Proof of Theorem csbima12gALTVD
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | idn1 44594 | . . . . . . 7
⊢ (   𝐴 ∈ 𝐶   ▶   𝐴 ∈ 𝐶   ) | 
| 2 |  | csbres 6000 | . . . . . . . 8
⊢
⦋𝐴 /
𝑥⦌(𝐹 ↾ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) | 
| 3 | 2 | a1i 11 | . . . . . . 7
⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵)) | 
| 4 | 1, 3 | e1a 44647 | . . . . . 6
⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵)   ) | 
| 5 |  | rneq 5947 | . . . . . 6
⊢
(⦋𝐴 /
𝑥⦌(𝐹 ↾ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) → ran ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵)) | 
| 6 | 4, 5 | e1a 44647 | . . . . 5
⊢ (   𝐴 ∈ 𝐶   ▶   ran
⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵)   ) | 
| 7 |  | csbrn 6223 | . . . . . . 7
⊢
⦋𝐴 /
𝑥⦌ran (𝐹 ↾ 𝐵) = ran ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) | 
| 8 | 7 | a1i 11 | . . . . . 6
⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) = ran ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵)) | 
| 9 | 1, 8 | e1a 44647 | . . . . 5
⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) = ran ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵)   ) | 
| 10 |  | eqeq2 2749 | . . . . . 6
⊢ (ran
⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) → (⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) = ran ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) ↔ ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵))) | 
| 11 | 10 | biimpd 229 | . . . . 5
⊢ (ran
⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) → (⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) = ran ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) → ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵))) | 
| 12 | 6, 9, 11 | e11 44708 | . . . 4
⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵)   ) | 
| 13 |  | df-ima 5698 | . . . . . 6
⊢ (𝐹 “ 𝐵) = ran (𝐹 ↾ 𝐵) | 
| 14 | 13 | ax-gen 1795 | . . . . 5
⊢
∀𝑥(𝐹 “ 𝐵) = ran (𝐹 ↾ 𝐵) | 
| 15 |  | csbeq2 3904 | . . . . . 6
⊢
(∀𝑥(𝐹 “ 𝐵) = ran (𝐹 ↾ 𝐵) → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵)) | 
| 16 | 15 | a1i 11 | . . . . 5
⊢ (𝐴 ∈ 𝐶 → (∀𝑥(𝐹 “ 𝐵) = ran (𝐹 ↾ 𝐵) → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵))) | 
| 17 | 1, 14, 16 | e10 44714 | . . . 4
⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵)   ) | 
| 18 |  | eqeq2 2749 | . . . . 5
⊢
(⦋𝐴 /
𝑥⦌ran (𝐹 ↾ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) → (⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) ↔ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵))) | 
| 19 | 18 | biimpd 229 | . . . 4
⊢
(⦋𝐴 /
𝑥⦌ran (𝐹 ↾ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) → (⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵))) | 
| 20 | 12, 17, 19 | e11 44708 | . . 3
⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵)   ) | 
| 21 |  | df-ima 5698 | . . 3
⊢
(⦋𝐴 /
𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) | 
| 22 |  | eqeq2 2749 | . . . 4
⊢
((⦋𝐴 /
𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) → (⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) ↔ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵))) | 
| 23 | 22 | biimprcd 250 | . . 3
⊢
(⦋𝐴 /
𝑥⦌(𝐹 “ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) → ((⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵))) | 
| 24 | 20, 21, 23 | e10 44714 | . 2
⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵)   ) | 
| 25 | 24 | in1 44591 | 1
⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵)) |