| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coeq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
| Ref | Expression |
|---|---|
| coeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| coeq1i | ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | coeq1 5837 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∘ ccom 5658 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ss 3943 df-br 5120 df-opab 5182 df-co 5663 |
| This theorem is referenced by: coeq12i 5843 cocnvcnv1 6246 ttrclco 9730 hashgval 14349 imasdsval2 17528 prds1 20281 pf1mpf 22288 upxp 23559 uptx 23561 hoico2 31684 hoid1ri 31717 nmopcoadj2i 32029 pjclem3 32124 cycpmconjslem1 33111 cycpmconjs 33113 cyc3conja 33114 1arithidomlem2 33497 erdsze2lem2 35172 pprodcnveq 35847 diblss 41135 cononrel2 43566 trclubgNEW 43589 cortrcltrcl 43711 corclrtrcl 43712 cortrclrcl 43714 cotrclrtrcl 43715 cortrclrtrcl 43716 neicvgbex 44083 neicvgnvo 44086 dvsinax 45890 |
| Copyright terms: Public domain | W3C validator |