| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashpw | Structured version Visualization version GIF version | ||
| Description: The size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by Paul Chapman, 30-Nov-2012.) (Proof shortened by Mario Carneiro, 5-Aug-2014.) |
| Ref | Expression |
|---|---|
| hashpw | ⊢ (𝐴 ∈ Fin → (♯‘𝒫 𝐴) = (2↑(♯‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq 4594 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 2 | 1 | fveq2d 6885 | . . 3 ⊢ (𝑥 = 𝐴 → (♯‘𝒫 𝑥) = (♯‘𝒫 𝐴)) |
| 3 | fveq2 6881 | . . . 4 ⊢ (𝑥 = 𝐴 → (♯‘𝑥) = (♯‘𝐴)) | |
| 4 | 3 | oveq2d 7426 | . . 3 ⊢ (𝑥 = 𝐴 → (2↑(♯‘𝑥)) = (2↑(♯‘𝐴))) |
| 5 | 2, 4 | eqeq12d 2752 | . 2 ⊢ (𝑥 = 𝐴 → ((♯‘𝒫 𝑥) = (2↑(♯‘𝑥)) ↔ (♯‘𝒫 𝐴) = (2↑(♯‘𝐴)))) |
| 6 | vex 3468 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 7 | 6 | pw2en 9098 | . . . 4 ⊢ 𝒫 𝑥 ≈ (2o ↑m 𝑥) |
| 8 | pwfi 9334 | . . . . . 6 ⊢ (𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin) | |
| 9 | 8 | biimpi 216 | . . . . 5 ⊢ (𝑥 ∈ Fin → 𝒫 𝑥 ∈ Fin) |
| 10 | df2o2 8494 | . . . . . . 7 ⊢ 2o = {∅, {∅}} | |
| 11 | prfi 9340 | . . . . . . 7 ⊢ {∅, {∅}} ∈ Fin | |
| 12 | 10, 11 | eqeltri 2831 | . . . . . 6 ⊢ 2o ∈ Fin |
| 13 | mapfi 9365 | . . . . . 6 ⊢ ((2o ∈ Fin ∧ 𝑥 ∈ Fin) → (2o ↑m 𝑥) ∈ Fin) | |
| 14 | 12, 13 | mpan 690 | . . . . 5 ⊢ (𝑥 ∈ Fin → (2o ↑m 𝑥) ∈ Fin) |
| 15 | hashen 14370 | . . . . 5 ⊢ ((𝒫 𝑥 ∈ Fin ∧ (2o ↑m 𝑥) ∈ Fin) → ((♯‘𝒫 𝑥) = (♯‘(2o ↑m 𝑥)) ↔ 𝒫 𝑥 ≈ (2o ↑m 𝑥))) | |
| 16 | 9, 14, 15 | syl2anc 584 | . . . 4 ⊢ (𝑥 ∈ Fin → ((♯‘𝒫 𝑥) = (♯‘(2o ↑m 𝑥)) ↔ 𝒫 𝑥 ≈ (2o ↑m 𝑥))) |
| 17 | 7, 16 | mpbiri 258 | . . 3 ⊢ (𝑥 ∈ Fin → (♯‘𝒫 𝑥) = (♯‘(2o ↑m 𝑥))) |
| 18 | hashmap 14458 | . . . . 5 ⊢ ((2o ∈ Fin ∧ 𝑥 ∈ Fin) → (♯‘(2o ↑m 𝑥)) = ((♯‘2o)↑(♯‘𝑥))) | |
| 19 | 12, 18 | mpan 690 | . . . 4 ⊢ (𝑥 ∈ Fin → (♯‘(2o ↑m 𝑥)) = ((♯‘2o)↑(♯‘𝑥))) |
| 20 | hash2 14428 | . . . . 5 ⊢ (♯‘2o) = 2 | |
| 21 | 20 | oveq1i 7420 | . . . 4 ⊢ ((♯‘2o)↑(♯‘𝑥)) = (2↑(♯‘𝑥)) |
| 22 | 19, 21 | eqtrdi 2787 | . . 3 ⊢ (𝑥 ∈ Fin → (♯‘(2o ↑m 𝑥)) = (2↑(♯‘𝑥))) |
| 23 | 17, 22 | eqtrd 2771 | . 2 ⊢ (𝑥 ∈ Fin → (♯‘𝒫 𝑥) = (2↑(♯‘𝑥))) |
| 24 | 5, 23 | vtoclga 3561 | 1 ⊢ (𝐴 ∈ Fin → (♯‘𝒫 𝐴) = (2↑(♯‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∅c0 4313 𝒫 cpw 4580 {csn 4606 {cpr 4608 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 2oc2o 8479 ↑m cmap 8845 ≈ cen 8961 Fincfn 8964 2c2 12300 ↑cexp 14084 ♯chash 14353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-er 8724 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9920 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-seq 14025 df-exp 14085 df-hash 14354 |
| This theorem is referenced by: ackbijnn 15849 |
| Copyright terms: Public domain | W3C validator |