Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nrhmzr Structured version   Visualization version   GIF version

Theorem nrhmzr 46633
Description: There is no ring homomorphism from the zero ring into a nonzero ring. (Contributed by AV, 18-Apr-2020.)
Assertion
Ref Expression
nrhmzr ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → (𝑍 RingHom 𝑅) = ∅)

Proof of Theorem nrhmzr
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . . . . . . . . 10 (Base‘𝑍) = (Base‘𝑍)
2 eqid 2732 . . . . . . . . . 10 (0g𝑍) = (0g𝑍)
3 eqid 2732 . . . . . . . . . 10 (1r𝑍) = (1r𝑍)
41, 2, 30ring1eq0 46632 . . . . . . . . 9 (𝑍 ∈ (Ring ∖ NzRing) → (1r𝑍) = (0g𝑍))
54adantr 481 . . . . . . . 8 ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → (1r𝑍) = (0g𝑍))
65adantr 481 . . . . . . 7 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ 𝑓 ∈ (𝑍 RingHom 𝑅)) → (1r𝑍) = (0g𝑍))
76eqcomd 2738 . . . . . 6 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ 𝑓 ∈ (𝑍 RingHom 𝑅)) → (0g𝑍) = (1r𝑍))
87fveq2d 6892 . . . . 5 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ 𝑓 ∈ (𝑍 RingHom 𝑅)) → (𝑓‘(0g𝑍)) = (𝑓‘(1r𝑍)))
9 eqid 2732 . . . . . . 7 (1r𝑅) = (1r𝑅)
103, 9rhm1 20259 . . . . . 6 (𝑓 ∈ (𝑍 RingHom 𝑅) → (𝑓‘(1r𝑍)) = (1r𝑅))
1110adantl 482 . . . . 5 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ 𝑓 ∈ (𝑍 RingHom 𝑅)) → (𝑓‘(1r𝑍)) = (1r𝑅))
128, 11eqtrd 2772 . . . 4 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ 𝑓 ∈ (𝑍 RingHom 𝑅)) → (𝑓‘(0g𝑍)) = (1r𝑅))
13 rhmghm 20254 . . . . . 6 (𝑓 ∈ (𝑍 RingHom 𝑅) → 𝑓 ∈ (𝑍 GrpHom 𝑅))
1413adantl 482 . . . . 5 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ 𝑓 ∈ (𝑍 RingHom 𝑅)) → 𝑓 ∈ (𝑍 GrpHom 𝑅))
15 eqid 2732 . . . . . 6 (0g𝑅) = (0g𝑅)
162, 15ghmid 19092 . . . . 5 (𝑓 ∈ (𝑍 GrpHom 𝑅) → (𝑓‘(0g𝑍)) = (0g𝑅))
1714, 16syl 17 . . . 4 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ 𝑓 ∈ (𝑍 RingHom 𝑅)) → (𝑓‘(0g𝑍)) = (0g𝑅))
1812, 17jca 512 . . 3 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ 𝑓 ∈ (𝑍 RingHom 𝑅)) → ((𝑓‘(0g𝑍)) = (1r𝑅) ∧ (𝑓‘(0g𝑍)) = (0g𝑅)))
1918ralrimiva 3146 . 2 ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → ∀𝑓 ∈ (𝑍 RingHom 𝑅)((𝑓‘(0g𝑍)) = (1r𝑅) ∧ (𝑓‘(0g𝑍)) = (0g𝑅)))
209, 15nzrnz 20286 . . . . . . . . . . . . 13 (𝑅 ∈ NzRing → (1r𝑅) ≠ (0g𝑅))
2120necomd 2996 . . . . . . . . . . . 12 (𝑅 ∈ NzRing → (0g𝑅) ≠ (1r𝑅))
2221adantl 482 . . . . . . . . . . 11 ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → (0g𝑅) ≠ (1r𝑅))
2322adantr 481 . . . . . . . . . 10 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ (𝑓‘(0g𝑍)) = (0g𝑅)) → (0g𝑅) ≠ (1r𝑅))
24 neeq1 3003 . . . . . . . . . . 11 ((𝑓‘(0g𝑍)) = (0g𝑅) → ((𝑓‘(0g𝑍)) ≠ (1r𝑅) ↔ (0g𝑅) ≠ (1r𝑅)))
2524adantl 482 . . . . . . . . . 10 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ (𝑓‘(0g𝑍)) = (0g𝑅)) → ((𝑓‘(0g𝑍)) ≠ (1r𝑅) ↔ (0g𝑅) ≠ (1r𝑅)))
2623, 25mpbird 256 . . . . . . . . 9 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ (𝑓‘(0g𝑍)) = (0g𝑅)) → (𝑓‘(0g𝑍)) ≠ (1r𝑅))
2726orcd 871 . . . . . . . 8 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ (𝑓‘(0g𝑍)) = (0g𝑅)) → ((𝑓‘(0g𝑍)) ≠ (1r𝑅) ∨ (𝑓‘(0g𝑍)) ≠ (0g𝑅)))
2827expcom 414 . . . . . . 7 ((𝑓‘(0g𝑍)) = (0g𝑅) → ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → ((𝑓‘(0g𝑍)) ≠ (1r𝑅) ∨ (𝑓‘(0g𝑍)) ≠ (0g𝑅))))
29 olc 866 . . . . . . . 8 ((𝑓‘(0g𝑍)) ≠ (0g𝑅) → ((𝑓‘(0g𝑍)) ≠ (1r𝑅) ∨ (𝑓‘(0g𝑍)) ≠ (0g𝑅)))
3029a1d 25 . . . . . . 7 ((𝑓‘(0g𝑍)) ≠ (0g𝑅) → ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → ((𝑓‘(0g𝑍)) ≠ (1r𝑅) ∨ (𝑓‘(0g𝑍)) ≠ (0g𝑅))))
3128, 30pm2.61ine 3025 . . . . . 6 ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → ((𝑓‘(0g𝑍)) ≠ (1r𝑅) ∨ (𝑓‘(0g𝑍)) ≠ (0g𝑅)))
32 neorian 3037 . . . . . 6 (((𝑓‘(0g𝑍)) ≠ (1r𝑅) ∨ (𝑓‘(0g𝑍)) ≠ (0g𝑅)) ↔ ¬ ((𝑓‘(0g𝑍)) = (1r𝑅) ∧ (𝑓‘(0g𝑍)) = (0g𝑅)))
3331, 32sylib 217 . . . . 5 ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → ¬ ((𝑓‘(0g𝑍)) = (1r𝑅) ∧ (𝑓‘(0g𝑍)) = (0g𝑅)))
34 con3 153 . . . . 5 ((𝑓 ∈ (𝑍 RingHom 𝑅) → ((𝑓‘(0g𝑍)) = (1r𝑅) ∧ (𝑓‘(0g𝑍)) = (0g𝑅))) → (¬ ((𝑓‘(0g𝑍)) = (1r𝑅) ∧ (𝑓‘(0g𝑍)) = (0g𝑅)) → ¬ 𝑓 ∈ (𝑍 RingHom 𝑅)))
3533, 34syl5com 31 . . . 4 ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → ((𝑓 ∈ (𝑍 RingHom 𝑅) → ((𝑓‘(0g𝑍)) = (1r𝑅) ∧ (𝑓‘(0g𝑍)) = (0g𝑅))) → ¬ 𝑓 ∈ (𝑍 RingHom 𝑅)))
3635alimdv 1919 . . 3 ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → (∀𝑓(𝑓 ∈ (𝑍 RingHom 𝑅) → ((𝑓‘(0g𝑍)) = (1r𝑅) ∧ (𝑓‘(0g𝑍)) = (0g𝑅))) → ∀𝑓 ¬ 𝑓 ∈ (𝑍 RingHom 𝑅)))
37 df-ral 3062 . . 3 (∀𝑓 ∈ (𝑍 RingHom 𝑅)((𝑓‘(0g𝑍)) = (1r𝑅) ∧ (𝑓‘(0g𝑍)) = (0g𝑅)) ↔ ∀𝑓(𝑓 ∈ (𝑍 RingHom 𝑅) → ((𝑓‘(0g𝑍)) = (1r𝑅) ∧ (𝑓‘(0g𝑍)) = (0g𝑅))))
38 eq0 4342 . . 3 ((𝑍 RingHom 𝑅) = ∅ ↔ ∀𝑓 ¬ 𝑓 ∈ (𝑍 RingHom 𝑅))
3936, 37, 383imtr4g 295 . 2 ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → (∀𝑓 ∈ (𝑍 RingHom 𝑅)((𝑓‘(0g𝑍)) = (1r𝑅) ∧ (𝑓‘(0g𝑍)) = (0g𝑅)) → (𝑍 RingHom 𝑅) = ∅))
4019, 39mpd 15 1 ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → (𝑍 RingHom 𝑅) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  wal 1539   = wceq 1541  wcel 2106  wne 2940  wral 3061  cdif 3944  c0 4321  cfv 6540  (class class class)co 7405  Basecbs 17140  0gc0g 17381   GrpHom cghm 19083  1rcur 19998  Ringcrg 20049   RingHom crh 20240  NzRingcnzr 20283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-fz 13481  df-hash 14287  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-grp 18818  df-minusg 18819  df-ghm 19084  df-mgp 19982  df-ur 19999  df-ring 20051  df-rnghom 20243  df-nzr 20284
This theorem is referenced by:  zrninitoringc  46922  nzerooringczr  46923
  Copyright terms: Public domain W3C validator