![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coeq1i | Structured version Visualization version GIF version |
Description: Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
Ref | Expression |
---|---|
coeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
coeq1i | ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | coeq1 5483 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∘ ccom 5316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-in 3776 df-ss 3783 df-br 4844 df-opab 4906 df-co 5321 |
This theorem is referenced by: coeq12i 5489 cocnvcnv1 5865 hashgval 13373 imasdsval2 16491 prds1 18930 pf1mpf 20038 upxp 21755 uptx 21757 hoico2 29141 hoid1ri 29174 nmopcoadj2i 29486 pjclem3 29581 erdsze2lem2 31703 pprodcnveq 32503 diblss 37191 cononrel2 38684 trclubgNEW 38708 cortrcltrcl 38815 corclrtrcl 38816 cortrclrcl 38818 cotrclrtrcl 38819 cortrclrtrcl 38820 neicvgbex 39192 neicvgnvo 39195 dvsinax 40871 |
Copyright terms: Public domain | W3C validator |