MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orduniss2 Structured version   Visualization version   GIF version

Theorem orduniss2 7680
Description: The union of the ordinal subsets of an ordinal number is that number. (Contributed by NM, 30-Jan-2005.)
Assertion
Ref Expression
orduniss2 (Ord 𝐴 {𝑥 ∈ On ∣ 𝑥𝐴} = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem orduniss2
StepHypRef Expression
1 df-rab 3073 . . . . 5 {𝑥 ∈ On ∣ 𝑥𝐴} = {𝑥 ∣ (𝑥 ∈ On ∧ 𝑥𝐴)}
2 incom 4135 . . . . . 6 ({𝑥𝑥 ∈ On} ∩ {𝑥𝑥𝐴}) = ({𝑥𝑥𝐴} ∩ {𝑥𝑥 ∈ On})
3 inab 4233 . . . . . 6 ({𝑥𝑥 ∈ On} ∩ {𝑥𝑥𝐴}) = {𝑥 ∣ (𝑥 ∈ On ∧ 𝑥𝐴)}
4 df-pw 4535 . . . . . . . 8 𝒫 𝐴 = {𝑥𝑥𝐴}
54eqcomi 2747 . . . . . . 7 {𝑥𝑥𝐴} = 𝒫 𝐴
6 abid2 2882 . . . . . . 7 {𝑥𝑥 ∈ On} = On
75, 6ineq12i 4144 . . . . . 6 ({𝑥𝑥𝐴} ∩ {𝑥𝑥 ∈ On}) = (𝒫 𝐴 ∩ On)
82, 3, 73eqtr3i 2774 . . . . 5 {𝑥 ∣ (𝑥 ∈ On ∧ 𝑥𝐴)} = (𝒫 𝐴 ∩ On)
91, 8eqtri 2766 . . . 4 {𝑥 ∈ On ∣ 𝑥𝐴} = (𝒫 𝐴 ∩ On)
10 ordpwsuc 7662 . . . 4 (Ord 𝐴 → (𝒫 𝐴 ∩ On) = suc 𝐴)
119, 10eqtrid 2790 . . 3 (Ord 𝐴 → {𝑥 ∈ On ∣ 𝑥𝐴} = suc 𝐴)
1211unieqd 4853 . 2 (Ord 𝐴 {𝑥 ∈ On ∣ 𝑥𝐴} = suc 𝐴)
13 ordunisuc 7679 . 2 (Ord 𝐴 suc 𝐴 = 𝐴)
1412, 13eqtrd 2778 1 (Ord 𝐴 {𝑥 ∈ On ∣ 𝑥𝐴} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {cab 2715  {crab 3068  cin 3886  wss 3887  𝒫 cpw 4533   cuni 4839  Ord word 6265  Oncon0 6266  suc csuc 6268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270  df-suc 6272
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator