MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orduniss2 Structured version   Visualization version   GIF version

Theorem orduniss2 7231
Description: The union of the ordinal subsets of an ordinal number is that number. (Contributed by NM, 30-Jan-2005.)
Assertion
Ref Expression
orduniss2 (Ord 𝐴 {𝑥 ∈ On ∣ 𝑥𝐴} = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem orduniss2
StepHypRef Expression
1 df-rab 3064 . . . . 5 {𝑥 ∈ On ∣ 𝑥𝐴} = {𝑥 ∣ (𝑥 ∈ On ∧ 𝑥𝐴)}
2 incom 3967 . . . . . 6 ({𝑥𝑥 ∈ On} ∩ {𝑥𝑥𝐴}) = ({𝑥𝑥𝐴} ∩ {𝑥𝑥 ∈ On})
3 inab 4059 . . . . . 6 ({𝑥𝑥 ∈ On} ∩ {𝑥𝑥𝐴}) = {𝑥 ∣ (𝑥 ∈ On ∧ 𝑥𝐴)}
4 df-pw 4317 . . . . . . . 8 𝒫 𝐴 = {𝑥𝑥𝐴}
54eqcomi 2774 . . . . . . 7 {𝑥𝑥𝐴} = 𝒫 𝐴
6 abid2 2888 . . . . . . 7 {𝑥𝑥 ∈ On} = On
75, 6ineq12i 3974 . . . . . 6 ({𝑥𝑥𝐴} ∩ {𝑥𝑥 ∈ On}) = (𝒫 𝐴 ∩ On)
82, 3, 73eqtr3i 2795 . . . . 5 {𝑥 ∣ (𝑥 ∈ On ∧ 𝑥𝐴)} = (𝒫 𝐴 ∩ On)
91, 8eqtri 2787 . . . 4 {𝑥 ∈ On ∣ 𝑥𝐴} = (𝒫 𝐴 ∩ On)
10 ordpwsuc 7213 . . . 4 (Ord 𝐴 → (𝒫 𝐴 ∩ On) = suc 𝐴)
119, 10syl5eq 2811 . . 3 (Ord 𝐴 → {𝑥 ∈ On ∣ 𝑥𝐴} = suc 𝐴)
1211unieqd 4604 . 2 (Ord 𝐴 {𝑥 ∈ On ∣ 𝑥𝐴} = suc 𝐴)
13 ordunisuc 7230 . 2 (Ord 𝐴 suc 𝐴 = 𝐴)
1412, 13eqtrd 2799 1 (Ord 𝐴 {𝑥 ∈ On ∣ 𝑥𝐴} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  {cab 2751  {crab 3059  cin 3731  wss 3732  𝒫 cpw 4315   cuni 4594  Ord word 5907  Oncon0 5908  suc csuc 5910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-br 4810  df-opab 4872  df-tr 4912  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-ord 5911  df-on 5912  df-suc 5914
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator