Proof of Theorem csbima12gALTVD
| Step | Hyp | Ref
| Expression |
| 1 | | idn1 44599 |
. . . . . . 7
⊢ ( 𝐴 ∈ 𝐶 ▶ 𝐴 ∈ 𝐶 ) |
| 2 | | csbres 5969 |
. . . . . . . 8
⊢
⦋𝐴 /
𝑥⦌(𝐹 ↾ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) |
| 3 | 2 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵)) |
| 4 | 1, 3 | e1a 44652 |
. . . . . 6
⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) ) |
| 5 | | rneq 5916 |
. . . . . 6
⊢
(⦋𝐴 /
𝑥⦌(𝐹 ↾ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) → ran ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵)) |
| 6 | 4, 5 | e1a 44652 |
. . . . 5
⊢ ( 𝐴 ∈ 𝐶 ▶ ran
⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) ) |
| 7 | | csbrn 6192 |
. . . . . . 7
⊢
⦋𝐴 /
𝑥⦌ran (𝐹 ↾ 𝐵) = ran ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) |
| 8 | 7 | a1i 11 |
. . . . . 6
⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) = ran ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵)) |
| 9 | 1, 8 | e1a 44652 |
. . . . 5
⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) = ran ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) ) |
| 10 | | eqeq2 2747 |
. . . . . 6
⊢ (ran
⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) → (⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) = ran ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) ↔ ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵))) |
| 11 | 10 | biimpd 229 |
. . . . 5
⊢ (ran
⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) → (⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) = ran ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) → ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵))) |
| 12 | 6, 9, 11 | e11 44713 |
. . . 4
⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) ) |
| 13 | | df-ima 5667 |
. . . . . 6
⊢ (𝐹 “ 𝐵) = ran (𝐹 ↾ 𝐵) |
| 14 | 13 | ax-gen 1795 |
. . . . 5
⊢
∀𝑥(𝐹 “ 𝐵) = ran (𝐹 ↾ 𝐵) |
| 15 | | csbeq2 3879 |
. . . . . 6
⊢
(∀𝑥(𝐹 “ 𝐵) = ran (𝐹 ↾ 𝐵) → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵)) |
| 16 | 15 | a1i 11 |
. . . . 5
⊢ (𝐴 ∈ 𝐶 → (∀𝑥(𝐹 “ 𝐵) = ran (𝐹 ↾ 𝐵) → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵))) |
| 17 | 1, 14, 16 | e10 44719 |
. . . 4
⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) ) |
| 18 | | eqeq2 2747 |
. . . . 5
⊢
(⦋𝐴 /
𝑥⦌ran (𝐹 ↾ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) → (⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) ↔ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵))) |
| 19 | 18 | biimpd 229 |
. . . 4
⊢
(⦋𝐴 /
𝑥⦌ran (𝐹 ↾ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) → (⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵))) |
| 20 | 12, 17, 19 | e11 44713 |
. . 3
⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) ) |
| 21 | | df-ima 5667 |
. . 3
⊢
(⦋𝐴 /
𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) |
| 22 | | eqeq2 2747 |
. . . 4
⊢
((⦋𝐴 /
𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) → (⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) ↔ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵))) |
| 23 | 22 | biimprcd 250 |
. . 3
⊢
(⦋𝐴 /
𝑥⦌(𝐹 “ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) → ((⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵))) |
| 24 | 20, 21, 23 | e10 44719 |
. 2
⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) ) |
| 25 | 24 | in1 44596 |
1
⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵)) |