MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetleib2 Structured version   Visualization version   GIF version

Theorem mdetleib2 22594
Description: Leibniz' formula can also be expanded by rows. (Contributed by Stefan O'Rear, 9-Jul-2018.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
mdetfval.d 𝐷 = (𝑁 maDet 𝑅)
mdetfval.a 𝐴 = (𝑁 Mat 𝑅)
mdetfval.b 𝐵 = (Base‘𝐴)
mdetfval.p 𝑃 = (Base‘(SymGrp‘𝑁))
mdetfval.y 𝑌 = (ℤRHom‘𝑅)
mdetfval.s 𝑆 = (pmSgn‘𝑁)
mdetfval.t · = (.r𝑅)
mdetfval.u 𝑈 = (mulGrp‘𝑅)
Assertion
Ref Expression
mdetleib2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐷𝑀) = (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥))))))))
Distinct variable groups:   𝑥,𝑝,𝑀   𝑁,𝑝,𝑥   𝑅,𝑝,𝑥   𝐵,𝑝,𝑥   𝑃,𝑝,𝑥   𝑆,𝑝   𝑈,𝑝   𝑌,𝑝   · ,𝑝
Allowed substitution hints:   𝐴(𝑥,𝑝)   𝐷(𝑥,𝑝)   𝑆(𝑥)   · (𝑥)   𝑈(𝑥)   𝑌(𝑥)

Proof of Theorem mdetleib2
Dummy variables 𝑦 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdetfval.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
2 mdetfval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 mdetfval.b . . . 4 𝐵 = (Base‘𝐴)
4 mdetfval.p . . . 4 𝑃 = (Base‘(SymGrp‘𝑁))
5 mdetfval.y . . . 4 𝑌 = (ℤRHom‘𝑅)
6 mdetfval.s . . . 4 𝑆 = (pmSgn‘𝑁)
7 mdetfval.t . . . 4 · = (.r𝑅)
8 mdetfval.u . . . 4 𝑈 = (mulGrp‘𝑅)
91, 2, 3, 4, 5, 6, 7, 8mdetleib 22593 . . 3 (𝑀𝐵 → (𝐷𝑀) = (𝑅 Σg (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))))))
109adantl 481 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐷𝑀) = (𝑅 Σg (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))))))
11 eqid 2737 . . 3 (Base‘𝑅) = (Base‘𝑅)
12 crngring 20242 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
13 ringcmn 20279 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
1412, 13syl 17 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ CMnd)
1514adantr 480 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ CMnd)
162, 3matrcl 22416 . . . . . 6 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
1716adantl 481 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
1817simpld 494 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
19 eqid 2737 . . . . 5 (SymGrp‘𝑁) = (SymGrp‘𝑁)
2019, 4symgbasfi 19396 . . . 4 (𝑁 ∈ Fin → 𝑃 ∈ Fin)
2118, 20syl 17 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 ∈ Fin)
2212ad2antrr 726 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → 𝑅 ∈ Ring)
235, 6coeq12i 5874 . . . . . . . . 9 (𝑌𝑆) = ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))
24 zrhpsgnmhm 21602 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
2523, 24eqeltrid 2845 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → (𝑌𝑆) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
2612, 18, 25syl2an2r 685 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑌𝑆) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
27 eqid 2737 . . . . . . . . 9 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2827, 11mgpbas 20142 . . . . . . . 8 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
294, 28mhmf 18802 . . . . . . 7 ((𝑌𝑆) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → (𝑌𝑆):𝑃⟶(Base‘𝑅))
3026, 29syl 17 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑌𝑆):𝑃⟶(Base‘𝑅))
3130ffvelcdmda 7104 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → ((𝑌𝑆)‘𝑞) ∈ (Base‘𝑅))
328, 11mgpbas 20142 . . . . . 6 (Base‘𝑅) = (Base‘𝑈)
338crngmgp 20238 . . . . . . 7 (𝑅 ∈ CRing → 𝑈 ∈ CMnd)
3433ad2antrr 726 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → 𝑈 ∈ CMnd)
3518adantr 480 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → 𝑁 ∈ Fin)
36 simpr 484 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀𝐵)
372, 11, 3matbas2i 22428 . . . . . . . . . 10 (𝑀𝐵𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
38 elmapi 8889 . . . . . . . . . 10 (𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
3936, 37, 383syl 18 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
4039ad2antrr 726 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) ∧ 𝑦𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
4119, 4symgbasf1o 19392 . . . . . . . . . . 11 (𝑞𝑃𝑞:𝑁1-1-onto𝑁)
4241adantl 481 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → 𝑞:𝑁1-1-onto𝑁)
43 f1of 6848 . . . . . . . . . 10 (𝑞:𝑁1-1-onto𝑁𝑞:𝑁𝑁)
4442, 43syl 17 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → 𝑞:𝑁𝑁)
4544ffvelcdmda 7104 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) ∧ 𝑦𝑁) → (𝑞𝑦) ∈ 𝑁)
46 simpr 484 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) ∧ 𝑦𝑁) → 𝑦𝑁)
4740, 45, 46fovcdmd 7605 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) ∧ 𝑦𝑁) → ((𝑞𝑦)𝑀𝑦) ∈ (Base‘𝑅))
4847ralrimiva 3146 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → ∀𝑦𝑁 ((𝑞𝑦)𝑀𝑦) ∈ (Base‘𝑅))
4932, 34, 35, 48gsummptcl 19985 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))) ∈ (Base‘𝑅))
5011, 7ringcl 20247 . . . . 5 ((𝑅 ∈ Ring ∧ ((𝑌𝑆)‘𝑞) ∈ (Base‘𝑅) ∧ (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))) ∈ (Base‘𝑅)) → (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))) ∈ (Base‘𝑅))
5122, 31, 49, 50syl3anc 1373 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑞𝑃) → (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))) ∈ (Base‘𝑅))
5251ralrimiva 3146 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → ∀𝑞𝑃 (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))) ∈ (Base‘𝑅))
53 eqid 2737 . . 3 (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))) = (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))))
54 eqid 2737 . . . 4 (invg‘(SymGrp‘𝑁)) = (invg‘(SymGrp‘𝑁))
5519symggrp 19418 . . . . 5 (𝑁 ∈ Fin → (SymGrp‘𝑁) ∈ Grp)
5618, 55syl 17 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (SymGrp‘𝑁) ∈ Grp)
574, 54, 56grpinvf1o 19027 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (invg‘(SymGrp‘𝑁)):𝑃1-1-onto𝑃)
5811, 15, 21, 52, 53, 57gsummptfif1o 19986 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑅 Σg (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))))) = (𝑅 Σg ((𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))) ∘ (invg‘(SymGrp‘𝑁)))))
59 f1of 6848 . . . . . . 7 ((invg‘(SymGrp‘𝑁)):𝑃1-1-onto𝑃 → (invg‘(SymGrp‘𝑁)):𝑃𝑃)
6057, 59syl 17 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (invg‘(SymGrp‘𝑁)):𝑃𝑃)
6160ffvelcdmda 7104 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((invg‘(SymGrp‘𝑁))‘𝑝) ∈ 𝑃)
6260feqmptd 6977 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (invg‘(SymGrp‘𝑁)) = (𝑝𝑃 ↦ ((invg‘(SymGrp‘𝑁))‘𝑝)))
63 eqidd 2738 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))) = (𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))))
64 fveq2 6906 . . . . . 6 (𝑞 = ((invg‘(SymGrp‘𝑁))‘𝑝) → ((𝑌𝑆)‘𝑞) = ((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)))
65 fveq1 6905 . . . . . . . . 9 (𝑞 = ((invg‘(SymGrp‘𝑁))‘𝑝) → (𝑞𝑦) = (((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦))
6665oveq1d 7446 . . . . . . . 8 (𝑞 = ((invg‘(SymGrp‘𝑁))‘𝑝) → ((𝑞𝑦)𝑀𝑦) = ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))
6766mpteq2dv 5244 . . . . . . 7 (𝑞 = ((invg‘(SymGrp‘𝑁))‘𝑝) → (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)) = (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)))
6867oveq2d 7447 . . . . . 6 (𝑞 = ((invg‘(SymGrp‘𝑁))‘𝑝) → (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))) = (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))))
6964, 68oveq12d 7449 . . . . 5 (𝑞 = ((invg‘(SymGrp‘𝑁))‘𝑝) → (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦)))) = (((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) · (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)))))
7061, 62, 63, 69fmptco 7149 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))) ∘ (invg‘(SymGrp‘𝑁))) = (𝑝𝑃 ↦ (((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) · (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))))))
7119, 4, 54symginv 19420 . . . . . . . . 9 (𝑝𝑃 → ((invg‘(SymGrp‘𝑁))‘𝑝) = 𝑝)
7271adantl 481 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((invg‘(SymGrp‘𝑁))‘𝑝) = 𝑝)
7372fveq2d 6910 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) = ((𝑌𝑆)‘𝑝))
7412ad2antrr 726 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑅 ∈ Ring)
7518adantr 480 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑁 ∈ Fin)
76 simpr 484 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑝𝑃)
774, 5, 6zrhpsgninv 21603 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑝𝑃) → ((𝑌𝑆)‘𝑝) = ((𝑌𝑆)‘𝑝))
7874, 75, 76, 77syl3anc 1373 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((𝑌𝑆)‘𝑝) = ((𝑌𝑆)‘𝑝))
7973, 78eqtrd 2777 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) = ((𝑌𝑆)‘𝑝))
80 eqid 2737 . . . . . . . 8 (Base‘𝑈) = (Base‘𝑈)
8133ad2antrr 726 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑈 ∈ CMnd)
8239ad2antrr 726 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
8371ad2antlr 727 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → ((invg‘(SymGrp‘𝑁))‘𝑝) = 𝑝)
8483fveq1d 6908 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → (((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦) = (𝑝𝑦))
8519, 4symgbasf1o 19392 . . . . . . . . . . . . . . 15 (𝑝𝑃𝑝:𝑁1-1-onto𝑁)
8685adantl 481 . . . . . . . . . . . . . 14 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑝:𝑁1-1-onto𝑁)
87 f1ocnv 6860 . . . . . . . . . . . . . 14 (𝑝:𝑁1-1-onto𝑁𝑝:𝑁1-1-onto𝑁)
88 f1of 6848 . . . . . . . . . . . . . 14 (𝑝:𝑁1-1-onto𝑁𝑝:𝑁𝑁)
8986, 87, 883syl 18 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑝:𝑁𝑁)
9089ffvelcdmda 7104 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → (𝑝𝑦) ∈ 𝑁)
9184, 90eqeltrd 2841 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → (((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦) ∈ 𝑁)
92 simpr 484 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → 𝑦𝑁)
9382, 91, 92fovcdmd 7605 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦) ∈ (Base‘𝑅))
9493, 32eleqtrdi 2851 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑦𝑁) → ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦) ∈ (Base‘𝑈))
9594ralrimiva 3146 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ∀𝑦𝑁 ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦) ∈ (Base‘𝑈))
96 eqid 2737 . . . . . . . 8 (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) = (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))
9780, 81, 75, 95, 96, 86gsummptfif1o 19986 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))) = (𝑈 Σg ((𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) ∘ 𝑝)))
98 f1of 6848 . . . . . . . . . . . 12 (𝑝:𝑁1-1-onto𝑁𝑝:𝑁𝑁)
9986, 98syl 17 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑝:𝑁𝑁)
10099ffvelcdmda 7104 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑥𝑁) → (𝑝𝑥) ∈ 𝑁)
10199feqmptd 6977 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → 𝑝 = (𝑥𝑁 ↦ (𝑝𝑥)))
102 eqidd 2738 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) = (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)))
103 fveq2 6906 . . . . . . . . . . 11 (𝑦 = (𝑝𝑥) → (((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦) = (((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥)))
104 id 22 . . . . . . . . . . 11 (𝑦 = (𝑝𝑥) → 𝑦 = (𝑝𝑥))
105103, 104oveq12d 7449 . . . . . . . . . 10 (𝑦 = (𝑝𝑥) → ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦) = ((((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥))𝑀(𝑝𝑥)))
106100, 101, 102, 105fmptco 7149 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) ∘ 𝑝) = (𝑥𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥))𝑀(𝑝𝑥))))
10771ad2antlr 727 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑥𝑁) → ((invg‘(SymGrp‘𝑁))‘𝑝) = 𝑝)
108107fveq1d 6908 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑥𝑁) → (((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥)) = (𝑝‘(𝑝𝑥)))
109 f1ocnvfv1 7296 . . . . . . . . . . . . 13 ((𝑝:𝑁1-1-onto𝑁𝑥𝑁) → (𝑝‘(𝑝𝑥)) = 𝑥)
11086, 109sylan 580 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑥𝑁) → (𝑝‘(𝑝𝑥)) = 𝑥)
111108, 110eqtrd 2777 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑥𝑁) → (((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥)) = 𝑥)
112111oveq1d 7446 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) ∧ 𝑥𝑁) → ((((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥))𝑀(𝑝𝑥)) = (𝑥𝑀(𝑝𝑥)))
113112mpteq2dva 5242 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → (𝑥𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘(𝑝𝑥))𝑀(𝑝𝑥))) = (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥))))
114106, 113eqtrd 2777 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → ((𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) ∘ 𝑝) = (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥))))
115114oveq2d 7447 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → (𝑈 Σg ((𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)) ∘ 𝑝)) = (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥)))))
11697, 115eqtrd 2777 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))) = (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥)))))
11779, 116oveq12d 7449 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑝𝑃) → (((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) · (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦)))) = (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥))))))
118117mpteq2dva 5242 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑝𝑃 ↦ (((𝑌𝑆)‘((invg‘(SymGrp‘𝑁))‘𝑝)) · (𝑈 Σg (𝑦𝑁 ↦ ((((invg‘(SymGrp‘𝑁))‘𝑝)‘𝑦)𝑀𝑦))))) = (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥)))))))
11970, 118eqtrd 2777 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))) ∘ (invg‘(SymGrp‘𝑁))) = (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥)))))))
120119oveq2d 7447 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑅 Σg ((𝑞𝑃 ↦ (((𝑌𝑆)‘𝑞) · (𝑈 Σg (𝑦𝑁 ↦ ((𝑞𝑦)𝑀𝑦))))) ∘ (invg‘(SymGrp‘𝑁)))) = (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥))))))))
12110, 58, 1203eqtrd 2781 1 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐷𝑀) = (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ (𝑥𝑀(𝑝𝑥))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  cmpt 5225   × cxp 5683  ccnv 5684  ccom 5689  wf 6557  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  m cmap 8866  Fincfn 8985  Basecbs 17247  .rcmulr 17298   Σg cgsu 17485   MndHom cmhm 18794  Grpcgrp 18951  invgcminusg 18952  SymGrpcsymg 19386  pmSgncpsgn 19507  CMndccmn 19798  mulGrpcmgp 20137  Ringcrg 20230  CRingccrg 20231  ℤRHomczrh 21510   Mat cmat 22411   maDet cmdat 22590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-ot 4635  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-word 14553  df-lsw 14601  df-concat 14609  df-s1 14634  df-substr 14679  df-pfx 14709  df-splice 14788  df-reverse 14797  df-s2 14887  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-efmnd 18882  df-grp 18954  df-minusg 18955  df-mulg 19086  df-subg 19141  df-ghm 19231  df-gim 19277  df-cntz 19335  df-oppg 19364  df-symg 19387  df-pmtr 19460  df-psgn 19509  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-drng 20731  df-sra 21172  df-rgmod 21173  df-cnfld 21365  df-zring 21458  df-zrh 21514  df-dsmm 21752  df-frlm 21767  df-mat 22412  df-mdet 22591
This theorem is referenced by:  mdetrlin  22608  mdetrsca  22609  mdettpos  22617  smadiadet  22676
  Copyright terms: Public domain W3C validator