MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrhmzr Structured version   Visualization version   GIF version

Theorem nrhmzr 20440
Description: There is no ring homomorphism from the zero ring into a nonzero ring. (Contributed by AV, 18-Apr-2020.)
Assertion
Ref Expression
nrhmzr ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → (𝑍 RingHom 𝑅) = ∅)

Proof of Theorem nrhmzr
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . . . . . 10 (Base‘𝑍) = (Base‘𝑍)
2 eqid 2729 . . . . . . . . . 10 (0g𝑍) = (0g𝑍)
3 eqid 2729 . . . . . . . . . 10 (1r𝑍) = (1r𝑍)
41, 2, 30ring1eq0 20436 . . . . . . . . 9 (𝑍 ∈ (Ring ∖ NzRing) → (1r𝑍) = (0g𝑍))
54adantr 480 . . . . . . . 8 ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → (1r𝑍) = (0g𝑍))
65adantr 480 . . . . . . 7 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ 𝑓 ∈ (𝑍 RingHom 𝑅)) → (1r𝑍) = (0g𝑍))
76eqcomd 2735 . . . . . 6 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ 𝑓 ∈ (𝑍 RingHom 𝑅)) → (0g𝑍) = (1r𝑍))
87fveq2d 6830 . . . . 5 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ 𝑓 ∈ (𝑍 RingHom 𝑅)) → (𝑓‘(0g𝑍)) = (𝑓‘(1r𝑍)))
9 eqid 2729 . . . . . . 7 (1r𝑅) = (1r𝑅)
103, 9rhm1 20392 . . . . . 6 (𝑓 ∈ (𝑍 RingHom 𝑅) → (𝑓‘(1r𝑍)) = (1r𝑅))
1110adantl 481 . . . . 5 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ 𝑓 ∈ (𝑍 RingHom 𝑅)) → (𝑓‘(1r𝑍)) = (1r𝑅))
128, 11eqtrd 2764 . . . 4 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ 𝑓 ∈ (𝑍 RingHom 𝑅)) → (𝑓‘(0g𝑍)) = (1r𝑅))
13 rhmghm 20387 . . . . . 6 (𝑓 ∈ (𝑍 RingHom 𝑅) → 𝑓 ∈ (𝑍 GrpHom 𝑅))
1413adantl 481 . . . . 5 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ 𝑓 ∈ (𝑍 RingHom 𝑅)) → 𝑓 ∈ (𝑍 GrpHom 𝑅))
15 eqid 2729 . . . . . 6 (0g𝑅) = (0g𝑅)
162, 15ghmid 19119 . . . . 5 (𝑓 ∈ (𝑍 GrpHom 𝑅) → (𝑓‘(0g𝑍)) = (0g𝑅))
1714, 16syl 17 . . . 4 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ 𝑓 ∈ (𝑍 RingHom 𝑅)) → (𝑓‘(0g𝑍)) = (0g𝑅))
1812, 17jca 511 . . 3 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ 𝑓 ∈ (𝑍 RingHom 𝑅)) → ((𝑓‘(0g𝑍)) = (1r𝑅) ∧ (𝑓‘(0g𝑍)) = (0g𝑅)))
1918ralrimiva 3121 . 2 ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → ∀𝑓 ∈ (𝑍 RingHom 𝑅)((𝑓‘(0g𝑍)) = (1r𝑅) ∧ (𝑓‘(0g𝑍)) = (0g𝑅)))
209, 15nzrnz 20418 . . . . . . . . . . . . 13 (𝑅 ∈ NzRing → (1r𝑅) ≠ (0g𝑅))
2120necomd 2980 . . . . . . . . . . . 12 (𝑅 ∈ NzRing → (0g𝑅) ≠ (1r𝑅))
2221adantl 481 . . . . . . . . . . 11 ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → (0g𝑅) ≠ (1r𝑅))
2322adantr 480 . . . . . . . . . 10 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ (𝑓‘(0g𝑍)) = (0g𝑅)) → (0g𝑅) ≠ (1r𝑅))
24 neeq1 2987 . . . . . . . . . . 11 ((𝑓‘(0g𝑍)) = (0g𝑅) → ((𝑓‘(0g𝑍)) ≠ (1r𝑅) ↔ (0g𝑅) ≠ (1r𝑅)))
2524adantl 481 . . . . . . . . . 10 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ (𝑓‘(0g𝑍)) = (0g𝑅)) → ((𝑓‘(0g𝑍)) ≠ (1r𝑅) ↔ (0g𝑅) ≠ (1r𝑅)))
2623, 25mpbird 257 . . . . . . . . 9 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ (𝑓‘(0g𝑍)) = (0g𝑅)) → (𝑓‘(0g𝑍)) ≠ (1r𝑅))
2726orcd 873 . . . . . . . 8 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ (𝑓‘(0g𝑍)) = (0g𝑅)) → ((𝑓‘(0g𝑍)) ≠ (1r𝑅) ∨ (𝑓‘(0g𝑍)) ≠ (0g𝑅)))
2827expcom 413 . . . . . . 7 ((𝑓‘(0g𝑍)) = (0g𝑅) → ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → ((𝑓‘(0g𝑍)) ≠ (1r𝑅) ∨ (𝑓‘(0g𝑍)) ≠ (0g𝑅))))
29 olc 868 . . . . . . . 8 ((𝑓‘(0g𝑍)) ≠ (0g𝑅) → ((𝑓‘(0g𝑍)) ≠ (1r𝑅) ∨ (𝑓‘(0g𝑍)) ≠ (0g𝑅)))
3029a1d 25 . . . . . . 7 ((𝑓‘(0g𝑍)) ≠ (0g𝑅) → ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → ((𝑓‘(0g𝑍)) ≠ (1r𝑅) ∨ (𝑓‘(0g𝑍)) ≠ (0g𝑅))))
3128, 30pm2.61ine 3008 . . . . . 6 ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → ((𝑓‘(0g𝑍)) ≠ (1r𝑅) ∨ (𝑓‘(0g𝑍)) ≠ (0g𝑅)))
32 neorian 3020 . . . . . 6 (((𝑓‘(0g𝑍)) ≠ (1r𝑅) ∨ (𝑓‘(0g𝑍)) ≠ (0g𝑅)) ↔ ¬ ((𝑓‘(0g𝑍)) = (1r𝑅) ∧ (𝑓‘(0g𝑍)) = (0g𝑅)))
3331, 32sylib 218 . . . . 5 ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → ¬ ((𝑓‘(0g𝑍)) = (1r𝑅) ∧ (𝑓‘(0g𝑍)) = (0g𝑅)))
34 con3 153 . . . . 5 ((𝑓 ∈ (𝑍 RingHom 𝑅) → ((𝑓‘(0g𝑍)) = (1r𝑅) ∧ (𝑓‘(0g𝑍)) = (0g𝑅))) → (¬ ((𝑓‘(0g𝑍)) = (1r𝑅) ∧ (𝑓‘(0g𝑍)) = (0g𝑅)) → ¬ 𝑓 ∈ (𝑍 RingHom 𝑅)))
3533, 34syl5com 31 . . . 4 ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → ((𝑓 ∈ (𝑍 RingHom 𝑅) → ((𝑓‘(0g𝑍)) = (1r𝑅) ∧ (𝑓‘(0g𝑍)) = (0g𝑅))) → ¬ 𝑓 ∈ (𝑍 RingHom 𝑅)))
3635alimdv 1916 . . 3 ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → (∀𝑓(𝑓 ∈ (𝑍 RingHom 𝑅) → ((𝑓‘(0g𝑍)) = (1r𝑅) ∧ (𝑓‘(0g𝑍)) = (0g𝑅))) → ∀𝑓 ¬ 𝑓 ∈ (𝑍 RingHom 𝑅)))
37 df-ral 3045 . . 3 (∀𝑓 ∈ (𝑍 RingHom 𝑅)((𝑓‘(0g𝑍)) = (1r𝑅) ∧ (𝑓‘(0g𝑍)) = (0g𝑅)) ↔ ∀𝑓(𝑓 ∈ (𝑍 RingHom 𝑅) → ((𝑓‘(0g𝑍)) = (1r𝑅) ∧ (𝑓‘(0g𝑍)) = (0g𝑅))))
38 eq0 4303 . . 3 ((𝑍 RingHom 𝑅) = ∅ ↔ ∀𝑓 ¬ 𝑓 ∈ (𝑍 RingHom 𝑅))
3936, 37, 383imtr4g 296 . 2 ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → (∀𝑓 ∈ (𝑍 RingHom 𝑅)((𝑓‘(0g𝑍)) = (1r𝑅) ∧ (𝑓‘(0g𝑍)) = (0g𝑅)) → (𝑍 RingHom 𝑅) = ∅))
4019, 39mpd 15 1 ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → (𝑍 RingHom 𝑅) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wal 1538   = wceq 1540  wcel 2109  wne 2925  wral 3044  cdif 3902  c0 4286  cfv 6486  (class class class)co 7353  Basecbs 17138  0gc0g 17361   GrpHom cghm 19109  1rcur 20084  Ringcrg 20136   RingHom crh 20372  NzRingcnzr 20415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-fz 13429  df-hash 14256  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-grp 18833  df-minusg 18834  df-ghm 19110  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-rhm 20375  df-nzr 20416
This theorem is referenced by:  zrninitoringc  20579  nzerooringczr  21405
  Copyright terms: Public domain W3C validator