![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coeq1i | Structured version Visualization version GIF version |
Description: Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
Ref | Expression |
---|---|
coeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
coeq1i | ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | coeq1 5882 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∘ ccom 5704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ss 3993 df-br 5167 df-opab 5229 df-co 5709 |
This theorem is referenced by: coeq12i 5888 cocnvcnv1 6288 ttrclco 9787 hashgval 14382 imasdsval2 17576 prds1 20346 pf1mpf 22377 upxp 23652 uptx 23654 hoico2 31789 hoid1ri 31822 nmopcoadj2i 32134 pjclem3 32229 cycpmconjslem1 33147 cycpmconjs 33149 cyc3conja 33150 1arithidomlem2 33529 erdsze2lem2 35172 pprodcnveq 35847 diblss 41127 cononrel2 43557 trclubgNEW 43580 cortrcltrcl 43702 corclrtrcl 43703 cortrclrcl 43705 cotrclrtrcl 43706 cortrclrtrcl 43707 neicvgbex 44074 neicvgnvo 44077 dvsinax 45834 |
Copyright terms: Public domain | W3C validator |