 ∘ 𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) · (𝑈 Σg (𝑦 ∈ 𝑁 ↦
((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)))) = (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ (𝑥𝑀(𝑝‘𝑥)))))) |
118 | 117 | mpteq2dva 5170 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) · (𝑈 Σg (𝑦 ∈ 𝑁 ↦
((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))))) = (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ (𝑥𝑀(𝑝‘𝑥))))))) |
119 | 70, 118 | eqtrd 2778 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝑞 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑞) · (𝑈 Σg (𝑦 ∈ 𝑁 ↦ ((𝑞‘𝑦)𝑀𝑦))))) ∘
(invg‘(SymGrp‘𝑁))) = (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ (𝑥𝑀(𝑝‘𝑥))))))) |
120 | 119 | oveq2d 7271 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑅 Σg ((𝑞 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑞) · (𝑈 Σg (𝑦 ∈ 𝑁 ↦ ((𝑞‘𝑦)𝑀𝑦))))) ∘
(invg‘(SymGrp‘𝑁)))) = (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ (𝑥𝑀(𝑝‘𝑥)))))))) |
121 | 10, 58, 120 | 3eqtrd 2782 |
1
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐷‘𝑀) = (𝑅 Σg (𝑝 ∈ 𝑃 ↦ (((𝑌 ∘ 𝑆)‘𝑝) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ (𝑥𝑀(𝑝‘𝑥)))))))) |