MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetleib2 Structured version   Visualization version   GIF version

Theorem mdetleib2 21737
Description: Leibniz' formula can also be expanded by rows. (Contributed by Stefan O'Rear, 9-Jul-2018.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
mdetfval.d 𝐷 = (𝑁 maDet 𝑅)
mdetfval.a 𝐴 = (𝑁 Mat 𝑅)
mdetfval.b 𝐵 = (Base‘𝐴)
mdetfval.p 𝑃 = (Base‘(SymGrp‘𝑁))
mdetfval.y 𝑌 = (ℤRHom‘𝑅)
mdetfval.s 𝑆 = (pmSgn‘𝑁)
mdetfval.t · = (.r𝑅)
mdetfval.u 𝑈 = (mulGrp‘𝑅)
Assertion
Ref Expression
mdetleib2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐷𝑀) = (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥))))))))
Distinct variable groups:   𝑥,𝑝,𝑀   𝑁,𝑝,𝑥   𝑅,𝑝,𝑥   𝐵,𝑝,𝑥   𝑃,𝑝,𝑥   𝑆,𝑝   𝑈,𝑝   𝑌,𝑝   · ,𝑝
Allowed substitution hints:   𝐴(𝑥,𝑝)   𝐷(𝑥,𝑝)   𝑆(𝑥)   · (𝑥)   𝑈(𝑥)   𝑌(𝑥)

Proof of Theorem mdetleib2
Dummy variables 𝑦 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdetfval.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
2 mdetfval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 mdetfval.b . . . 4 𝐵 = (Base‘𝐴)
4 mdetfval.p . . . 4 𝑃 = (Base‘(SymGrp‘𝑁))
5 mdetfval.y . . . 4 𝑌 = (ℤRHom‘𝑅)
6 mdetfval.s . . . 4 𝑆 = (pmSgn‘𝑁)
7 mdetfval.t . . . 4 · = (.r𝑅)
8 mdetfval.u . . . 4 𝑈 = (mulGrp‘𝑅)
91, 2, 3, 4, 5, 6, 7, 8mdetleib 21736 . . 3 (𝑀𝐵 → (𝐷𝑀) = (𝑅 Σg (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))))))
109adantl 482 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐷𝑀) = (𝑅 Σg (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))))))
11 eqid 2738 . . 3 (Base‘𝑅) = (Base‘𝑅)
12 crngring 19795 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
13 ringcmn 19820 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
1412, 13syl 17 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ CMnd)
1514adantr 481 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ CMnd)
162, 3matrcl 21559 . . . . . 6 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
1716adantl 482 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
1817simpld 495 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
19 eqid 2738 . . . . 5 (SymGrp‘𝑁) = (SymGrp‘𝑁)
2019, 4symgbasfi 18986 . . . 4 (𝑁 ∈ Fin → 𝑃 ∈ Fin)
2118, 20syl 17 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 ∈ Fin)
2212ad2antrr 723 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → 𝑅 ∈ Ring)
235, 6coeq12i 5772 . . . . . . . . 9 (𝑌𝑆) = ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))
24 zrhpsgnmhm 20789 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
2523, 24eqeltrid 2843 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → (𝑌𝑆) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
2612, 18, 25syl2an2r 682 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑌𝑆) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
27 eqid 2738 . . . . . . . . 9 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2827, 11mgpbas 19726 . . . . . . . 8 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
294, 28mhmf 18435 . . . . . . 7 ((𝑌𝑆) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → (𝑌𝑆):𝑃⟶(Base‘𝑅))
3026, 29syl 17 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑌𝑆):𝑃⟶(Base‘𝑅))
3130ffvelrnda 6961 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → ((𝑌𝑆)‘𝑞) ∈ (Base‘𝑅))
328, 11mgpbas 19726 . . . . . 6 (Base‘𝑅) = (Base‘𝑈)
338crngmgp 19791 . . . . . . 7 (𝑅 ∈ CRing → 𝑈 ∈ CMnd)
3433ad2antrr 723 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → 𝑈 ∈ CMnd)
3518adantr 481 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → 𝑁 ∈ Fin)
36 simpr 485 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀𝐵)
372, 11, 3matbas2i 21571 . . . . . . . . . 10 (𝑀𝐵𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
38 elmapi 8637 . . . . . . . . . 10 (𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
3936, 37, 383syl 18 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
4039ad2antrr 723 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) ∧ 𝑦𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
4119, 4symgbasf1o 18982 . . . . . . . . . . 11 (𝑞𝑃𝑞:𝑁1-1-onto𝑁)
4241adantl 482 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → 𝑞:𝑁1-1-onto𝑁)
43 f1of 6716 . . . . . . . . . 10 (𝑞:𝑁1-1-onto𝑁𝑞:𝑁𝑁)
4442, 43syl 17 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → 𝑞:𝑁𝑁)
4544ffvelrnda 6961 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) ∧ 𝑦𝑁) → (𝑞𝑦) ∈ 𝑁)
46 simpr 485 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) ∧ 𝑦𝑁) → 𝑦𝑁)
4740, 45, 46fovrnd 7444 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) ∧ 𝑦𝑁) → ((𝑞𝑦)𝑀𝑦) ∈ (Base‘𝑅))
4847ralrimiva 3103 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → ∀𝑦𝑁 ((𝑞𝑦)𝑀𝑦) ∈ (Base‘𝑅))
4932, 34, 35, 48gsummptcl 19568 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))) ∈ (Base‘𝑅))
5011, 7ringcl 19800 . . . . 5 ((𝑅 ∈ Ring ∧ ((𝑌𝑆)‘𝑞) ∈ (Base‘𝑅) ∧ (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))) ∈ (Base‘𝑅)) → (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))) ∈ (Base‘𝑅))
5122, 31, 49, 50syl3anc 1370 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))) ∈ (Base‘𝑅))
5251ralrimiva 3103 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → ∀𝑞𝑃 (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))) ∈ (Base‘𝑅))
53 eqid 2738 . . 3 (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))) = (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))))
54 eqid 2738 . . . 4 (invg‘(SymGrp‘𝑁)) = (invg‘(SymGrp‘𝑁))
5519symggrp 19008 . . . . 5 (𝑁 ∈ Fin → (SymGrp‘𝑁) ∈ Grp)
5618, 55syl 17 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (SymGrp‘𝑁) ∈ Grp)
574, 54, 56grpinvf1o 18645 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (invg‘(SymGrp‘𝑁)):𝑃1-1-onto𝑃)
5811, 15, 21, 52, 53, 57gsummptfif1o 19569 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑅 Σg (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))))) = (𝑅 Σg ((𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))) ∘ (invg‘(SymGrp‘𝑁)))))
59 f1of 6716 . . . . . . 7 ((invg‘(SymGrp‘𝑁)):𝑃1-1-onto𝑃 → (invg‘(SymGrp‘𝑁)):𝑃𝑃)
6057, 59syl 17 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (invg‘(SymGrp‘𝑁)):𝑃𝑃)
6160ffvelrnda 6961 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((invg‘(SymGrp‘𝑁))‘𝑝) ∈ 𝑃)
6260feqmptd 6837 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (invg‘(SymGrp‘𝑁)) = (𝑝𝑃 ↦ ((invg‘(SymGrp‘𝑁))‘𝑝)))
63 eqidd 2739 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))) = (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))))
64 fveq2 6774 . . . . . 6 (𝑞 = ((invg‘(SymGrp‘𝑁))‘𝑝) → ((𝑌𝑆)‘𝑞) = ((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)))
65 fveq1 6773 . . . . . . . . 9 (𝑞 = ((invg‘(SymGrp‘𝑁))‘𝑝) → (𝑞𝑦) = (((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦))
6665oveq1d 7290 . . . . . . . 8 (𝑞 = ((invg‘(SymGrp‘𝑁))‘𝑝) → ((𝑞𝑦)𝑀𝑦) = ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))
6766mpteq2dv 5176 . . . . . . 7 (𝑞 = ((invg‘(SymGrp‘𝑁))‘𝑝) → (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)) = (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)))
6867oveq2d 7291 . . . . . 6 (𝑞 = ((invg‘(SymGrp‘𝑁))‘𝑝) → (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))) = (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))))
6964, 68oveq12d 7293 . . . . 5 (𝑞 = ((invg‘(SymGrp‘𝑁))‘𝑝) → (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))) = (((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) · (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)))))
7061, 62, 63, 69fmptco 7001 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))) ∘ (invg‘(SymGrp‘𝑁))) = (𝑝𝑃 ↦ (((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) · (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))))))
7119, 4, 54symginv 19010 . . . . . . . . 9 (𝑝𝑃 → ((invg‘(SymGrp‘𝑁))‘𝑝) = 𝑝)
7271adantl 482 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((invg‘(SymGrp‘𝑁))‘𝑝) = 𝑝)
7372fveq2d 6778 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) = ((𝑌𝑆)‘𝑝))
7412ad2antrr 723 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑅 ∈ Ring)
7518adantr 481 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑁 ∈ Fin)
76 simpr 485 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑝𝑃)
774, 5, 6zrhpsgninv 20790 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑝𝑃) → ((𝑌𝑆)‘𝑝) = ((𝑌𝑆)‘𝑝))
7874, 75, 76, 77syl3anc 1370 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((𝑌𝑆)‘𝑝) = ((𝑌𝑆)‘𝑝))
7973, 78eqtrd 2778 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) = ((𝑌𝑆)‘𝑝))
80 eqid 2738 . . . . . . . 8 (Base‘𝑈) = (Base‘𝑈)
8133ad2antrr 723 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑈 ∈ CMnd)
8239ad2antrr 723 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
8371ad2antlr 724 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → ((invg‘(SymGrp‘𝑁))‘𝑝) = 𝑝)
8483fveq1d 6776 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → (((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦) = (𝑝𝑦))
8519, 4symgbasf1o 18982 . . . . . . . . . . . . . . 15 (𝑝𝑃𝑝:𝑁1-1-onto𝑁)
8685adantl 482 . . . . . . . . . . . . . 14 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑝:𝑁1-1-onto𝑁)
87 f1ocnv 6728 . . . . . . . . . . . . . 14 (𝑝:𝑁1-1-onto𝑁𝑝:𝑁1-1-onto𝑁)
88 f1of 6716 . . . . . . . . . . . . . 14 (𝑝:𝑁1-1-onto𝑁𝑝:𝑁𝑁)
8986, 87, 883syl 18 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑝:𝑁𝑁)
9089ffvelrnda 6961 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → (𝑝𝑦) ∈ 𝑁)
9184, 90eqeltrd 2839 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → (((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦) ∈ 𝑁)
92 simpr 485 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → 𝑦𝑁)
9382, 91, 92fovrnd 7444 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦) ∈ (Base‘𝑅))
9493, 32eleqtrdi 2849 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦) ∈ (Base‘𝑈))
9594ralrimiva 3103 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ∀𝑦𝑁 ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦) ∈ (Base‘𝑈))
96 eqid 2738 . . . . . . . 8 (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) = (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))
9780, 81, 75, 95, 96, 86gsummptfif1o 19569 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))) = (𝑈 Σg ((𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) ∘ 𝑝)))
98 f1of 6716 . . . . . . . . . . . 12 (𝑝:𝑁1-1-onto𝑁𝑝:𝑁𝑁)
9986, 98syl 17 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑝:𝑁𝑁)
10099ffvelrnda 6961 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑥𝑁) → (𝑝𝑥) ∈ 𝑁)
10199feqmptd 6837 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑝 = (𝑥𝑁 ↦ (𝑝𝑥)))
102 eqidd 2739 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) = (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)))
103 fveq2 6774 . . . . . . . . . . 11 (𝑦 = (𝑝𝑥) → (((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦) = (((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥)))
104 id 22 . . . . . . . . . . 11 (𝑦 = (𝑝𝑥) → 𝑦 = (𝑝𝑥))
105103, 104oveq12d 7293 . . . . . . . . . 10 (𝑦 = (𝑝𝑥) → ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦) = ((((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥))𝑀(𝑝𝑥)))
106100, 101, 102, 105fmptco 7001 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) ∘ 𝑝) = (𝑥𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥))𝑀(𝑝𝑥))))
10771ad2antlr 724 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑥𝑁) → ((invg‘(SymGrp‘𝑁))‘𝑝) = 𝑝)
108107fveq1d 6776 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑥𝑁) → (((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥)) = (𝑝‘(𝑝𝑥)))
109 f1ocnvfv1 7148 . . . . . . . . . . . . 13 ((𝑝:𝑁1-1-onto𝑁𝑥𝑁) → (𝑝‘(𝑝𝑥)) = 𝑥)
11086, 109sylan 580 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑥𝑁) → (𝑝‘(𝑝𝑥)) = 𝑥)
111108, 110eqtrd 2778 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑥𝑁) → (((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥)) = 𝑥)
112111oveq1d 7290 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑥𝑁) → ((((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥))𝑀(𝑝𝑥)) = (𝑥𝑀(𝑝𝑥)))
113112mpteq2dva 5174 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → (𝑥𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥))𝑀(𝑝𝑥))) = (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥))))
114106, 113eqtrd 2778 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) ∘ 𝑝) = (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥))))
115114oveq2d 7291 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → (𝑈 Σg ((𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) ∘ 𝑝)) = (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥)))))
11697, 115eqtrd 2778 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))) = (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥)))))
11779, 116oveq12d 7293 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → (((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) · (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)))) = (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥))))))
118117mpteq2dva 5174 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑝𝑃 ↦ (((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) · (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))))) = (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥)))))))
11970, 118eqtrd 2778 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))) ∘ (invg‘(SymGrp‘𝑁))) = (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥)))))))
120119oveq2d 7291 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑅 Σg ((𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))) ∘ (invg‘(SymGrp‘𝑁)))) = (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥))))))))
12110, 58, 1203eqtrd 2782 1 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐷𝑀) = (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cmpt 5157   × cxp 5587  ccnv 5588  ccom 5593  wf 6429  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  m cmap 8615  Fincfn 8733  Basecbs 16912  .rcmulr 16963   Σg cgsu 17151   MndHom cmhm 18428  Grpcgrp 18577  invgcminusg 18578  SymGrpcsymg 18974  pmSgncpsgn 19097  CMndccmn 19386  mulGrpcmgp 19720  Ringcrg 19783  CRingccrg 19784  ℤRHomczrh 20701   Mat cmat 21554   maDet cmdat 21733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-xor 1507  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-word 14218  df-lsw 14266  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-splice 14463  df-reverse 14472  df-s2 14561  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-0g 17152  df-gsum 17153  df-prds 17158  df-pws 17160  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-efmnd 18508  df-grp 18580  df-minusg 18581  df-mulg 18701  df-subg 18752  df-ghm 18832  df-gim 18875  df-cntz 18923  df-oppg 18950  df-symg 18975  df-pmtr 19050  df-psgn 19099  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-rnghom 19959  df-drng 19993  df-subrg 20022  df-sra 20434  df-rgmod 20435  df-cnfld 20598  df-zring 20671  df-zrh 20705  df-dsmm 20939  df-frlm 20954  df-mat 21555  df-mdet 21734
This theorem is referenced by:  mdetrlin  21751  mdetrsca  21752  mdettpos  21760  smadiadet  21819
  Copyright terms: Public domain W3C validator