Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hashpw | Structured version Visualization version GIF version |
Description: The size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by Paul Chapman, 30-Nov-2012.) (Proof shortened by Mario Carneiro, 5-Aug-2014.) |
Ref | Expression |
---|---|
hashpw | ⊢ (𝐴 ∈ Fin → (♯‘𝒫 𝐴) = (2↑(♯‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4510 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
2 | 1 | fveq2d 6662 | . . 3 ⊢ (𝑥 = 𝐴 → (♯‘𝒫 𝑥) = (♯‘𝒫 𝐴)) |
3 | fveq2 6658 | . . . 4 ⊢ (𝑥 = 𝐴 → (♯‘𝑥) = (♯‘𝐴)) | |
4 | 3 | oveq2d 7166 | . . 3 ⊢ (𝑥 = 𝐴 → (2↑(♯‘𝑥)) = (2↑(♯‘𝐴))) |
5 | 2, 4 | eqeq12d 2774 | . 2 ⊢ (𝑥 = 𝐴 → ((♯‘𝒫 𝑥) = (2↑(♯‘𝑥)) ↔ (♯‘𝒫 𝐴) = (2↑(♯‘𝐴)))) |
6 | vex 3413 | . . . . 5 ⊢ 𝑥 ∈ V | |
7 | 6 | pw2en 8645 | . . . 4 ⊢ 𝒫 𝑥 ≈ (2o ↑m 𝑥) |
8 | pwfi 8746 | . . . . . 6 ⊢ (𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin) | |
9 | 8 | biimpi 219 | . . . . 5 ⊢ (𝑥 ∈ Fin → 𝒫 𝑥 ∈ Fin) |
10 | df2o2 8128 | . . . . . . 7 ⊢ 2o = {∅, {∅}} | |
11 | prfi 8826 | . . . . . . 7 ⊢ {∅, {∅}} ∈ Fin | |
12 | 10, 11 | eqeltri 2848 | . . . . . 6 ⊢ 2o ∈ Fin |
13 | mapfi 8853 | . . . . . 6 ⊢ ((2o ∈ Fin ∧ 𝑥 ∈ Fin) → (2o ↑m 𝑥) ∈ Fin) | |
14 | 12, 13 | mpan 689 | . . . . 5 ⊢ (𝑥 ∈ Fin → (2o ↑m 𝑥) ∈ Fin) |
15 | hashen 13757 | . . . . 5 ⊢ ((𝒫 𝑥 ∈ Fin ∧ (2o ↑m 𝑥) ∈ Fin) → ((♯‘𝒫 𝑥) = (♯‘(2o ↑m 𝑥)) ↔ 𝒫 𝑥 ≈ (2o ↑m 𝑥))) | |
16 | 9, 14, 15 | syl2anc 587 | . . . 4 ⊢ (𝑥 ∈ Fin → ((♯‘𝒫 𝑥) = (♯‘(2o ↑m 𝑥)) ↔ 𝒫 𝑥 ≈ (2o ↑m 𝑥))) |
17 | 7, 16 | mpbiri 261 | . . 3 ⊢ (𝑥 ∈ Fin → (♯‘𝒫 𝑥) = (♯‘(2o ↑m 𝑥))) |
18 | hashmap 13846 | . . . . 5 ⊢ ((2o ∈ Fin ∧ 𝑥 ∈ Fin) → (♯‘(2o ↑m 𝑥)) = ((♯‘2o)↑(♯‘𝑥))) | |
19 | 12, 18 | mpan 689 | . . . 4 ⊢ (𝑥 ∈ Fin → (♯‘(2o ↑m 𝑥)) = ((♯‘2o)↑(♯‘𝑥))) |
20 | hash2 13816 | . . . . 5 ⊢ (♯‘2o) = 2 | |
21 | 20 | oveq1i 7160 | . . . 4 ⊢ ((♯‘2o)↑(♯‘𝑥)) = (2↑(♯‘𝑥)) |
22 | 19, 21 | eqtrdi 2809 | . . 3 ⊢ (𝑥 ∈ Fin → (♯‘(2o ↑m 𝑥)) = (2↑(♯‘𝑥))) |
23 | 17, 22 | eqtrd 2793 | . 2 ⊢ (𝑥 ∈ Fin → (♯‘𝒫 𝑥) = (2↑(♯‘𝑥))) |
24 | 5, 23 | vtoclga 3492 | 1 ⊢ (𝐴 ∈ Fin → (♯‘𝒫 𝐴) = (2↑(♯‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1538 ∈ wcel 2111 ∅c0 4225 𝒫 cpw 4494 {csn 4522 {cpr 4524 class class class wbr 5032 ‘cfv 6335 (class class class)co 7150 2oc2o 8106 ↑m cmap 8416 ≈ cen 8524 Fincfn 8527 2c2 11729 ↑cexp 13479 ♯chash 13740 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-2o 8113 df-oadd 8116 df-er 8299 df-map 8418 df-pm 8419 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-dju 9363 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-n0 11935 df-z 12021 df-uz 12283 df-fz 12940 df-seq 13419 df-exp 13480 df-hash 13741 |
This theorem is referenced by: ackbijnn 15231 |
Copyright terms: Public domain | W3C validator |