![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashpw | Structured version Visualization version GIF version |
Description: The size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by Paul Chapman, 30-Nov-2012.) (Proof shortened by Mario Carneiro, 5-Aug-2014.) |
Ref | Expression |
---|---|
hashpw | ⊢ (𝐴 ∈ Fin → (♯‘𝒫 𝐴) = (2↑(♯‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4611 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
2 | 1 | fveq2d 6888 | . . 3 ⊢ (𝑥 = 𝐴 → (♯‘𝒫 𝑥) = (♯‘𝒫 𝐴)) |
3 | fveq2 6884 | . . . 4 ⊢ (𝑥 = 𝐴 → (♯‘𝑥) = (♯‘𝐴)) | |
4 | 3 | oveq2d 7420 | . . 3 ⊢ (𝑥 = 𝐴 → (2↑(♯‘𝑥)) = (2↑(♯‘𝐴))) |
5 | 2, 4 | eqeq12d 2742 | . 2 ⊢ (𝑥 = 𝐴 → ((♯‘𝒫 𝑥) = (2↑(♯‘𝑥)) ↔ (♯‘𝒫 𝐴) = (2↑(♯‘𝐴)))) |
6 | vex 3472 | . . . . 5 ⊢ 𝑥 ∈ V | |
7 | 6 | pw2en 9078 | . . . 4 ⊢ 𝒫 𝑥 ≈ (2o ↑m 𝑥) |
8 | pwfi 9177 | . . . . . 6 ⊢ (𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin) | |
9 | 8 | biimpi 215 | . . . . 5 ⊢ (𝑥 ∈ Fin → 𝒫 𝑥 ∈ Fin) |
10 | df2o2 8473 | . . . . . . 7 ⊢ 2o = {∅, {∅}} | |
11 | prfi 9321 | . . . . . . 7 ⊢ {∅, {∅}} ∈ Fin | |
12 | 10, 11 | eqeltri 2823 | . . . . . 6 ⊢ 2o ∈ Fin |
13 | mapfi 9347 | . . . . . 6 ⊢ ((2o ∈ Fin ∧ 𝑥 ∈ Fin) → (2o ↑m 𝑥) ∈ Fin) | |
14 | 12, 13 | mpan 687 | . . . . 5 ⊢ (𝑥 ∈ Fin → (2o ↑m 𝑥) ∈ Fin) |
15 | hashen 14310 | . . . . 5 ⊢ ((𝒫 𝑥 ∈ Fin ∧ (2o ↑m 𝑥) ∈ Fin) → ((♯‘𝒫 𝑥) = (♯‘(2o ↑m 𝑥)) ↔ 𝒫 𝑥 ≈ (2o ↑m 𝑥))) | |
16 | 9, 14, 15 | syl2anc 583 | . . . 4 ⊢ (𝑥 ∈ Fin → ((♯‘𝒫 𝑥) = (♯‘(2o ↑m 𝑥)) ↔ 𝒫 𝑥 ≈ (2o ↑m 𝑥))) |
17 | 7, 16 | mpbiri 258 | . . 3 ⊢ (𝑥 ∈ Fin → (♯‘𝒫 𝑥) = (♯‘(2o ↑m 𝑥))) |
18 | hashmap 14398 | . . . . 5 ⊢ ((2o ∈ Fin ∧ 𝑥 ∈ Fin) → (♯‘(2o ↑m 𝑥)) = ((♯‘2o)↑(♯‘𝑥))) | |
19 | 12, 18 | mpan 687 | . . . 4 ⊢ (𝑥 ∈ Fin → (♯‘(2o ↑m 𝑥)) = ((♯‘2o)↑(♯‘𝑥))) |
20 | hash2 14368 | . . . . 5 ⊢ (♯‘2o) = 2 | |
21 | 20 | oveq1i 7414 | . . . 4 ⊢ ((♯‘2o)↑(♯‘𝑥)) = (2↑(♯‘𝑥)) |
22 | 19, 21 | eqtrdi 2782 | . . 3 ⊢ (𝑥 ∈ Fin → (♯‘(2o ↑m 𝑥)) = (2↑(♯‘𝑥))) |
23 | 17, 22 | eqtrd 2766 | . 2 ⊢ (𝑥 ∈ Fin → (♯‘𝒫 𝑥) = (2↑(♯‘𝑥))) |
24 | 5, 23 | vtoclga 3560 | 1 ⊢ (𝐴 ∈ Fin → (♯‘𝒫 𝐴) = (2↑(♯‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ∅c0 4317 𝒫 cpw 4597 {csn 4623 {cpr 4625 class class class wbr 5141 ‘cfv 6536 (class class class)co 7404 2oc2o 8458 ↑m cmap 8819 ≈ cen 8935 Fincfn 8938 2c2 12268 ↑cexp 14030 ♯chash 14293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-2o 8465 df-oadd 8468 df-er 8702 df-map 8821 df-pm 8822 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-dju 9895 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-n0 12474 df-z 12560 df-uz 12824 df-fz 13488 df-seq 13970 df-exp 14031 df-hash 14294 |
This theorem is referenced by: ackbijnn 15778 |
Copyright terms: Public domain | W3C validator |