Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orduniss2 | Structured version Visualization version GIF version |
Description: The union of the ordinal subsets of an ordinal number is that number. (Contributed by NM, 30-Jan-2005.) |
Ref | Expression |
---|---|
orduniss2 | ⊢ (Ord 𝐴 → ∪ {𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3073 | . . . . 5 ⊢ {𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴} = {𝑥 ∣ (𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴)} | |
2 | incom 4135 | . . . . . 6 ⊢ ({𝑥 ∣ 𝑥 ∈ On} ∩ {𝑥 ∣ 𝑥 ⊆ 𝐴}) = ({𝑥 ∣ 𝑥 ⊆ 𝐴} ∩ {𝑥 ∣ 𝑥 ∈ On}) | |
3 | inab 4233 | . . . . . 6 ⊢ ({𝑥 ∣ 𝑥 ∈ On} ∩ {𝑥 ∣ 𝑥 ⊆ 𝐴}) = {𝑥 ∣ (𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴)} | |
4 | df-pw 4535 | . . . . . . . 8 ⊢ 𝒫 𝐴 = {𝑥 ∣ 𝑥 ⊆ 𝐴} | |
5 | 4 | eqcomi 2747 | . . . . . . 7 ⊢ {𝑥 ∣ 𝑥 ⊆ 𝐴} = 𝒫 𝐴 |
6 | abid2 2882 | . . . . . . 7 ⊢ {𝑥 ∣ 𝑥 ∈ On} = On | |
7 | 5, 6 | ineq12i 4144 | . . . . . 6 ⊢ ({𝑥 ∣ 𝑥 ⊆ 𝐴} ∩ {𝑥 ∣ 𝑥 ∈ On}) = (𝒫 𝐴 ∩ On) |
8 | 2, 3, 7 | 3eqtr3i 2774 | . . . . 5 ⊢ {𝑥 ∣ (𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴)} = (𝒫 𝐴 ∩ On) |
9 | 1, 8 | eqtri 2766 | . . . 4 ⊢ {𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴} = (𝒫 𝐴 ∩ On) |
10 | ordpwsuc 7662 | . . . 4 ⊢ (Ord 𝐴 → (𝒫 𝐴 ∩ On) = suc 𝐴) | |
11 | 9, 10 | eqtrid 2790 | . . 3 ⊢ (Ord 𝐴 → {𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴} = suc 𝐴) |
12 | 11 | unieqd 4853 | . 2 ⊢ (Ord 𝐴 → ∪ {𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴} = ∪ suc 𝐴) |
13 | ordunisuc 7679 | . 2 ⊢ (Ord 𝐴 → ∪ suc 𝐴 = 𝐴) | |
14 | 12, 13 | eqtrd 2778 | 1 ⊢ (Ord 𝐴 → ∪ {𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 {crab 3068 ∩ cin 3886 ⊆ wss 3887 𝒫 cpw 4533 ∪ cuni 4839 Ord word 6265 Oncon0 6266 suc csuc 6268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 df-suc 6272 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |