Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbima12gALTVD Structured version   Visualization version   GIF version

Theorem csbima12gALTVD 43643
Description: Virtual deduction proof of csbima12 6075. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbima12 6075 is csbima12gALTVD 43643 without virtual deductions and was automatically derived from csbima12gALTVD 43643.
1:: (   𝐴𝐶   ▶   𝐴𝐶   )
2:1: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = ( 𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
3:2: (   𝐴𝐶   ▶    ran 𝐴 / 𝑥(𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
4:1: (   𝐴𝐶   ▶    𝐴 / 𝑥ran (𝐹𝐵) = ran 𝐴 / 𝑥(𝐹𝐵)   )
5:3,4: (   𝐴𝐶   ▶    𝐴 / 𝑥ran (𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
6:: (𝐹𝐵) = ran (𝐹𝐵)
7:6: 𝑥(𝐹𝐵) = ran (𝐹𝐵)
8:1,7: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥ran (𝐹𝐵)   )
9:5,8: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
10:: (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)
11:9,10: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = ( 𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
qed:11: (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = ( 𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbima12gALTVD (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))

Proof of Theorem csbima12gALTVD
StepHypRef Expression
1 idn1 43320 . . . . . . 7 (   𝐴𝐶   ▶   𝐴𝐶   )
2 csbres 5982 . . . . . . . 8 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)
32a1i 11 . . . . . . 7 (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
41, 3e1a 43373 . . . . . 6 (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
5 rneq 5933 . . . . . 6 (𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) → ran 𝐴 / 𝑥(𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
64, 5e1a 43373 . . . . 5 (   𝐴𝐶   ▶   ran 𝐴 / 𝑥(𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
7 csbrn 6199 . . . . . . 7 𝐴 / 𝑥ran (𝐹𝐵) = ran 𝐴 / 𝑥(𝐹𝐵)
87a1i 11 . . . . . 6 (𝐴𝐶𝐴 / 𝑥ran (𝐹𝐵) = ran 𝐴 / 𝑥(𝐹𝐵))
91, 8e1a 43373 . . . . 5 (   𝐴𝐶   ▶   𝐴 / 𝑥ran (𝐹𝐵) = ran 𝐴 / 𝑥(𝐹𝐵)   )
10 eqeq2 2744 . . . . . 6 (ran 𝐴 / 𝑥(𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) → (𝐴 / 𝑥ran (𝐹𝐵) = ran 𝐴 / 𝑥(𝐹𝐵) ↔ 𝐴 / 𝑥ran (𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)))
1110biimpd 228 . . . . 5 (ran 𝐴 / 𝑥(𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) → (𝐴 / 𝑥ran (𝐹𝐵) = ran 𝐴 / 𝑥(𝐹𝐵) → 𝐴 / 𝑥ran (𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)))
126, 9, 11e11 43434 . . . 4 (   𝐴𝐶   ▶   𝐴 / 𝑥ran (𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
13 df-ima 5688 . . . . . 6 (𝐹𝐵) = ran (𝐹𝐵)
1413ax-gen 1797 . . . . 5 𝑥(𝐹𝐵) = ran (𝐹𝐵)
15 csbeq2 3897 . . . . . 6 (∀𝑥(𝐹𝐵) = ran (𝐹𝐵) → 𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥ran (𝐹𝐵))
1615a1i 11 . . . . 5 (𝐴𝐶 → (∀𝑥(𝐹𝐵) = ran (𝐹𝐵) → 𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥ran (𝐹𝐵)))
171, 14, 16e10 43440 . . . 4 (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥ran (𝐹𝐵)   )
18 eqeq2 2744 . . . . 5 (𝐴 / 𝑥ran (𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) → (𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥ran (𝐹𝐵) ↔ 𝐴 / 𝑥(𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)))
1918biimpd 228 . . . 4 (𝐴 / 𝑥ran (𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) → (𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥ran (𝐹𝐵) → 𝐴 / 𝑥(𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)))
2012, 17, 19e11 43434 . . 3 (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
21 df-ima 5688 . . 3 (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)
22 eqeq2 2744 . . . 4 ((𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) → (𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) ↔ 𝐴 / 𝑥(𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)))
2322biimprcd 249 . . 3 (𝐴 / 𝑥(𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) → ((𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) → 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)))
2420, 21, 23e10 43440 . 2 (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
2524in1 43317 1 (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539   = wceq 1541  wcel 2106  csb 3892  ran crn 5676  cres 5677  cima 5678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-cnv 5683  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-vd1 43316
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator