![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orduniss2 | Structured version Visualization version GIF version |
Description: The union of the ordinal subsets of an ordinal number is that number. (Contributed by NM, 30-Jan-2005.) |
Ref | Expression |
---|---|
orduniss2 | ⊢ (Ord 𝐴 → ∪ {𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3420 | . . . . 5 ⊢ {𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴} = {𝑥 ∣ (𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴)} | |
2 | incom 4195 | . . . . . 6 ⊢ ({𝑥 ∣ 𝑥 ∈ On} ∩ {𝑥 ∣ 𝑥 ⊆ 𝐴}) = ({𝑥 ∣ 𝑥 ⊆ 𝐴} ∩ {𝑥 ∣ 𝑥 ∈ On}) | |
3 | inab 4294 | . . . . . 6 ⊢ ({𝑥 ∣ 𝑥 ∈ On} ∩ {𝑥 ∣ 𝑥 ⊆ 𝐴}) = {𝑥 ∣ (𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴)} | |
4 | df-pw 4600 | . . . . . . . 8 ⊢ 𝒫 𝐴 = {𝑥 ∣ 𝑥 ⊆ 𝐴} | |
5 | 4 | eqcomi 2734 | . . . . . . 7 ⊢ {𝑥 ∣ 𝑥 ⊆ 𝐴} = 𝒫 𝐴 |
6 | abid2 2863 | . . . . . . 7 ⊢ {𝑥 ∣ 𝑥 ∈ On} = On | |
7 | 5, 6 | ineq12i 4204 | . . . . . 6 ⊢ ({𝑥 ∣ 𝑥 ⊆ 𝐴} ∩ {𝑥 ∣ 𝑥 ∈ On}) = (𝒫 𝐴 ∩ On) |
8 | 2, 3, 7 | 3eqtr3i 2761 | . . . . 5 ⊢ {𝑥 ∣ (𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴)} = (𝒫 𝐴 ∩ On) |
9 | 1, 8 | eqtri 2753 | . . . 4 ⊢ {𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴} = (𝒫 𝐴 ∩ On) |
10 | ordpwsuc 7816 | . . . 4 ⊢ (Ord 𝐴 → (𝒫 𝐴 ∩ On) = suc 𝐴) | |
11 | 9, 10 | eqtrid 2777 | . . 3 ⊢ (Ord 𝐴 → {𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴} = suc 𝐴) |
12 | 11 | unieqd 4916 | . 2 ⊢ (Ord 𝐴 → ∪ {𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴} = ∪ suc 𝐴) |
13 | ordunisuc 7833 | . 2 ⊢ (Ord 𝐴 → ∪ suc 𝐴 = 𝐴) | |
14 | 12, 13 | eqtrd 2765 | 1 ⊢ (Ord 𝐴 → ∪ {𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {cab 2702 {crab 3419 ∩ cin 3938 ⊆ wss 3939 𝒫 cpw 4598 ∪ cuni 4903 Ord word 6363 Oncon0 6364 suc csuc 6366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-tr 5261 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-ord 6367 df-on 6368 df-suc 6370 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |