MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetleib2 Structured version   Visualization version   GIF version

Theorem mdetleib2 21937
Description: Leibniz' formula can also be expanded by rows. (Contributed by Stefan O'Rear, 9-Jul-2018.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
mdetfval.d 𝐷 = (𝑁 maDet 𝑅)
mdetfval.a 𝐴 = (𝑁 Mat 𝑅)
mdetfval.b 𝐵 = (Base‘𝐴)
mdetfval.p 𝑃 = (Base‘(SymGrp‘𝑁))
mdetfval.y 𝑌 = (ℤRHom‘𝑅)
mdetfval.s 𝑆 = (pmSgn‘𝑁)
mdetfval.t · = (.r𝑅)
mdetfval.u 𝑈 = (mulGrp‘𝑅)
Assertion
Ref Expression
mdetleib2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐷𝑀) = (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥))))))))
Distinct variable groups:   𝑥,𝑝,𝑀   𝑁,𝑝,𝑥   𝑅,𝑝,𝑥   𝐵,𝑝,𝑥   𝑃,𝑝,𝑥   𝑆,𝑝   𝑈,𝑝   𝑌,𝑝   · ,𝑝
Allowed substitution hints:   𝐴(𝑥,𝑝)   𝐷(𝑥,𝑝)   𝑆(𝑥)   · (𝑥)   𝑈(𝑥)   𝑌(𝑥)

Proof of Theorem mdetleib2
Dummy variables 𝑦 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdetfval.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
2 mdetfval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 mdetfval.b . . . 4 𝐵 = (Base‘𝐴)
4 mdetfval.p . . . 4 𝑃 = (Base‘(SymGrp‘𝑁))
5 mdetfval.y . . . 4 𝑌 = (ℤRHom‘𝑅)
6 mdetfval.s . . . 4 𝑆 = (pmSgn‘𝑁)
7 mdetfval.t . . . 4 · = (.r𝑅)
8 mdetfval.u . . . 4 𝑈 = (mulGrp‘𝑅)
91, 2, 3, 4, 5, 6, 7, 8mdetleib 21936 . . 3 (𝑀𝐵 → (𝐷𝑀) = (𝑅 Σg (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))))))
109adantl 482 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐷𝑀) = (𝑅 Σg (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))))))
11 eqid 2736 . . 3 (Base‘𝑅) = (Base‘𝑅)
12 crngring 19976 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
13 ringcmn 20003 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
1412, 13syl 17 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ CMnd)
1514adantr 481 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ CMnd)
162, 3matrcl 21759 . . . . . 6 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
1716adantl 482 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
1817simpld 495 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
19 eqid 2736 . . . . 5 (SymGrp‘𝑁) = (SymGrp‘𝑁)
2019, 4symgbasfi 19160 . . . 4 (𝑁 ∈ Fin → 𝑃 ∈ Fin)
2118, 20syl 17 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 ∈ Fin)
2212ad2antrr 724 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → 𝑅 ∈ Ring)
235, 6coeq12i 5819 . . . . . . . . 9 (𝑌𝑆) = ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))
24 zrhpsgnmhm 20988 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
2523, 24eqeltrid 2842 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → (𝑌𝑆) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
2612, 18, 25syl2an2r 683 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑌𝑆) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
27 eqid 2736 . . . . . . . . 9 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2827, 11mgpbas 19902 . . . . . . . 8 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
294, 28mhmf 18607 . . . . . . 7 ((𝑌𝑆) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → (𝑌𝑆):𝑃⟶(Base‘𝑅))
3026, 29syl 17 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑌𝑆):𝑃⟶(Base‘𝑅))
3130ffvelcdmda 7035 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → ((𝑌𝑆)‘𝑞) ∈ (Base‘𝑅))
328, 11mgpbas 19902 . . . . . 6 (Base‘𝑅) = (Base‘𝑈)
338crngmgp 19972 . . . . . . 7 (𝑅 ∈ CRing → 𝑈 ∈ CMnd)
3433ad2antrr 724 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → 𝑈 ∈ CMnd)
3518adantr 481 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → 𝑁 ∈ Fin)
36 simpr 485 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀𝐵)
372, 11, 3matbas2i 21771 . . . . . . . . . 10 (𝑀𝐵𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
38 elmapi 8787 . . . . . . . . . 10 (𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
3936, 37, 383syl 18 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
4039ad2antrr 724 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) ∧ 𝑦𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
4119, 4symgbasf1o 19156 . . . . . . . . . . 11 (𝑞𝑃𝑞:𝑁1-1-onto𝑁)
4241adantl 482 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → 𝑞:𝑁1-1-onto𝑁)
43 f1of 6784 . . . . . . . . . 10 (𝑞:𝑁1-1-onto𝑁𝑞:𝑁𝑁)
4442, 43syl 17 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → 𝑞:𝑁𝑁)
4544ffvelcdmda 7035 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) ∧ 𝑦𝑁) → (𝑞𝑦) ∈ 𝑁)
46 simpr 485 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) ∧ 𝑦𝑁) → 𝑦𝑁)
4740, 45, 46fovcdmd 7526 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) ∧ 𝑦𝑁) → ((𝑞𝑦)𝑀𝑦) ∈ (Base‘𝑅))
4847ralrimiva 3143 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → ∀𝑦𝑁 ((𝑞𝑦)𝑀𝑦) ∈ (Base‘𝑅))
4932, 34, 35, 48gsummptcl 19744 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))) ∈ (Base‘𝑅))
5011, 7ringcl 19981 . . . . 5 ((𝑅 ∈ Ring ∧ ((𝑌𝑆)‘𝑞) ∈ (Base‘𝑅) ∧ (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))) ∈ (Base‘𝑅)) → (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))) ∈ (Base‘𝑅))
5122, 31, 49, 50syl3anc 1371 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))) ∈ (Base‘𝑅))
5251ralrimiva 3143 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → ∀𝑞𝑃 (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))) ∈ (Base‘𝑅))
53 eqid 2736 . . 3 (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))) = (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))))
54 eqid 2736 . . . 4 (invg‘(SymGrp‘𝑁)) = (invg‘(SymGrp‘𝑁))
5519symggrp 19182 . . . . 5 (𝑁 ∈ Fin → (SymGrp‘𝑁) ∈ Grp)
5618, 55syl 17 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (SymGrp‘𝑁) ∈ Grp)
574, 54, 56grpinvf1o 18817 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (invg‘(SymGrp‘𝑁)):𝑃1-1-onto𝑃)
5811, 15, 21, 52, 53, 57gsummptfif1o 19745 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑅 Σg (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))))) = (𝑅 Σg ((𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))) ∘ (invg‘(SymGrp‘𝑁)))))
59 f1of 6784 . . . . . . 7 ((invg‘(SymGrp‘𝑁)):𝑃1-1-onto𝑃 → (invg‘(SymGrp‘𝑁)):𝑃𝑃)
6057, 59syl 17 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (invg‘(SymGrp‘𝑁)):𝑃𝑃)
6160ffvelcdmda 7035 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((invg‘(SymGrp‘𝑁))‘𝑝) ∈ 𝑃)
6260feqmptd 6910 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (invg‘(SymGrp‘𝑁)) = (𝑝𝑃 ↦ ((invg‘(SymGrp‘𝑁))‘𝑝)))
63 eqidd 2737 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))) = (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))))
64 fveq2 6842 . . . . . 6 (𝑞 = ((invg‘(SymGrp‘𝑁))‘𝑝) → ((𝑌𝑆)‘𝑞) = ((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)))
65 fveq1 6841 . . . . . . . . 9 (𝑞 = ((invg‘(SymGrp‘𝑁))‘𝑝) → (𝑞𝑦) = (((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦))
6665oveq1d 7372 . . . . . . . 8 (𝑞 = ((invg‘(SymGrp‘𝑁))‘𝑝) → ((𝑞𝑦)𝑀𝑦) = ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))
6766mpteq2dv 5207 . . . . . . 7 (𝑞 = ((invg‘(SymGrp‘𝑁))‘𝑝) → (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)) = (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)))
6867oveq2d 7373 . . . . . 6 (𝑞 = ((invg‘(SymGrp‘𝑁))‘𝑝) → (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))) = (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))))
6964, 68oveq12d 7375 . . . . 5 (𝑞 = ((invg‘(SymGrp‘𝑁))‘𝑝) → (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))) = (((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) · (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)))))
7061, 62, 63, 69fmptco 7075 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))) ∘ (invg‘(SymGrp‘𝑁))) = (𝑝𝑃 ↦ (((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) · (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))))))
7119, 4, 54symginv 19184 . . . . . . . . 9 (𝑝𝑃 → ((invg‘(SymGrp‘𝑁))‘𝑝) = 𝑝)
7271adantl 482 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((invg‘(SymGrp‘𝑁))‘𝑝) = 𝑝)
7372fveq2d 6846 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) = ((𝑌𝑆)‘𝑝))
7412ad2antrr 724 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑅 ∈ Ring)
7518adantr 481 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑁 ∈ Fin)
76 simpr 485 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑝𝑃)
774, 5, 6zrhpsgninv 20989 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑝𝑃) → ((𝑌𝑆)‘𝑝) = ((𝑌𝑆)‘𝑝))
7874, 75, 76, 77syl3anc 1371 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((𝑌𝑆)‘𝑝) = ((𝑌𝑆)‘𝑝))
7973, 78eqtrd 2776 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) = ((𝑌𝑆)‘𝑝))
80 eqid 2736 . . . . . . . 8 (Base‘𝑈) = (Base‘𝑈)
8133ad2antrr 724 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑈 ∈ CMnd)
8239ad2antrr 724 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
8371ad2antlr 725 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → ((invg‘(SymGrp‘𝑁))‘𝑝) = 𝑝)
8483fveq1d 6844 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → (((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦) = (𝑝𝑦))
8519, 4symgbasf1o 19156 . . . . . . . . . . . . . . 15 (𝑝𝑃𝑝:𝑁1-1-onto𝑁)
8685adantl 482 . . . . . . . . . . . . . 14 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑝:𝑁1-1-onto𝑁)
87 f1ocnv 6796 . . . . . . . . . . . . . 14 (𝑝:𝑁1-1-onto𝑁𝑝:𝑁1-1-onto𝑁)
88 f1of 6784 . . . . . . . . . . . . . 14 (𝑝:𝑁1-1-onto𝑁𝑝:𝑁𝑁)
8986, 87, 883syl 18 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑝:𝑁𝑁)
9089ffvelcdmda 7035 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → (𝑝𝑦) ∈ 𝑁)
9184, 90eqeltrd 2838 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → (((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦) ∈ 𝑁)
92 simpr 485 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → 𝑦𝑁)
9382, 91, 92fovcdmd 7526 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦) ∈ (Base‘𝑅))
9493, 32eleqtrdi 2848 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦) ∈ (Base‘𝑈))
9594ralrimiva 3143 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ∀𝑦𝑁 ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦) ∈ (Base‘𝑈))
96 eqid 2736 . . . . . . . 8 (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) = (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))
9780, 81, 75, 95, 96, 86gsummptfif1o 19745 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))) = (𝑈 Σg ((𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) ∘ 𝑝)))
98 f1of 6784 . . . . . . . . . . . 12 (𝑝:𝑁1-1-onto𝑁𝑝:𝑁𝑁)
9986, 98syl 17 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑝:𝑁𝑁)
10099ffvelcdmda 7035 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑥𝑁) → (𝑝𝑥) ∈ 𝑁)
10199feqmptd 6910 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑝 = (𝑥𝑁 ↦ (𝑝𝑥)))
102 eqidd 2737 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) = (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)))
103 fveq2 6842 . . . . . . . . . . 11 (𝑦 = (𝑝𝑥) → (((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦) = (((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥)))
104 id 22 . . . . . . . . . . 11 (𝑦 = (𝑝𝑥) → 𝑦 = (𝑝𝑥))
105103, 104oveq12d 7375 . . . . . . . . . 10 (𝑦 = (𝑝𝑥) → ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦) = ((((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥))𝑀(𝑝𝑥)))
106100, 101, 102, 105fmptco 7075 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) ∘ 𝑝) = (𝑥𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥))𝑀(𝑝𝑥))))
10771ad2antlr 725 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑥𝑁) → ((invg‘(SymGrp‘𝑁))‘𝑝) = 𝑝)
108107fveq1d 6844 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑥𝑁) → (((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥)) = (𝑝‘(𝑝𝑥)))
109 f1ocnvfv1 7222 . . . . . . . . . . . . 13 ((𝑝:𝑁1-1-onto𝑁𝑥𝑁) → (𝑝‘(𝑝𝑥)) = 𝑥)
11086, 109sylan 580 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑥𝑁) → (𝑝‘(𝑝𝑥)) = 𝑥)
111108, 110eqtrd 2776 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑥𝑁) → (((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥)) = 𝑥)
112111oveq1d 7372 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑥𝑁) → ((((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥))𝑀(𝑝𝑥)) = (𝑥𝑀(𝑝𝑥)))
113112mpteq2dva 5205 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → (𝑥𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥))𝑀(𝑝𝑥))) = (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥))))
114106, 113eqtrd 2776 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) ∘ 𝑝) = (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥))))
115114oveq2d 7373 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → (𝑈 Σg ((𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) ∘ 𝑝)) = (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥)))))
11697, 115eqtrd 2776 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))) = (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥)))))
11779, 116oveq12d 7375 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → (((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) · (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)))) = (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥))))))
118117mpteq2dva 5205 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑝𝑃 ↦ (((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) · (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))))) = (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥)))))))
11970, 118eqtrd 2776 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))) ∘ (invg‘(SymGrp‘𝑁))) = (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥)))))))
120119oveq2d 7373 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑅 Σg ((𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))) ∘ (invg‘(SymGrp‘𝑁)))) = (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥))))))))
12110, 58, 1203eqtrd 2780 1 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐷𝑀) = (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3445  cmpt 5188   × cxp 5631  ccnv 5632  ccom 5637  wf 6492  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  m cmap 8765  Fincfn 8883  Basecbs 17083  .rcmulr 17134   Σg cgsu 17322   MndHom cmhm 18599  Grpcgrp 18748  invgcminusg 18749  SymGrpcsymg 19148  pmSgncpsgn 19271  CMndccmn 19562  mulGrpcmgp 19896  Ringcrg 19964  CRingccrg 19965  ℤRHomczrh 20900   Mat cmat 21754   maDet cmdat 21933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-xor 1510  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-ot 4595  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-word 14403  df-lsw 14451  df-concat 14459  df-s1 14484  df-substr 14529  df-pfx 14559  df-splice 14638  df-reverse 14647  df-s2 14737  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-efmnd 18679  df-grp 18751  df-minusg 18752  df-mulg 18873  df-subg 18925  df-ghm 19006  df-gim 19049  df-cntz 19097  df-oppg 19124  df-symg 19149  df-pmtr 19224  df-psgn 19273  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-rnghom 20146  df-drng 20187  df-subrg 20220  df-sra 20633  df-rgmod 20634  df-cnfld 20797  df-zring 20870  df-zrh 20904  df-dsmm 21138  df-frlm 21153  df-mat 21755  df-mdet 21934
This theorem is referenced by:  mdetrlin  21951  mdetrsca  21952  mdettpos  21960  smadiadet  22019
  Copyright terms: Public domain W3C validator