| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orduniss2 | Structured version Visualization version GIF version | ||
| Description: The union of the ordinal subsets of an ordinal number is that number. (Contributed by NM, 30-Jan-2005.) |
| Ref | Expression |
|---|---|
| orduniss2 | ⊢ (Ord 𝐴 → ∪ {𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3396 | . . . . 5 ⊢ {𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴} = {𝑥 ∣ (𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴)} | |
| 2 | incom 4156 | . . . . . 6 ⊢ ({𝑥 ∣ 𝑥 ∈ On} ∩ {𝑥 ∣ 𝑥 ⊆ 𝐴}) = ({𝑥 ∣ 𝑥 ⊆ 𝐴} ∩ {𝑥 ∣ 𝑥 ∈ On}) | |
| 3 | inab 4256 | . . . . . 6 ⊢ ({𝑥 ∣ 𝑥 ∈ On} ∩ {𝑥 ∣ 𝑥 ⊆ 𝐴}) = {𝑥 ∣ (𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴)} | |
| 4 | df-pw 4549 | . . . . . . . 8 ⊢ 𝒫 𝐴 = {𝑥 ∣ 𝑥 ⊆ 𝐴} | |
| 5 | 4 | eqcomi 2740 | . . . . . . 7 ⊢ {𝑥 ∣ 𝑥 ⊆ 𝐴} = 𝒫 𝐴 |
| 6 | abid2 2868 | . . . . . . 7 ⊢ {𝑥 ∣ 𝑥 ∈ On} = On | |
| 7 | 5, 6 | ineq12i 4165 | . . . . . 6 ⊢ ({𝑥 ∣ 𝑥 ⊆ 𝐴} ∩ {𝑥 ∣ 𝑥 ∈ On}) = (𝒫 𝐴 ∩ On) |
| 8 | 2, 3, 7 | 3eqtr3i 2762 | . . . . 5 ⊢ {𝑥 ∣ (𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴)} = (𝒫 𝐴 ∩ On) |
| 9 | 1, 8 | eqtri 2754 | . . . 4 ⊢ {𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴} = (𝒫 𝐴 ∩ On) |
| 10 | ordpwsuc 7745 | . . . 4 ⊢ (Ord 𝐴 → (𝒫 𝐴 ∩ On) = suc 𝐴) | |
| 11 | 9, 10 | eqtrid 2778 | . . 3 ⊢ (Ord 𝐴 → {𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴} = suc 𝐴) |
| 12 | 11 | unieqd 4869 | . 2 ⊢ (Ord 𝐴 → ∪ {𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴} = ∪ suc 𝐴) |
| 13 | ordunisuc 7762 | . 2 ⊢ (Ord 𝐴 → ∪ suc 𝐴 = 𝐴) | |
| 14 | 12, 13 | eqtrd 2766 | 1 ⊢ (Ord 𝐴 → ∪ {𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴} = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 {crab 3395 ∩ cin 3896 ⊆ wss 3897 𝒫 cpw 4547 ∪ cuni 4856 Ord word 6305 Oncon0 6306 suc csuc 6308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 df-on 6310 df-suc 6312 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |