MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrhmzr Structured version   Visualization version   GIF version

Theorem nrhmzr 20479
Description: There is no ring homomorphism from the zero ring into a nonzero ring. (Contributed by AV, 18-Apr-2020.)
Assertion
Ref Expression
nrhmzr ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → (𝑍 RingHom 𝑅) = ∅)

Proof of Theorem nrhmzr
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqid 2727 . . . . . . . . . 10 (Base‘𝑍) = (Base‘𝑍)
2 eqid 2727 . . . . . . . . . 10 (0g𝑍) = (0g𝑍)
3 eqid 2727 . . . . . . . . . 10 (1r𝑍) = (1r𝑍)
41, 2, 30ring1eq0 20475 . . . . . . . . 9 (𝑍 ∈ (Ring ∖ NzRing) → (1r𝑍) = (0g𝑍))
54adantr 479 . . . . . . . 8 ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → (1r𝑍) = (0g𝑍))
65adantr 479 . . . . . . 7 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ 𝑓 ∈ (𝑍 RingHom 𝑅)) → (1r𝑍) = (0g𝑍))
76eqcomd 2733 . . . . . 6 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ 𝑓 ∈ (𝑍 RingHom 𝑅)) → (0g𝑍) = (1r𝑍))
87fveq2d 6904 . . . . 5 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ 𝑓 ∈ (𝑍 RingHom 𝑅)) → (𝑓‘(0g𝑍)) = (𝑓‘(1r𝑍)))
9 eqid 2727 . . . . . . 7 (1r𝑅) = (1r𝑅)
103, 9rhm1 20433 . . . . . 6 (𝑓 ∈ (𝑍 RingHom 𝑅) → (𝑓‘(1r𝑍)) = (1r𝑅))
1110adantl 480 . . . . 5 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ 𝑓 ∈ (𝑍 RingHom 𝑅)) → (𝑓‘(1r𝑍)) = (1r𝑅))
128, 11eqtrd 2767 . . . 4 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ 𝑓 ∈ (𝑍 RingHom 𝑅)) → (𝑓‘(0g𝑍)) = (1r𝑅))
13 rhmghm 20428 . . . . . 6 (𝑓 ∈ (𝑍 RingHom 𝑅) → 𝑓 ∈ (𝑍 GrpHom 𝑅))
1413adantl 480 . . . . 5 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ 𝑓 ∈ (𝑍 RingHom 𝑅)) → 𝑓 ∈ (𝑍 GrpHom 𝑅))
15 eqid 2727 . . . . . 6 (0g𝑅) = (0g𝑅)
162, 15ghmid 19181 . . . . 5 (𝑓 ∈ (𝑍 GrpHom 𝑅) → (𝑓‘(0g𝑍)) = (0g𝑅))
1714, 16syl 17 . . . 4 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ 𝑓 ∈ (𝑍 RingHom 𝑅)) → (𝑓‘(0g𝑍)) = (0g𝑅))
1812, 17jca 510 . . 3 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ 𝑓 ∈ (𝑍 RingHom 𝑅)) → ((𝑓‘(0g𝑍)) = (1r𝑅) ∧ (𝑓‘(0g𝑍)) = (0g𝑅)))
1918ralrimiva 3142 . 2 ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → ∀𝑓 ∈ (𝑍 RingHom 𝑅)((𝑓‘(0g𝑍)) = (1r𝑅) ∧ (𝑓‘(0g𝑍)) = (0g𝑅)))
209, 15nzrnz 20459 . . . . . . . . . . . . 13 (𝑅 ∈ NzRing → (1r𝑅) ≠ (0g𝑅))
2120necomd 2992 . . . . . . . . . . . 12 (𝑅 ∈ NzRing → (0g𝑅) ≠ (1r𝑅))
2221adantl 480 . . . . . . . . . . 11 ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → (0g𝑅) ≠ (1r𝑅))
2322adantr 479 . . . . . . . . . 10 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ (𝑓‘(0g𝑍)) = (0g𝑅)) → (0g𝑅) ≠ (1r𝑅))
24 neeq1 2999 . . . . . . . . . . 11 ((𝑓‘(0g𝑍)) = (0g𝑅) → ((𝑓‘(0g𝑍)) ≠ (1r𝑅) ↔ (0g𝑅) ≠ (1r𝑅)))
2524adantl 480 . . . . . . . . . 10 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ (𝑓‘(0g𝑍)) = (0g𝑅)) → ((𝑓‘(0g𝑍)) ≠ (1r𝑅) ↔ (0g𝑅) ≠ (1r𝑅)))
2623, 25mpbird 256 . . . . . . . . 9 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ (𝑓‘(0g𝑍)) = (0g𝑅)) → (𝑓‘(0g𝑍)) ≠ (1r𝑅))
2726orcd 871 . . . . . . . 8 (((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) ∧ (𝑓‘(0g𝑍)) = (0g𝑅)) → ((𝑓‘(0g𝑍)) ≠ (1r𝑅) ∨ (𝑓‘(0g𝑍)) ≠ (0g𝑅)))
2827expcom 412 . . . . . . 7 ((𝑓‘(0g𝑍)) = (0g𝑅) → ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → ((𝑓‘(0g𝑍)) ≠ (1r𝑅) ∨ (𝑓‘(0g𝑍)) ≠ (0g𝑅))))
29 olc 866 . . . . . . . 8 ((𝑓‘(0g𝑍)) ≠ (0g𝑅) → ((𝑓‘(0g𝑍)) ≠ (1r𝑅) ∨ (𝑓‘(0g𝑍)) ≠ (0g𝑅)))
3029a1d 25 . . . . . . 7 ((𝑓‘(0g𝑍)) ≠ (0g𝑅) → ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → ((𝑓‘(0g𝑍)) ≠ (1r𝑅) ∨ (𝑓‘(0g𝑍)) ≠ (0g𝑅))))
3128, 30pm2.61ine 3021 . . . . . 6 ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → ((𝑓‘(0g𝑍)) ≠ (1r𝑅) ∨ (𝑓‘(0g𝑍)) ≠ (0g𝑅)))
32 neorian 3033 . . . . . 6 (((𝑓‘(0g𝑍)) ≠ (1r𝑅) ∨ (𝑓‘(0g𝑍)) ≠ (0g𝑅)) ↔ ¬ ((𝑓‘(0g𝑍)) = (1r𝑅) ∧ (𝑓‘(0g𝑍)) = (0g𝑅)))
3331, 32sylib 217 . . . . 5 ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → ¬ ((𝑓‘(0g𝑍)) = (1r𝑅) ∧ (𝑓‘(0g𝑍)) = (0g𝑅)))
34 con3 153 . . . . 5 ((𝑓 ∈ (𝑍 RingHom 𝑅) → ((𝑓‘(0g𝑍)) = (1r𝑅) ∧ (𝑓‘(0g𝑍)) = (0g𝑅))) → (¬ ((𝑓‘(0g𝑍)) = (1r𝑅) ∧ (𝑓‘(0g𝑍)) = (0g𝑅)) → ¬ 𝑓 ∈ (𝑍 RingHom 𝑅)))
3533, 34syl5com 31 . . . 4 ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → ((𝑓 ∈ (𝑍 RingHom 𝑅) → ((𝑓‘(0g𝑍)) = (1r𝑅) ∧ (𝑓‘(0g𝑍)) = (0g𝑅))) → ¬ 𝑓 ∈ (𝑍 RingHom 𝑅)))
3635alimdv 1911 . . 3 ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → (∀𝑓(𝑓 ∈ (𝑍 RingHom 𝑅) → ((𝑓‘(0g𝑍)) = (1r𝑅) ∧ (𝑓‘(0g𝑍)) = (0g𝑅))) → ∀𝑓 ¬ 𝑓 ∈ (𝑍 RingHom 𝑅)))
37 df-ral 3058 . . 3 (∀𝑓 ∈ (𝑍 RingHom 𝑅)((𝑓‘(0g𝑍)) = (1r𝑅) ∧ (𝑓‘(0g𝑍)) = (0g𝑅)) ↔ ∀𝑓(𝑓 ∈ (𝑍 RingHom 𝑅) → ((𝑓‘(0g𝑍)) = (1r𝑅) ∧ (𝑓‘(0g𝑍)) = (0g𝑅))))
38 eq0 4345 . . 3 ((𝑍 RingHom 𝑅) = ∅ ↔ ∀𝑓 ¬ 𝑓 ∈ (𝑍 RingHom 𝑅))
3936, 37, 383imtr4g 295 . 2 ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → (∀𝑓 ∈ (𝑍 RingHom 𝑅)((𝑓‘(0g𝑍)) = (1r𝑅) ∧ (𝑓‘(0g𝑍)) = (0g𝑅)) → (𝑍 RingHom 𝑅) = ∅))
4019, 39mpd 15 1 ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → (𝑍 RingHom 𝑅) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  wal 1531   = wceq 1533  wcel 2098  wne 2936  wral 3057  cdif 3944  c0 4324  cfv 6551  (class class class)co 7424  Basecbs 17185  0gc0g 17426   GrpHom cghm 19172  1rcur 20126  Ringcrg 20178   RingHom crh 20413  NzRingcnzr 20456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-oadd 8495  df-er 8729  df-map 8851  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-dju 9930  df-card 9968  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-nn 12249  df-2 12311  df-n0 12509  df-xnn0 12581  df-z 12595  df-uz 12859  df-fz 13523  df-hash 14328  df-sets 17138  df-slot 17156  df-ndx 17168  df-base 17186  df-plusg 17251  df-0g 17428  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-mhm 18745  df-grp 18898  df-minusg 18899  df-ghm 19173  df-cmn 19742  df-abl 19743  df-mgp 20080  df-rng 20098  df-ur 20127  df-ring 20180  df-rhm 20416  df-nzr 20457
This theorem is referenced by:  zrninitoringc  20614  nzerooringczr  21411
  Copyright terms: Public domain W3C validator