MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetleib2 Structured version   Visualization version   GIF version

Theorem mdetleib2 21197
Description: Leibniz' formula can also be expanded by rows. (Contributed by Stefan O'Rear, 9-Jul-2018.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
mdetfval.d 𝐷 = (𝑁 maDet 𝑅)
mdetfval.a 𝐴 = (𝑁 Mat 𝑅)
mdetfval.b 𝐵 = (Base‘𝐴)
mdetfval.p 𝑃 = (Base‘(SymGrp‘𝑁))
mdetfval.y 𝑌 = (ℤRHom‘𝑅)
mdetfval.s 𝑆 = (pmSgn‘𝑁)
mdetfval.t · = (.r𝑅)
mdetfval.u 𝑈 = (mulGrp‘𝑅)
Assertion
Ref Expression
mdetleib2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐷𝑀) = (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥))))))))
Distinct variable groups:   𝑥,𝑝,𝑀   𝑁,𝑝,𝑥   𝑅,𝑝,𝑥   𝐵,𝑝,𝑥   𝑃,𝑝,𝑥   𝑆,𝑝   𝑈,𝑝   𝑌,𝑝   · ,𝑝
Allowed substitution hints:   𝐴(𝑥,𝑝)   𝐷(𝑥,𝑝)   𝑆(𝑥)   · (𝑥)   𝑈(𝑥)   𝑌(𝑥)

Proof of Theorem mdetleib2
Dummy variables 𝑦 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdetfval.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
2 mdetfval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 mdetfval.b . . . 4 𝐵 = (Base‘𝐴)
4 mdetfval.p . . . 4 𝑃 = (Base‘(SymGrp‘𝑁))
5 mdetfval.y . . . 4 𝑌 = (ℤRHom‘𝑅)
6 mdetfval.s . . . 4 𝑆 = (pmSgn‘𝑁)
7 mdetfval.t . . . 4 · = (.r𝑅)
8 mdetfval.u . . . 4 𝑈 = (mulGrp‘𝑅)
91, 2, 3, 4, 5, 6, 7, 8mdetleib 21196 . . 3 (𝑀𝐵 → (𝐷𝑀) = (𝑅 Σg (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))))))
109adantl 485 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐷𝑀) = (𝑅 Σg (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))))))
11 eqid 2801 . . 3 (Base‘𝑅) = (Base‘𝑅)
12 crngring 19306 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
13 ringcmn 19331 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
1412, 13syl 17 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ CMnd)
1514adantr 484 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ CMnd)
162, 3matrcl 21021 . . . . . 6 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
1716adantl 485 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
1817simpld 498 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
19 eqid 2801 . . . . 5 (SymGrp‘𝑁) = (SymGrp‘𝑁)
2019, 4symgbasfi 18503 . . . 4 (𝑁 ∈ Fin → 𝑃 ∈ Fin)
2118, 20syl 17 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 ∈ Fin)
2212ad2antrr 725 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → 𝑅 ∈ Ring)
235, 6coeq12i 5702 . . . . . . . . 9 (𝑌𝑆) = ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))
24 zrhpsgnmhm 20277 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
2523, 24eqeltrid 2897 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → (𝑌𝑆) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
2612, 18, 25syl2an2r 684 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑌𝑆) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
27 eqid 2801 . . . . . . . . 9 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2827, 11mgpbas 19242 . . . . . . . 8 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
294, 28mhmf 17957 . . . . . . 7 ((𝑌𝑆) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → (𝑌𝑆):𝑃⟶(Base‘𝑅))
3026, 29syl 17 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑌𝑆):𝑃⟶(Base‘𝑅))
3130ffvelrnda 6832 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → ((𝑌𝑆)‘𝑞) ∈ (Base‘𝑅))
328, 11mgpbas 19242 . . . . . 6 (Base‘𝑅) = (Base‘𝑈)
338crngmgp 19302 . . . . . . 7 (𝑅 ∈ CRing → 𝑈 ∈ CMnd)
3433ad2antrr 725 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → 𝑈 ∈ CMnd)
3518adantr 484 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → 𝑁 ∈ Fin)
36 simpr 488 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀𝐵)
372, 11, 3matbas2i 21031 . . . . . . . . . 10 (𝑀𝐵𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
38 elmapi 8415 . . . . . . . . . 10 (𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
3936, 37, 383syl 18 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
4039ad2antrr 725 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) ∧ 𝑦𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
4119, 4symgbasf1o 18499 . . . . . . . . . . 11 (𝑞𝑃𝑞:𝑁1-1-onto𝑁)
4241adantl 485 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → 𝑞:𝑁1-1-onto𝑁)
43 f1of 6594 . . . . . . . . . 10 (𝑞:𝑁1-1-onto𝑁𝑞:𝑁𝑁)
4442, 43syl 17 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → 𝑞:𝑁𝑁)
4544ffvelrnda 6832 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) ∧ 𝑦𝑁) → (𝑞𝑦) ∈ 𝑁)
46 simpr 488 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) ∧ 𝑦𝑁) → 𝑦𝑁)
4740, 45, 46fovrnd 7304 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) ∧ 𝑦𝑁) → ((𝑞𝑦)𝑀𝑦) ∈ (Base‘𝑅))
4847ralrimiva 3152 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → ∀𝑦𝑁 ((𝑞𝑦)𝑀𝑦) ∈ (Base‘𝑅))
4932, 34, 35, 48gsummptcl 19084 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))) ∈ (Base‘𝑅))
5011, 7ringcl 19311 . . . . 5 ((𝑅 ∈ Ring ∧ ((𝑌𝑆)‘𝑞) ∈ (Base‘𝑅) ∧ (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))) ∈ (Base‘𝑅)) → (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))) ∈ (Base‘𝑅))
5122, 31, 49, 50syl3anc 1368 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))) ∈ (Base‘𝑅))
5251ralrimiva 3152 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → ∀𝑞𝑃 (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))) ∈ (Base‘𝑅))
53 eqid 2801 . . 3 (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))) = (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))))
54 eqid 2801 . . . 4 (invg‘(SymGrp‘𝑁)) = (invg‘(SymGrp‘𝑁))
5519symggrp 18524 . . . . 5 (𝑁 ∈ Fin → (SymGrp‘𝑁) ∈ Grp)
5618, 55syl 17 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (SymGrp‘𝑁) ∈ Grp)
574, 54, 56grpinvf1o 18165 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (invg‘(SymGrp‘𝑁)):𝑃1-1-onto𝑃)
5811, 15, 21, 52, 53, 57gsummptfif1o 19085 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑅 Σg (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))))) = (𝑅 Σg ((𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))) ∘ (invg‘(SymGrp‘𝑁)))))
59 f1of 6594 . . . . . . 7 ((invg‘(SymGrp‘𝑁)):𝑃1-1-onto𝑃 → (invg‘(SymGrp‘𝑁)):𝑃𝑃)
6057, 59syl 17 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (invg‘(SymGrp‘𝑁)):𝑃𝑃)
6160ffvelrnda 6832 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((invg‘(SymGrp‘𝑁))‘𝑝) ∈ 𝑃)
6260feqmptd 6712 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (invg‘(SymGrp‘𝑁)) = (𝑝𝑃 ↦ ((invg‘(SymGrp‘𝑁))‘𝑝)))
63 eqidd 2802 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))) = (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))))
64 fveq2 6649 . . . . . 6 (𝑞 = ((invg‘(SymGrp‘𝑁))‘𝑝) → ((𝑌𝑆)‘𝑞) = ((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)))
65 fveq1 6648 . . . . . . . . 9 (𝑞 = ((invg‘(SymGrp‘𝑁))‘𝑝) → (𝑞𝑦) = (((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦))
6665oveq1d 7154 . . . . . . . 8 (𝑞 = ((invg‘(SymGrp‘𝑁))‘𝑝) → ((𝑞𝑦)𝑀𝑦) = ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))
6766mpteq2dv 5129 . . . . . . 7 (𝑞 = ((invg‘(SymGrp‘𝑁))‘𝑝) → (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)) = (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)))
6867oveq2d 7155 . . . . . 6 (𝑞 = ((invg‘(SymGrp‘𝑁))‘𝑝) → (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))) = (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))))
6964, 68oveq12d 7157 . . . . 5 (𝑞 = ((invg‘(SymGrp‘𝑁))‘𝑝) → (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))) = (((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) · (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)))))
7061, 62, 63, 69fmptco 6872 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))) ∘ (invg‘(SymGrp‘𝑁))) = (𝑝𝑃 ↦ (((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) · (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))))))
7119, 4, 54symginv 18526 . . . . . . . . 9 (𝑝𝑃 → ((invg‘(SymGrp‘𝑁))‘𝑝) = 𝑝)
7271adantl 485 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((invg‘(SymGrp‘𝑁))‘𝑝) = 𝑝)
7372fveq2d 6653 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) = ((𝑌𝑆)‘𝑝))
7412ad2antrr 725 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑅 ∈ Ring)
7518adantr 484 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑁 ∈ Fin)
76 simpr 488 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑝𝑃)
774, 5, 6zrhpsgninv 20278 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑝𝑃) → ((𝑌𝑆)‘𝑝) = ((𝑌𝑆)‘𝑝))
7874, 75, 76, 77syl3anc 1368 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((𝑌𝑆)‘𝑝) = ((𝑌𝑆)‘𝑝))
7973, 78eqtrd 2836 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) = ((𝑌𝑆)‘𝑝))
80 eqid 2801 . . . . . . . 8 (Base‘𝑈) = (Base‘𝑈)
8133ad2antrr 725 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑈 ∈ CMnd)
8239ad2antrr 725 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
8371ad2antlr 726 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → ((invg‘(SymGrp‘𝑁))‘𝑝) = 𝑝)
8483fveq1d 6651 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → (((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦) = (𝑝𝑦))
8519, 4symgbasf1o 18499 . . . . . . . . . . . . . . 15 (𝑝𝑃𝑝:𝑁1-1-onto𝑁)
8685adantl 485 . . . . . . . . . . . . . 14 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑝:𝑁1-1-onto𝑁)
87 f1ocnv 6606 . . . . . . . . . . . . . 14 (𝑝:𝑁1-1-onto𝑁𝑝:𝑁1-1-onto𝑁)
88 f1of 6594 . . . . . . . . . . . . . 14 (𝑝:𝑁1-1-onto𝑁𝑝:𝑁𝑁)
8986, 87, 883syl 18 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑝:𝑁𝑁)
9089ffvelrnda 6832 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → (𝑝𝑦) ∈ 𝑁)
9184, 90eqeltrd 2893 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → (((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦) ∈ 𝑁)
92 simpr 488 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → 𝑦𝑁)
9382, 91, 92fovrnd 7304 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦) ∈ (Base‘𝑅))
9493, 32eleqtrdi 2903 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦) ∈ (Base‘𝑈))
9594ralrimiva 3152 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ∀𝑦𝑁 ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦) ∈ (Base‘𝑈))
96 eqid 2801 . . . . . . . 8 (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) = (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))
9780, 81, 75, 95, 96, 86gsummptfif1o 19085 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))) = (𝑈 Σg ((𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) ∘ 𝑝)))
98 f1of 6594 . . . . . . . . . . . 12 (𝑝:𝑁1-1-onto𝑁𝑝:𝑁𝑁)
9986, 98syl 17 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑝:𝑁𝑁)
10099ffvelrnda 6832 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑥𝑁) → (𝑝𝑥) ∈ 𝑁)
10199feqmptd 6712 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑝 = (𝑥𝑁 ↦ (𝑝𝑥)))
102 eqidd 2802 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) = (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)))
103 fveq2 6649 . . . . . . . . . . 11 (𝑦 = (𝑝𝑥) → (((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦) = (((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥)))
104 id 22 . . . . . . . . . . 11 (𝑦 = (𝑝𝑥) → 𝑦 = (𝑝𝑥))
105103, 104oveq12d 7157 . . . . . . . . . 10 (𝑦 = (𝑝𝑥) → ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦) = ((((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥))𝑀(𝑝𝑥)))
106100, 101, 102, 105fmptco 6872 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) ∘ 𝑝) = (𝑥𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥))𝑀(𝑝𝑥))))
10771ad2antlr 726 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑥𝑁) → ((invg‘(SymGrp‘𝑁))‘𝑝) = 𝑝)
108107fveq1d 6651 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑥𝑁) → (((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥)) = (𝑝‘(𝑝𝑥)))
109 f1ocnvfv1 7015 . . . . . . . . . . . . 13 ((𝑝:𝑁1-1-onto𝑁𝑥𝑁) → (𝑝‘(𝑝𝑥)) = 𝑥)
11086, 109sylan 583 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑥𝑁) → (𝑝‘(𝑝𝑥)) = 𝑥)
111108, 110eqtrd 2836 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑥𝑁) → (((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥)) = 𝑥)
112111oveq1d 7154 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑥𝑁) → ((((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥))𝑀(𝑝𝑥)) = (𝑥𝑀(𝑝𝑥)))
113112mpteq2dva 5128 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → (𝑥𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥))𝑀(𝑝𝑥))) = (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥))))
114106, 113eqtrd 2836 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) ∘ 𝑝) = (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥))))
115114oveq2d 7155 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → (𝑈 Σg ((𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) ∘ 𝑝)) = (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥)))))
11697, 115eqtrd 2836 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))) = (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥)))))
11779, 116oveq12d 7157 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → (((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) · (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)))) = (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥))))))
118117mpteq2dva 5128 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑝𝑃 ↦ (((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) · (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))))) = (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥)))))))
11970, 118eqtrd 2836 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))) ∘ (invg‘(SymGrp‘𝑁))) = (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥)))))))
120119oveq2d 7155 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑅 Σg ((𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))) ∘ (invg‘(SymGrp‘𝑁)))) = (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥))))))))
12110, 58, 1203eqtrd 2840 1 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐷𝑀) = (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2112  Vcvv 3444  cmpt 5113   × cxp 5521  ccnv 5522  ccom 5527  wf 6324  1-1-ontowf1o 6327  cfv 6328  (class class class)co 7139  m cmap 8393  Fincfn 8496  Basecbs 16479  .rcmulr 16562   Σg cgsu 16710   MndHom cmhm 17950  Grpcgrp 18099  invgcminusg 18100  SymGrpcsymg 18491  pmSgncpsgn 18613  CMndccmn 18902  mulGrpcmgp 19236  Ringcrg 19294  CRingccrg 19295  ℤRHomczrh 20197   Mat cmat 21016   maDet cmdat 21193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-xor 1503  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-ot 4537  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-tpos 7879  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-xnn0 11960  df-z 11974  df-dec 12091  df-uz 12236  df-rp 12382  df-fz 12890  df-fzo 13033  df-seq 13369  df-exp 13430  df-hash 13691  df-word 13862  df-lsw 13910  df-concat 13918  df-s1 13945  df-substr 13998  df-pfx 14028  df-splice 14107  df-reverse 14116  df-s2 14205  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-starv 16576  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-hom 16585  df-cco 16586  df-0g 16711  df-gsum 16712  df-prds 16717  df-pws 16719  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-mhm 17952  df-submnd 17953  df-efmnd 18030  df-grp 18102  df-minusg 18103  df-mulg 18221  df-subg 18272  df-ghm 18352  df-gim 18395  df-cntz 18443  df-oppg 18470  df-symg 18492  df-pmtr 18566  df-psgn 18615  df-cmn 18904  df-abl 18905  df-mgp 19237  df-ur 19249  df-ring 19296  df-cring 19297  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-rnghom 19467  df-drng 19501  df-subrg 19530  df-sra 19941  df-rgmod 19942  df-cnfld 20096  df-zring 20168  df-zrh 20201  df-dsmm 20425  df-frlm 20440  df-mat 21017  df-mdet 21194
This theorem is referenced by:  mdetrlin  21211  mdetrsca  21212  mdettpos  21220  smadiadet  21279
  Copyright terms: Public domain W3C validator