![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ralopabb | Structured version Visualization version GIF version |
Description: Restricted universal quantification over an ordered-pair class abstraction. (Contributed by RP, 25-Sep-2024.) |
Ref | Expression |
---|---|
ralopabb.o | ⊢ 𝑂 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
ralopabb.p | ⊢ (𝑜 = 〈𝑥, 𝑦〉 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
ralopabb | ⊢ (∀𝑜 ∈ 𝑂 𝜓 ↔ ∀𝑥∀𝑦(𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nalexn 1826 | . . 3 ⊢ (¬ ∀𝑥∀𝑦(𝜑 → 𝜒) ↔ ∃𝑥∃𝑦 ¬ (𝜑 → 𝜒)) | |
2 | ralopabb.o | . . . . 5 ⊢ 𝑂 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
3 | ralopabb.p | . . . . . 6 ⊢ (𝑜 = 〈𝑥, 𝑦〉 → (𝜓 ↔ 𝜒)) | |
4 | 3 | notbid 318 | . . . . 5 ⊢ (𝑜 = 〈𝑥, 𝑦〉 → (¬ 𝜓 ↔ ¬ 𝜒)) |
5 | 2, 4 | rexopabb 5547 | . . . 4 ⊢ (∃𝑜 ∈ 𝑂 ¬ 𝜓 ↔ ∃𝑥∃𝑦(𝜑 ∧ ¬ 𝜒)) |
6 | annim 403 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝜒) ↔ ¬ (𝜑 → 𝜒)) | |
7 | 6 | 2exbii 1847 | . . . 4 ⊢ (∃𝑥∃𝑦(𝜑 ∧ ¬ 𝜒) ↔ ∃𝑥∃𝑦 ¬ (𝜑 → 𝜒)) |
8 | 5, 7 | bitri 275 | . . 3 ⊢ (∃𝑜 ∈ 𝑂 ¬ 𝜓 ↔ ∃𝑥∃𝑦 ¬ (𝜑 → 𝜒)) |
9 | rexnal 3106 | . . 3 ⊢ (∃𝑜 ∈ 𝑂 ¬ 𝜓 ↔ ¬ ∀𝑜 ∈ 𝑂 𝜓) | |
10 | 1, 8, 9 | 3bitr2ri 300 | . 2 ⊢ (¬ ∀𝑜 ∈ 𝑂 𝜓 ↔ ¬ ∀𝑥∀𝑦(𝜑 → 𝜒)) |
11 | 10 | con4bii 321 | 1 ⊢ (∀𝑜 ∈ 𝑂 𝜓 ↔ ∀𝑥∀𝑦(𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∃wex 1777 ∀wral 3067 ∃wrex 3076 〈cop 4654 {copab 5228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5229 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |