![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ralopabb | Structured version Visualization version GIF version |
Description: Restricted universal quantification over an ordered-pair class abstraction. (Contributed by RP, 25-Sep-2024.) |
Ref | Expression |
---|---|
ralopabb.o | ⊢ 𝑂 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} |
ralopabb.p | ⊢ (𝑜 = ⟨𝑥, 𝑦⟩ → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
ralopabb | ⊢ (∀𝑜 ∈ 𝑂 𝜓 ↔ ∀𝑥∀𝑦(𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nalexn 1831 | . . 3 ⊢ (¬ ∀𝑥∀𝑦(𝜑 → 𝜒) ↔ ∃𝑥∃𝑦 ¬ (𝜑 → 𝜒)) | |
2 | ralopabb.o | . . . . 5 ⊢ 𝑂 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} | |
3 | ralopabb.p | . . . . . 6 ⊢ (𝑜 = ⟨𝑥, 𝑦⟩ → (𝜓 ↔ 𝜒)) | |
4 | 3 | notbid 318 | . . . . 5 ⊢ (𝑜 = ⟨𝑥, 𝑦⟩ → (¬ 𝜓 ↔ ¬ 𝜒)) |
5 | 2, 4 | rexopabb 5490 | . . . 4 ⊢ (∃𝑜 ∈ 𝑂 ¬ 𝜓 ↔ ∃𝑥∃𝑦(𝜑 ∧ ¬ 𝜒)) |
6 | annim 405 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝜒) ↔ ¬ (𝜑 → 𝜒)) | |
7 | 6 | 2exbii 1852 | . . . 4 ⊢ (∃𝑥∃𝑦(𝜑 ∧ ¬ 𝜒) ↔ ∃𝑥∃𝑦 ¬ (𝜑 → 𝜒)) |
8 | 5, 7 | bitri 275 | . . 3 ⊢ (∃𝑜 ∈ 𝑂 ¬ 𝜓 ↔ ∃𝑥∃𝑦 ¬ (𝜑 → 𝜒)) |
9 | rexnal 3104 | . . 3 ⊢ (∃𝑜 ∈ 𝑂 ¬ 𝜓 ↔ ¬ ∀𝑜 ∈ 𝑂 𝜓) | |
10 | 1, 8, 9 | 3bitr2ri 300 | . 2 ⊢ (¬ ∀𝑜 ∈ 𝑂 𝜓 ↔ ¬ ∀𝑥∀𝑦(𝜑 → 𝜒)) |
11 | 10 | con4bii 321 | 1 ⊢ (∀𝑜 ∈ 𝑂 𝜓 ↔ ∀𝑥∀𝑦(𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1540 = wceq 1542 ∃wex 1782 ∀wral 3065 ∃wrex 3074 ⟨cop 4597 {copab 5172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-sbc 3745 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-opab 5173 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |