Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coeq1i | Structured version Visualization version GIF version |
Description: Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
Ref | Expression |
---|---|
coeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
coeq1i | ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | coeq1 5755 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∘ ccom 5584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-br 5071 df-opab 5133 df-co 5589 |
This theorem is referenced by: coeq12i 5761 cocnvcnv1 6150 hashgval 13975 imasdsval2 17144 prds1 19768 pf1mpf 21428 upxp 22682 uptx 22684 hoico2 30020 hoid1ri 30053 nmopcoadj2i 30365 pjclem3 30460 cycpmconjslem1 31323 cycpmconjs 31325 cyc3conja 31326 erdsze2lem2 33066 ttrclco 33704 pprodcnveq 34112 diblss 39111 cononrel2 41092 trclubgNEW 41115 cortrcltrcl 41237 corclrtrcl 41238 cortrclrcl 41240 cotrclrtrcl 41241 cortrclrtrcl 41242 neicvgbex 41611 neicvgnvo 41614 dvsinax 43344 |
Copyright terms: Public domain | W3C validator |