| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ralopabb | Structured version Visualization version GIF version | ||
| Description: Restricted universal quantification over an ordered-pair class abstraction. (Contributed by RP, 25-Sep-2024.) |
| Ref | Expression |
|---|---|
| ralopabb.o | ⊢ 𝑂 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
| ralopabb.p | ⊢ (𝑜 = 〈𝑥, 𝑦〉 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| ralopabb | ⊢ (∀𝑜 ∈ 𝑂 𝜓 ↔ ∀𝑥∀𝑦(𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nalexn 1828 | . . 3 ⊢ (¬ ∀𝑥∀𝑦(𝜑 → 𝜒) ↔ ∃𝑥∃𝑦 ¬ (𝜑 → 𝜒)) | |
| 2 | ralopabb.o | . . . . 5 ⊢ 𝑂 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 3 | ralopabb.p | . . . . . 6 ⊢ (𝑜 = 〈𝑥, 𝑦〉 → (𝜓 ↔ 𝜒)) | |
| 4 | 3 | notbid 318 | . . . . 5 ⊢ (𝑜 = 〈𝑥, 𝑦〉 → (¬ 𝜓 ↔ ¬ 𝜒)) |
| 5 | 2, 4 | rexopabb 5533 | . . . 4 ⊢ (∃𝑜 ∈ 𝑂 ¬ 𝜓 ↔ ∃𝑥∃𝑦(𝜑 ∧ ¬ 𝜒)) |
| 6 | annim 403 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝜒) ↔ ¬ (𝜑 → 𝜒)) | |
| 7 | 6 | 2exbii 1849 | . . . 4 ⊢ (∃𝑥∃𝑦(𝜑 ∧ ¬ 𝜒) ↔ ∃𝑥∃𝑦 ¬ (𝜑 → 𝜒)) |
| 8 | 5, 7 | bitri 275 | . . 3 ⊢ (∃𝑜 ∈ 𝑂 ¬ 𝜓 ↔ ∃𝑥∃𝑦 ¬ (𝜑 → 𝜒)) |
| 9 | rexnal 3100 | . . 3 ⊢ (∃𝑜 ∈ 𝑂 ¬ 𝜓 ↔ ¬ ∀𝑜 ∈ 𝑂 𝜓) | |
| 10 | 1, 8, 9 | 3bitr2ri 300 | . 2 ⊢ (¬ ∀𝑜 ∈ 𝑂 𝜓 ↔ ¬ ∀𝑥∀𝑦(𝜑 → 𝜒)) |
| 11 | 10 | con4bii 321 | 1 ⊢ (∀𝑜 ∈ 𝑂 𝜓 ↔ ∀𝑥∀𝑦(𝜑 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∀wral 3061 ∃wrex 3070 〈cop 4632 {copab 5205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-opab 5206 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |