MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orduniss2 Structured version   Visualization version   GIF version

Theorem orduniss2 7763
Description: The union of the ordinal subsets of an ordinal number is that number. (Contributed by NM, 30-Jan-2005.)
Assertion
Ref Expression
orduniss2 (Ord 𝐴 {𝑥 ∈ On ∣ 𝑥𝐴} = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem orduniss2
StepHypRef Expression
1 df-rab 3396 . . . . 5 {𝑥 ∈ On ∣ 𝑥𝐴} = {𝑥 ∣ (𝑥 ∈ On ∧ 𝑥𝐴)}
2 incom 4156 . . . . . 6 ({𝑥𝑥 ∈ On} ∩ {𝑥𝑥𝐴}) = ({𝑥𝑥𝐴} ∩ {𝑥𝑥 ∈ On})
3 inab 4256 . . . . . 6 ({𝑥𝑥 ∈ On} ∩ {𝑥𝑥𝐴}) = {𝑥 ∣ (𝑥 ∈ On ∧ 𝑥𝐴)}
4 df-pw 4549 . . . . . . . 8 𝒫 𝐴 = {𝑥𝑥𝐴}
54eqcomi 2740 . . . . . . 7 {𝑥𝑥𝐴} = 𝒫 𝐴
6 abid2 2868 . . . . . . 7 {𝑥𝑥 ∈ On} = On
75, 6ineq12i 4165 . . . . . 6 ({𝑥𝑥𝐴} ∩ {𝑥𝑥 ∈ On}) = (𝒫 𝐴 ∩ On)
82, 3, 73eqtr3i 2762 . . . . 5 {𝑥 ∣ (𝑥 ∈ On ∧ 𝑥𝐴)} = (𝒫 𝐴 ∩ On)
91, 8eqtri 2754 . . . 4 {𝑥 ∈ On ∣ 𝑥𝐴} = (𝒫 𝐴 ∩ On)
10 ordpwsuc 7745 . . . 4 (Ord 𝐴 → (𝒫 𝐴 ∩ On) = suc 𝐴)
119, 10eqtrid 2778 . . 3 (Ord 𝐴 → {𝑥 ∈ On ∣ 𝑥𝐴} = suc 𝐴)
1211unieqd 4869 . 2 (Ord 𝐴 {𝑥 ∈ On ∣ 𝑥𝐴} = suc 𝐴)
13 ordunisuc 7762 . 2 (Ord 𝐴 suc 𝐴 = 𝐴)
1412, 13eqtrd 2766 1 (Ord 𝐴 {𝑥 ∈ On ∣ 𝑥𝐴} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  {crab 3395  cin 3896  wss 3897  𝒫 cpw 4547   cuni 4856  Ord word 6305  Oncon0 6306  suc csuc 6308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-tr 5197  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-ord 6309  df-on 6310  df-suc 6312
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator