| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
| Ref | Expression |
|---|---|
| coeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| coeq1i | ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | coeq1 5800 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∘ ccom 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3920 df-br 5093 df-opab 5155 df-co 5628 |
| This theorem is referenced by: coeq12i 5806 cocnvcnv1 6206 ttrclco 9614 hashgval 14240 imasdsval2 17420 prds1 20208 pf1mpf 22237 upxp 23508 uptx 23510 hoico2 31701 hoid1ri 31734 nmopcoadj2i 32046 pjclem3 32141 cycpmconjslem1 33096 cycpmconjs 33098 cyc3conja 33099 1arithidomlem2 33473 erdsze2lem2 35177 pprodcnveq 35857 diblss 41149 cononrel2 43568 trclubgNEW 43591 cortrcltrcl 43713 corclrtrcl 43714 cortrclrcl 43716 cotrclrtrcl 43717 cortrclrtrcl 43718 neicvgbex 44085 neicvgnvo 44088 dvsinax 45894 |
| Copyright terms: Public domain | W3C validator |