Proof of Theorem csbima12gALTVD
Step | Hyp | Ref
| Expression |
1 | | idn1 42194 |
. . . . . . 7
⊢ ( 𝐴 ∈ 𝐶 ▶ 𝐴 ∈ 𝐶 ) |
2 | | csbres 5894 |
. . . . . . . 8
⊢
⦋𝐴 /
𝑥⦌(𝐹 ↾ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) |
3 | 2 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵)) |
4 | 1, 3 | e1a 42247 |
. . . . . 6
⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) ) |
5 | | rneq 5845 |
. . . . . 6
⊢
(⦋𝐴 /
𝑥⦌(𝐹 ↾ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) → ran ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵)) |
6 | 4, 5 | e1a 42247 |
. . . . 5
⊢ ( 𝐴 ∈ 𝐶 ▶ ran
⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) ) |
7 | | csbrn 6106 |
. . . . . . 7
⊢
⦋𝐴 /
𝑥⦌ran (𝐹 ↾ 𝐵) = ran ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) |
8 | 7 | a1i 11 |
. . . . . 6
⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) = ran ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵)) |
9 | 1, 8 | e1a 42247 |
. . . . 5
⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) = ran ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) ) |
10 | | eqeq2 2750 |
. . . . . 6
⊢ (ran
⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) → (⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) = ran ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) ↔ ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵))) |
11 | 10 | biimpd 228 |
. . . . 5
⊢ (ran
⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) → (⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) = ran ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) → ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵))) |
12 | 6, 9, 11 | e11 42308 |
. . . 4
⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) ) |
13 | | df-ima 5602 |
. . . . . 6
⊢ (𝐹 “ 𝐵) = ran (𝐹 ↾ 𝐵) |
14 | 13 | ax-gen 1798 |
. . . . 5
⊢
∀𝑥(𝐹 “ 𝐵) = ran (𝐹 ↾ 𝐵) |
15 | | csbeq2 3837 |
. . . . . 6
⊢
(∀𝑥(𝐹 “ 𝐵) = ran (𝐹 ↾ 𝐵) → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵)) |
16 | 15 | a1i 11 |
. . . . 5
⊢ (𝐴 ∈ 𝐶 → (∀𝑥(𝐹 “ 𝐵) = ran (𝐹 ↾ 𝐵) → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵))) |
17 | 1, 14, 16 | e10 42314 |
. . . 4
⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) ) |
18 | | eqeq2 2750 |
. . . . 5
⊢
(⦋𝐴 /
𝑥⦌ran (𝐹 ↾ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) → (⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) ↔ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵))) |
19 | 18 | biimpd 228 |
. . . 4
⊢
(⦋𝐴 /
𝑥⦌ran (𝐹 ↾ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) → (⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵))) |
20 | 12, 17, 19 | e11 42308 |
. . 3
⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) ) |
21 | | df-ima 5602 |
. . 3
⊢
(⦋𝐴 /
𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) |
22 | | eqeq2 2750 |
. . . 4
⊢
((⦋𝐴 /
𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) → (⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) ↔ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵))) |
23 | 22 | biimprcd 249 |
. . 3
⊢
(⦋𝐴 /
𝑥⦌(𝐹 “ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) → ((⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵))) |
24 | 20, 21, 23 | e10 42314 |
. 2
⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) ) |
25 | 24 | in1 42191 |
1
⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵)) |