Proof of Theorem csbresgVD
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | idn1 44599 | . . . . . . . . 9
⊢ (   𝐴 ∈ 𝑉   ▶   𝐴 ∈ 𝑉   ) | 
| 2 |  | csbconstg 3917 | . . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌V = V) | 
| 3 | 1, 2 | e1a 44652 | . . . . . . . 8
⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌V = V   ) | 
| 4 |  | xpeq2 5705 | . . . . . . . 8
⊢
(⦋𝐴 /
𝑥⦌V = V
→ (⦋𝐴 /
𝑥⦌𝐶 × ⦋𝐴 / 𝑥⦌V) = (⦋𝐴 / 𝑥⦌𝐶 × V)) | 
| 5 | 3, 4 | e1a 44652 | . . . . . . 7
⊢ (   𝐴 ∈ 𝑉   ▶   (⦋𝐴 / 𝑥⦌𝐶 × ⦋𝐴 / 𝑥⦌V) = (⦋𝐴 / 𝑥⦌𝐶 × V)   ) | 
| 6 |  | csbxp 5784 | . . . . . . . . 9
⊢
⦋𝐴 /
𝑥⦌(𝐶 × V) =
(⦋𝐴 / 𝑥⦌𝐶 × ⦋𝐴 / 𝑥⦌V) | 
| 7 | 6 | a1i 11 | . . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐶 × V) = (⦋𝐴 / 𝑥⦌𝐶 × ⦋𝐴 / 𝑥⦌V)) | 
| 8 | 1, 7 | e1a 44652 | . . . . . . 7
⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌(𝐶 × V) = (⦋𝐴 / 𝑥⦌𝐶 × ⦋𝐴 / 𝑥⦌V)   ) | 
| 9 |  | eqeq2 2748 | . . . . . . . 8
⊢
((⦋𝐴 /
𝑥⦌𝐶 × ⦋𝐴 / 𝑥⦌V) = (⦋𝐴 / 𝑥⦌𝐶 × V) → (⦋𝐴 / 𝑥⦌(𝐶 × V) = (⦋𝐴 / 𝑥⦌𝐶 × ⦋𝐴 / 𝑥⦌V) ↔ ⦋𝐴 / 𝑥⦌(𝐶 × V) = (⦋𝐴 / 𝑥⦌𝐶 × V))) | 
| 10 | 9 | biimpd 229 | . . . . . . 7
⊢
((⦋𝐴 /
𝑥⦌𝐶 × ⦋𝐴 / 𝑥⦌V) = (⦋𝐴 / 𝑥⦌𝐶 × V) → (⦋𝐴 / 𝑥⦌(𝐶 × V) = (⦋𝐴 / 𝑥⦌𝐶 × ⦋𝐴 / 𝑥⦌V) → ⦋𝐴 / 𝑥⦌(𝐶 × V) = (⦋𝐴 / 𝑥⦌𝐶 × V))) | 
| 11 | 5, 8, 10 | e11 44713 | . . . . . 6
⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌(𝐶 × V) = (⦋𝐴 / 𝑥⦌𝐶 × V)   ) | 
| 12 |  | ineq2 4213 | . . . . . 6
⊢
(⦋𝐴 /
𝑥⦌(𝐶 × V) =
(⦋𝐴 / 𝑥⦌𝐶 × V) → (⦋𝐴 / 𝑥⦌𝐵 ∩ ⦋𝐴 / 𝑥⦌(𝐶 × V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V))) | 
| 13 | 11, 12 | e1a 44652 | . . . . 5
⊢ (   𝐴 ∈ 𝑉   ▶   (⦋𝐴 / 𝑥⦌𝐵 ∩ ⦋𝐴 / 𝑥⦌(𝐶 × V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V))   ) | 
| 14 |  | csbin 4441 | . . . . . . 7
⊢
⦋𝐴 /
𝑥⦌(𝐵 ∩ (𝐶 × V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ ⦋𝐴 / 𝑥⦌(𝐶 × V)) | 
| 15 | 14 | a1i 11 | . . . . . 6
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 × V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ ⦋𝐴 / 𝑥⦌(𝐶 × V))) | 
| 16 | 1, 15 | e1a 44652 | . . . . 5
⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 × V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ ⦋𝐴 / 𝑥⦌(𝐶 × V))   ) | 
| 17 |  | eqeq2 2748 | . . . . . 6
⊢
((⦋𝐴 /
𝑥⦌𝐵 ∩ ⦋𝐴 / 𝑥⦌(𝐶 × V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)) → (⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 × V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ ⦋𝐴 / 𝑥⦌(𝐶 × V)) ↔ ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 × V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)))) | 
| 18 | 17 | biimpd 229 | . . . . 5
⊢
((⦋𝐴 /
𝑥⦌𝐵 ∩ ⦋𝐴 / 𝑥⦌(𝐶 × V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)) → (⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 × V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ ⦋𝐴 / 𝑥⦌(𝐶 × V)) → ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 × V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)))) | 
| 19 | 13, 16, 18 | e11 44713 | . . . 4
⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 × V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V))   ) | 
| 20 |  | df-res 5696 | . . . . . 6
⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | 
| 21 | 20 | ax-gen 1794 | . . . . 5
⊢
∀𝑥(𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | 
| 22 |  | csbeq2 3903 | . . . . . 6
⊢
(∀𝑥(𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) → ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 × V))) | 
| 23 | 22 | a1i 11 | . . . . 5
⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) → ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 × V)))) | 
| 24 | 1, 21, 23 | e10 44719 | . . . 4
⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 × V))   ) | 
| 25 |  | eqeq2 2748 | . . . . 5
⊢
(⦋𝐴 /
𝑥⦌(𝐵 ∩ (𝐶 × V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)) → (⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 × V)) ↔ ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)))) | 
| 26 | 25 | biimpd 229 | . . . 4
⊢
(⦋𝐴 /
𝑥⦌(𝐵 ∩ (𝐶 × V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)) → (⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 × V)) → ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)))) | 
| 27 | 19, 24, 26 | e11 44713 | . . 3
⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V))   ) | 
| 28 |  | df-res 5696 | . . 3
⊢
(⦋𝐴 /
𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)) | 
| 29 |  | eqeq2 2748 | . . . 4
⊢
((⦋𝐴 /
𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)) → (⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶) ↔ ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)))) | 
| 30 | 29 | biimprcd 250 | . . 3
⊢
(⦋𝐴 /
𝑥⦌(𝐵 ↾ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)) → ((⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)) → ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶))) | 
| 31 | 27, 28, 30 | e10 44719 | . 2
⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶)   ) | 
| 32 | 31 | in1 44596 | 1
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶)) |