MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashpw Structured version   Visualization version   GIF version

Theorem hashpw 14408
Description: The size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by Paul Chapman, 30-Nov-2012.) (Proof shortened by Mario Carneiro, 5-Aug-2014.)
Assertion
Ref Expression
hashpw (𝐴 ∈ Fin → (♯‘𝒫 𝐴) = (2↑(♯‘𝐴)))

Proof of Theorem hashpw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pweq 4580 . . . 4 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
21fveq2d 6865 . . 3 (𝑥 = 𝐴 → (♯‘𝒫 𝑥) = (♯‘𝒫 𝐴))
3 fveq2 6861 . . . 4 (𝑥 = 𝐴 → (♯‘𝑥) = (♯‘𝐴))
43oveq2d 7406 . . 3 (𝑥 = 𝐴 → (2↑(♯‘𝑥)) = (2↑(♯‘𝐴)))
52, 4eqeq12d 2746 . 2 (𝑥 = 𝐴 → ((♯‘𝒫 𝑥) = (2↑(♯‘𝑥)) ↔ (♯‘𝒫 𝐴) = (2↑(♯‘𝐴))))
6 vex 3454 . . . . 5 𝑥 ∈ V
76pw2en 9053 . . . 4 𝒫 𝑥 ≈ (2om 𝑥)
8 pwfi 9275 . . . . . 6 (𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin)
98biimpi 216 . . . . 5 (𝑥 ∈ Fin → 𝒫 𝑥 ∈ Fin)
10 df2o2 8446 . . . . . . 7 2o = {∅, {∅}}
11 prfi 9281 . . . . . . 7 {∅, {∅}} ∈ Fin
1210, 11eqeltri 2825 . . . . . 6 2o ∈ Fin
13 mapfi 9306 . . . . . 6 ((2o ∈ Fin ∧ 𝑥 ∈ Fin) → (2om 𝑥) ∈ Fin)
1412, 13mpan 690 . . . . 5 (𝑥 ∈ Fin → (2om 𝑥) ∈ Fin)
15 hashen 14319 . . . . 5 ((𝒫 𝑥 ∈ Fin ∧ (2om 𝑥) ∈ Fin) → ((♯‘𝒫 𝑥) = (♯‘(2om 𝑥)) ↔ 𝒫 𝑥 ≈ (2om 𝑥)))
169, 14, 15syl2anc 584 . . . 4 (𝑥 ∈ Fin → ((♯‘𝒫 𝑥) = (♯‘(2om 𝑥)) ↔ 𝒫 𝑥 ≈ (2om 𝑥)))
177, 16mpbiri 258 . . 3 (𝑥 ∈ Fin → (♯‘𝒫 𝑥) = (♯‘(2om 𝑥)))
18 hashmap 14407 . . . . 5 ((2o ∈ Fin ∧ 𝑥 ∈ Fin) → (♯‘(2om 𝑥)) = ((♯‘2o)↑(♯‘𝑥)))
1912, 18mpan 690 . . . 4 (𝑥 ∈ Fin → (♯‘(2om 𝑥)) = ((♯‘2o)↑(♯‘𝑥)))
20 hash2 14377 . . . . 5 (♯‘2o) = 2
2120oveq1i 7400 . . . 4 ((♯‘2o)↑(♯‘𝑥)) = (2↑(♯‘𝑥))
2219, 21eqtrdi 2781 . . 3 (𝑥 ∈ Fin → (♯‘(2om 𝑥)) = (2↑(♯‘𝑥)))
2317, 22eqtrd 2765 . 2 (𝑥 ∈ Fin → (♯‘𝒫 𝑥) = (2↑(♯‘𝑥)))
245, 23vtoclga 3546 1 (𝐴 ∈ Fin → (♯‘𝒫 𝐴) = (2↑(♯‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  c0 4299  𝒫 cpw 4566  {csn 4592  {cpr 4594   class class class wbr 5110  cfv 6514  (class class class)co 7390  2oc2o 8431  m cmap 8802  cen 8918  Fincfn 8921  2c2 12248  cexp 14033  chash 14302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-seq 13974  df-exp 14034  df-hash 14303
This theorem is referenced by:  ackbijnn  15801
  Copyright terms: Public domain W3C validator