| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ralopabb | Structured version Visualization version GIF version | ||
| Description: Restricted universal quantification over an ordered-pair class abstraction. (Contributed by RP, 25-Sep-2024.) |
| Ref | Expression |
|---|---|
| ralopabb.o | ⊢ 𝑂 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
| ralopabb.p | ⊢ (𝑜 = 〈𝑥, 𝑦〉 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| ralopabb | ⊢ (∀𝑜 ∈ 𝑂 𝜓 ↔ ∀𝑥∀𝑦(𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nalexn 1829 | . . 3 ⊢ (¬ ∀𝑥∀𝑦(𝜑 → 𝜒) ↔ ∃𝑥∃𝑦 ¬ (𝜑 → 𝜒)) | |
| 2 | ralopabb.o | . . . . 5 ⊢ 𝑂 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 3 | ralopabb.p | . . . . . 6 ⊢ (𝑜 = 〈𝑥, 𝑦〉 → (𝜓 ↔ 𝜒)) | |
| 4 | 3 | notbid 318 | . . . . 5 ⊢ (𝑜 = 〈𝑥, 𝑦〉 → (¬ 𝜓 ↔ ¬ 𝜒)) |
| 5 | 2, 4 | rexopabb 5466 | . . . 4 ⊢ (∃𝑜 ∈ 𝑂 ¬ 𝜓 ↔ ∃𝑥∃𝑦(𝜑 ∧ ¬ 𝜒)) |
| 6 | annim 403 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝜒) ↔ ¬ (𝜑 → 𝜒)) | |
| 7 | 6 | 2exbii 1850 | . . . 4 ⊢ (∃𝑥∃𝑦(𝜑 ∧ ¬ 𝜒) ↔ ∃𝑥∃𝑦 ¬ (𝜑 → 𝜒)) |
| 8 | 5, 7 | bitri 275 | . . 3 ⊢ (∃𝑜 ∈ 𝑂 ¬ 𝜓 ↔ ∃𝑥∃𝑦 ¬ (𝜑 → 𝜒)) |
| 9 | rexnal 3084 | . . 3 ⊢ (∃𝑜 ∈ 𝑂 ¬ 𝜓 ↔ ¬ ∀𝑜 ∈ 𝑂 𝜓) | |
| 10 | 1, 8, 9 | 3bitr2ri 300 | . 2 ⊢ (¬ ∀𝑜 ∈ 𝑂 𝜓 ↔ ¬ ∀𝑥∀𝑦(𝜑 → 𝜒)) |
| 11 | 10 | con4bii 321 | 1 ⊢ (∀𝑜 ∈ 𝑂 𝜓 ↔ ∀𝑥∀𝑦(𝜑 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1780 ∀wral 3047 ∃wrex 3056 〈cop 4579 {copab 5151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-opab 5152 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |