Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbima12gALTVD Structured version   Visualization version   GIF version

Theorem csbima12gALTVD 44868
Description: Virtual deduction proof of csbima12 6108. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbima12 6108 is csbima12gALTVD 44868 without virtual deductions and was automatically derived from csbima12gALTVD 44868.
1:: (   𝐴𝐶   ▶   𝐴𝐶   )
2:1: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = ( 𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
3:2: (   𝐴𝐶   ▶    ran 𝐴 / 𝑥(𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
4:1: (   𝐴𝐶   ▶    𝐴 / 𝑥ran (𝐹𝐵) = ran 𝐴 / 𝑥(𝐹𝐵)   )
5:3,4: (   𝐴𝐶   ▶    𝐴 / 𝑥ran (𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
6:: (𝐹𝐵) = ran (𝐹𝐵)
7:6: 𝑥(𝐹𝐵) = ran (𝐹𝐵)
8:1,7: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥ran (𝐹𝐵)   )
9:5,8: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
10:: (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)
11:9,10: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = ( 𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
qed:11: (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = ( 𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbima12gALTVD (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))

Proof of Theorem csbima12gALTVD
StepHypRef Expression
1 idn1 44545 . . . . . . 7 (   𝐴𝐶   ▶   𝐴𝐶   )
2 csbres 6012 . . . . . . . 8 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)
32a1i 11 . . . . . . 7 (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
41, 3e1a 44598 . . . . . 6 (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
5 rneq 5961 . . . . . 6 (𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) → ran 𝐴 / 𝑥(𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
64, 5e1a 44598 . . . . 5 (   𝐴𝐶   ▶   ran 𝐴 / 𝑥(𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
7 csbrn 6234 . . . . . . 7 𝐴 / 𝑥ran (𝐹𝐵) = ran 𝐴 / 𝑥(𝐹𝐵)
87a1i 11 . . . . . 6 (𝐴𝐶𝐴 / 𝑥ran (𝐹𝐵) = ran 𝐴 / 𝑥(𝐹𝐵))
91, 8e1a 44598 . . . . 5 (   𝐴𝐶   ▶   𝐴 / 𝑥ran (𝐹𝐵) = ran 𝐴 / 𝑥(𝐹𝐵)   )
10 eqeq2 2752 . . . . . 6 (ran 𝐴 / 𝑥(𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) → (𝐴 / 𝑥ran (𝐹𝐵) = ran 𝐴 / 𝑥(𝐹𝐵) ↔ 𝐴 / 𝑥ran (𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)))
1110biimpd 229 . . . . 5 (ran 𝐴 / 𝑥(𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) → (𝐴 / 𝑥ran (𝐹𝐵) = ran 𝐴 / 𝑥(𝐹𝐵) → 𝐴 / 𝑥ran (𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)))
126, 9, 11e11 44659 . . . 4 (   𝐴𝐶   ▶   𝐴 / 𝑥ran (𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
13 df-ima 5713 . . . . . 6 (𝐹𝐵) = ran (𝐹𝐵)
1413ax-gen 1793 . . . . 5 𝑥(𝐹𝐵) = ran (𝐹𝐵)
15 csbeq2 3926 . . . . . 6 (∀𝑥(𝐹𝐵) = ran (𝐹𝐵) → 𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥ran (𝐹𝐵))
1615a1i 11 . . . . 5 (𝐴𝐶 → (∀𝑥(𝐹𝐵) = ran (𝐹𝐵) → 𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥ran (𝐹𝐵)))
171, 14, 16e10 44665 . . . 4 (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥ran (𝐹𝐵)   )
18 eqeq2 2752 . . . . 5 (𝐴 / 𝑥ran (𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) → (𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥ran (𝐹𝐵) ↔ 𝐴 / 𝑥(𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)))
1918biimpd 229 . . . 4 (𝐴 / 𝑥ran (𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) → (𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥ran (𝐹𝐵) → 𝐴 / 𝑥(𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)))
2012, 17, 19e11 44659 . . 3 (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
21 df-ima 5713 . . 3 (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)
22 eqeq2 2752 . . . 4 ((𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) → (𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) ↔ 𝐴 / 𝑥(𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)))
2322biimprcd 250 . . 3 (𝐴 / 𝑥(𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) → ((𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) → 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)))
2420, 21, 23e10 44665 . 2 (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
2524in1 44542 1 (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535   = wceq 1537  wcel 2108  csb 3921  ran crn 5701  cres 5702  cima 5703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-vd1 44541
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator