| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
| Ref | Expression |
|---|---|
| coeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| coeq1i | ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | coeq1 5821 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∘ ccom 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3931 df-br 5108 df-opab 5170 df-co 5647 |
| This theorem is referenced by: coeq12i 5827 cocnvcnv1 6230 ttrclco 9671 hashgval 14298 imasdsval2 17479 prds1 20232 pf1mpf 22239 upxp 23510 uptx 23512 hoico2 31686 hoid1ri 31719 nmopcoadj2i 32031 pjclem3 32126 cycpmconjslem1 33111 cycpmconjs 33113 cyc3conja 33114 1arithidomlem2 33507 erdsze2lem2 35191 pprodcnveq 35871 diblss 41164 cononrel2 43584 trclubgNEW 43607 cortrcltrcl 43729 corclrtrcl 43730 cortrclrcl 43732 cotrclrtrcl 43733 cortrclrtrcl 43734 neicvgbex 44101 neicvgnvo 44104 dvsinax 45911 |
| Copyright terms: Public domain | W3C validator |