Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝑍) =
(Base‘𝑍) |
2 | | eqid 2738 |
. . . . . . . . . 10
⊢
(0g‘𝑍) = (0g‘𝑍) |
3 | | eqid 2738 |
. . . . . . . . . 10
⊢
(1r‘𝑍) = (1r‘𝑍) |
4 | 1, 2, 3 | 0ring1eq0 45430 |
. . . . . . . . 9
⊢ (𝑍 ∈ (Ring ∖ NzRing)
→ (1r‘𝑍) = (0g‘𝑍)) |
5 | 4 | adantr 481 |
. . . . . . . 8
⊢ ((𝑍 ∈ (Ring ∖ NzRing)
∧ 𝑅 ∈ NzRing)
→ (1r‘𝑍) = (0g‘𝑍)) |
6 | 5 | adantr 481 |
. . . . . . 7
⊢ (((𝑍 ∈ (Ring ∖ NzRing)
∧ 𝑅 ∈ NzRing)
∧ 𝑓 ∈ (𝑍 RingHom 𝑅)) → (1r‘𝑍) = (0g‘𝑍)) |
7 | 6 | eqcomd 2744 |
. . . . . 6
⊢ (((𝑍 ∈ (Ring ∖ NzRing)
∧ 𝑅 ∈ NzRing)
∧ 𝑓 ∈ (𝑍 RingHom 𝑅)) → (0g‘𝑍) = (1r‘𝑍)) |
8 | 7 | fveq2d 6778 |
. . . . 5
⊢ (((𝑍 ∈ (Ring ∖ NzRing)
∧ 𝑅 ∈ NzRing)
∧ 𝑓 ∈ (𝑍 RingHom 𝑅)) → (𝑓‘(0g‘𝑍)) = (𝑓‘(1r‘𝑍))) |
9 | | eqid 2738 |
. . . . . . 7
⊢
(1r‘𝑅) = (1r‘𝑅) |
10 | 3, 9 | rhm1 19974 |
. . . . . 6
⊢ (𝑓 ∈ (𝑍 RingHom 𝑅) → (𝑓‘(1r‘𝑍)) = (1r‘𝑅)) |
11 | 10 | adantl 482 |
. . . . 5
⊢ (((𝑍 ∈ (Ring ∖ NzRing)
∧ 𝑅 ∈ NzRing)
∧ 𝑓 ∈ (𝑍 RingHom 𝑅)) → (𝑓‘(1r‘𝑍)) = (1r‘𝑅)) |
12 | 8, 11 | eqtrd 2778 |
. . . 4
⊢ (((𝑍 ∈ (Ring ∖ NzRing)
∧ 𝑅 ∈ NzRing)
∧ 𝑓 ∈ (𝑍 RingHom 𝑅)) → (𝑓‘(0g‘𝑍)) = (1r‘𝑅)) |
13 | | rhmghm 19969 |
. . . . . 6
⊢ (𝑓 ∈ (𝑍 RingHom 𝑅) → 𝑓 ∈ (𝑍 GrpHom 𝑅)) |
14 | 13 | adantl 482 |
. . . . 5
⊢ (((𝑍 ∈ (Ring ∖ NzRing)
∧ 𝑅 ∈ NzRing)
∧ 𝑓 ∈ (𝑍 RingHom 𝑅)) → 𝑓 ∈ (𝑍 GrpHom 𝑅)) |
15 | | eqid 2738 |
. . . . . 6
⊢
(0g‘𝑅) = (0g‘𝑅) |
16 | 2, 15 | ghmid 18840 |
. . . . 5
⊢ (𝑓 ∈ (𝑍 GrpHom 𝑅) → (𝑓‘(0g‘𝑍)) = (0g‘𝑅)) |
17 | 14, 16 | syl 17 |
. . . 4
⊢ (((𝑍 ∈ (Ring ∖ NzRing)
∧ 𝑅 ∈ NzRing)
∧ 𝑓 ∈ (𝑍 RingHom 𝑅)) → (𝑓‘(0g‘𝑍)) = (0g‘𝑅)) |
18 | 12, 17 | jca 512 |
. . 3
⊢ (((𝑍 ∈ (Ring ∖ NzRing)
∧ 𝑅 ∈ NzRing)
∧ 𝑓 ∈ (𝑍 RingHom 𝑅)) → ((𝑓‘(0g‘𝑍)) = (1r‘𝑅) ∧ (𝑓‘(0g‘𝑍)) = (0g‘𝑅))) |
19 | 18 | ralrimiva 3103 |
. 2
⊢ ((𝑍 ∈ (Ring ∖ NzRing)
∧ 𝑅 ∈ NzRing)
→ ∀𝑓 ∈
(𝑍 RingHom 𝑅)((𝑓‘(0g‘𝑍)) = (1r‘𝑅) ∧ (𝑓‘(0g‘𝑍)) = (0g‘𝑅))) |
20 | 9, 15 | nzrnz 20531 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ NzRing →
(1r‘𝑅)
≠ (0g‘𝑅)) |
21 | 20 | necomd 2999 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ NzRing →
(0g‘𝑅)
≠ (1r‘𝑅)) |
22 | 21 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑍 ∈ (Ring ∖ NzRing)
∧ 𝑅 ∈ NzRing)
→ (0g‘𝑅) ≠ (1r‘𝑅)) |
23 | 22 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝑍 ∈ (Ring ∖ NzRing)
∧ 𝑅 ∈ NzRing)
∧ (𝑓‘(0g‘𝑍)) = (0g‘𝑅)) → (0g‘𝑅) ≠
(1r‘𝑅)) |
24 | | neeq1 3006 |
. . . . . . . . . . 11
⊢ ((𝑓‘(0g‘𝑍)) = (0g‘𝑅) → ((𝑓‘(0g‘𝑍)) ≠ (1r‘𝑅) ↔
(0g‘𝑅)
≠ (1r‘𝑅))) |
25 | 24 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝑍 ∈ (Ring ∖ NzRing)
∧ 𝑅 ∈ NzRing)
∧ (𝑓‘(0g‘𝑍)) = (0g‘𝑅)) → ((𝑓‘(0g‘𝑍)) ≠ (1r‘𝑅) ↔
(0g‘𝑅)
≠ (1r‘𝑅))) |
26 | 23, 25 | mpbird 256 |
. . . . . . . . 9
⊢ (((𝑍 ∈ (Ring ∖ NzRing)
∧ 𝑅 ∈ NzRing)
∧ (𝑓‘(0g‘𝑍)) = (0g‘𝑅)) → (𝑓‘(0g‘𝑍)) ≠ (1r‘𝑅)) |
27 | 26 | orcd 870 |
. . . . . . . 8
⊢ (((𝑍 ∈ (Ring ∖ NzRing)
∧ 𝑅 ∈ NzRing)
∧ (𝑓‘(0g‘𝑍)) = (0g‘𝑅)) → ((𝑓‘(0g‘𝑍)) ≠ (1r‘𝑅) ∨ (𝑓‘(0g‘𝑍)) ≠ (0g‘𝑅))) |
28 | 27 | expcom 414 |
. . . . . . 7
⊢ ((𝑓‘(0g‘𝑍)) = (0g‘𝑅) → ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → ((𝑓‘(0g‘𝑍)) ≠ (1r‘𝑅) ∨ (𝑓‘(0g‘𝑍)) ≠ (0g‘𝑅)))) |
29 | | olc 865 |
. . . . . . . 8
⊢ ((𝑓‘(0g‘𝑍)) ≠ (0g‘𝑅) → ((𝑓‘(0g‘𝑍)) ≠ (1r‘𝑅) ∨ (𝑓‘(0g‘𝑍)) ≠ (0g‘𝑅))) |
30 | 29 | a1d 25 |
. . . . . . 7
⊢ ((𝑓‘(0g‘𝑍)) ≠ (0g‘𝑅) → ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → ((𝑓‘(0g‘𝑍)) ≠ (1r‘𝑅) ∨ (𝑓‘(0g‘𝑍)) ≠ (0g‘𝑅)))) |
31 | 28, 30 | pm2.61ine 3028 |
. . . . . 6
⊢ ((𝑍 ∈ (Ring ∖ NzRing)
∧ 𝑅 ∈ NzRing)
→ ((𝑓‘(0g‘𝑍)) ≠ (1r‘𝑅) ∨ (𝑓‘(0g‘𝑍)) ≠ (0g‘𝑅))) |
32 | | neorian 3039 |
. . . . . 6
⊢ (((𝑓‘(0g‘𝑍)) ≠ (1r‘𝑅) ∨ (𝑓‘(0g‘𝑍)) ≠ (0g‘𝑅)) ↔ ¬ ((𝑓‘(0g‘𝑍)) = (1r‘𝑅) ∧ (𝑓‘(0g‘𝑍)) = (0g‘𝑅))) |
33 | 31, 32 | sylib 217 |
. . . . 5
⊢ ((𝑍 ∈ (Ring ∖ NzRing)
∧ 𝑅 ∈ NzRing)
→ ¬ ((𝑓‘(0g‘𝑍)) = (1r‘𝑅) ∧ (𝑓‘(0g‘𝑍)) = (0g‘𝑅))) |
34 | | con3 153 |
. . . . 5
⊢ ((𝑓 ∈ (𝑍 RingHom 𝑅) → ((𝑓‘(0g‘𝑍)) = (1r‘𝑅) ∧ (𝑓‘(0g‘𝑍)) = (0g‘𝑅))) → (¬ ((𝑓‘(0g‘𝑍)) = (1r‘𝑅) ∧ (𝑓‘(0g‘𝑍)) = (0g‘𝑅)) → ¬ 𝑓 ∈ (𝑍 RingHom 𝑅))) |
35 | 33, 34 | syl5com 31 |
. . . 4
⊢ ((𝑍 ∈ (Ring ∖ NzRing)
∧ 𝑅 ∈ NzRing)
→ ((𝑓 ∈ (𝑍 RingHom 𝑅) → ((𝑓‘(0g‘𝑍)) = (1r‘𝑅) ∧ (𝑓‘(0g‘𝑍)) = (0g‘𝑅))) → ¬ 𝑓 ∈ (𝑍 RingHom 𝑅))) |
36 | 35 | alimdv 1919 |
. . 3
⊢ ((𝑍 ∈ (Ring ∖ NzRing)
∧ 𝑅 ∈ NzRing)
→ (∀𝑓(𝑓 ∈ (𝑍 RingHom 𝑅) → ((𝑓‘(0g‘𝑍)) = (1r‘𝑅) ∧ (𝑓‘(0g‘𝑍)) = (0g‘𝑅))) → ∀𝑓 ¬ 𝑓 ∈ (𝑍 RingHom 𝑅))) |
37 | | df-ral 3069 |
. . 3
⊢
(∀𝑓 ∈
(𝑍 RingHom 𝑅)((𝑓‘(0g‘𝑍)) = (1r‘𝑅) ∧ (𝑓‘(0g‘𝑍)) = (0g‘𝑅)) ↔ ∀𝑓(𝑓 ∈ (𝑍 RingHom 𝑅) → ((𝑓‘(0g‘𝑍)) = (1r‘𝑅) ∧ (𝑓‘(0g‘𝑍)) = (0g‘𝑅)))) |
38 | | eq0 4277 |
. . 3
⊢ ((𝑍 RingHom 𝑅) = ∅ ↔ ∀𝑓 ¬ 𝑓 ∈ (𝑍 RingHom 𝑅)) |
39 | 36, 37, 38 | 3imtr4g 296 |
. 2
⊢ ((𝑍 ∈ (Ring ∖ NzRing)
∧ 𝑅 ∈ NzRing)
→ (∀𝑓 ∈
(𝑍 RingHom 𝑅)((𝑓‘(0g‘𝑍)) = (1r‘𝑅) ∧ (𝑓‘(0g‘𝑍)) = (0g‘𝑅)) → (𝑍 RingHom 𝑅) = ∅)) |
40 | 19, 39 | mpd 15 |
1
⊢ ((𝑍 ∈ (Ring ∖ NzRing)
∧ 𝑅 ∈ NzRing)
→ (𝑍 RingHom 𝑅) = ∅) |