| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
| Ref | Expression |
|---|---|
| coeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| coeq1i | ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | coeq1 5824 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∘ ccom 5645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ss 3934 df-br 5111 df-opab 5173 df-co 5650 |
| This theorem is referenced by: coeq12i 5830 cocnvcnv1 6233 ttrclco 9678 hashgval 14305 imasdsval2 17486 prds1 20239 pf1mpf 22246 upxp 23517 uptx 23519 hoico2 31693 hoid1ri 31726 nmopcoadj2i 32038 pjclem3 32133 cycpmconjslem1 33118 cycpmconjs 33120 cyc3conja 33121 1arithidomlem2 33514 erdsze2lem2 35198 pprodcnveq 35878 diblss 41171 cononrel2 43591 trclubgNEW 43614 cortrcltrcl 43736 corclrtrcl 43737 cortrclrcl 43739 cotrclrtrcl 43740 cortrclrtrcl 43741 neicvgbex 44108 neicvgnvo 44111 dvsinax 45918 |
| Copyright terms: Public domain | W3C validator |