| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
| Ref | Expression |
|---|---|
| coeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| coeq1i | ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | coeq1 5796 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∘ ccom 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ss 3914 df-br 5090 df-opab 5152 df-co 5623 |
| This theorem is referenced by: coeq12i 5802 cocnvcnv1 6205 ttrclco 9608 hashgval 14240 imasdsval2 17420 prds1 20241 pf1mpf 22267 upxp 23538 uptx 23540 hoico2 31737 hoid1ri 31770 nmopcoadj2i 32082 pjclem3 32177 cycpmconjslem1 33123 cycpmconjs 33125 cyc3conja 33126 1arithidomlem2 33501 erdsze2lem2 35248 pprodcnveq 35925 diblss 41217 cononrel2 43636 trclubgNEW 43659 cortrcltrcl 43781 corclrtrcl 43782 cortrclrcl 43784 cotrclrtrcl 43785 cortrclrtrcl 43786 neicvgbex 44153 neicvgnvo 44156 dvsinax 45959 |
| Copyright terms: Public domain | W3C validator |