Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coeq1i | Structured version Visualization version GIF version |
Description: Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
Ref | Expression |
---|---|
coeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
coeq1i | ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | coeq1 5766 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∘ ccom 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-br 5075 df-opab 5137 df-co 5598 |
This theorem is referenced by: coeq12i 5772 cocnvcnv1 6161 ttrclco 9476 hashgval 14047 imasdsval2 17227 prds1 19853 pf1mpf 21518 upxp 22774 uptx 22776 hoico2 30119 hoid1ri 30152 nmopcoadj2i 30464 pjclem3 30559 cycpmconjslem1 31421 cycpmconjs 31423 cyc3conja 31424 erdsze2lem2 33166 pprodcnveq 34185 diblss 39184 cononrel2 41203 trclubgNEW 41226 cortrcltrcl 41348 corclrtrcl 41349 cortrclrcl 41351 cotrclrtrcl 41352 cortrclrtrcl 41353 neicvgbex 41722 neicvgnvo 41725 dvsinax 43454 |
Copyright terms: Public domain | W3C validator |