| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
| Ref | Expression |
|---|---|
| coeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| coeq1i | ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | coeq1 5811 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∘ ccom 5635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3928 df-br 5103 df-opab 5165 df-co 5640 |
| This theorem is referenced by: coeq12i 5817 cocnvcnv1 6218 ttrclco 9647 hashgval 14274 imasdsval2 17455 prds1 20208 pf1mpf 22215 upxp 23486 uptx 23488 hoico2 31659 hoid1ri 31692 nmopcoadj2i 32004 pjclem3 32099 cycpmconjslem1 33084 cycpmconjs 33086 cyc3conja 33087 1arithidomlem2 33480 erdsze2lem2 35164 pprodcnveq 35844 diblss 41137 cononrel2 43557 trclubgNEW 43580 cortrcltrcl 43702 corclrtrcl 43703 cortrclrcl 43705 cotrclrtrcl 43706 cortrclrtrcl 43707 neicvgbex 44074 neicvgnvo 44077 dvsinax 45884 |
| Copyright terms: Public domain | W3C validator |