![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coeq1i | Structured version Visualization version GIF version |
Description: Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
Ref | Expression |
---|---|
coeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
coeq1i | ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | coeq1 5870 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∘ ccom 5692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ss 3979 df-br 5148 df-opab 5210 df-co 5697 |
This theorem is referenced by: coeq12i 5876 cocnvcnv1 6278 ttrclco 9755 hashgval 14368 imasdsval2 17562 prds1 20336 pf1mpf 22371 upxp 23646 uptx 23648 hoico2 31785 hoid1ri 31818 nmopcoadj2i 32130 pjclem3 32225 cycpmconjslem1 33156 cycpmconjs 33158 cyc3conja 33159 1arithidomlem2 33543 erdsze2lem2 35188 pprodcnveq 35864 diblss 41152 cononrel2 43584 trclubgNEW 43607 cortrcltrcl 43729 corclrtrcl 43730 cortrclrcl 43732 cotrclrtrcl 43733 cortrclrtrcl 43734 neicvgbex 44101 neicvgnvo 44104 dvsinax 45868 |
Copyright terms: Public domain | W3C validator |