MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashpw Structured version   Visualization version   GIF version

Theorem hashpw 14401
Description: The size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by Paul Chapman, 30-Nov-2012.) (Proof shortened by Mario Carneiro, 5-Aug-2014.)
Assertion
Ref Expression
hashpw (𝐴 ∈ Fin → (♯‘𝒫 𝐴) = (2↑(♯‘𝐴)))

Proof of Theorem hashpw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pweq 4577 . . . 4 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
21fveq2d 6862 . . 3 (𝑥 = 𝐴 → (♯‘𝒫 𝑥) = (♯‘𝒫 𝐴))
3 fveq2 6858 . . . 4 (𝑥 = 𝐴 → (♯‘𝑥) = (♯‘𝐴))
43oveq2d 7403 . . 3 (𝑥 = 𝐴 → (2↑(♯‘𝑥)) = (2↑(♯‘𝐴)))
52, 4eqeq12d 2745 . 2 (𝑥 = 𝐴 → ((♯‘𝒫 𝑥) = (2↑(♯‘𝑥)) ↔ (♯‘𝒫 𝐴) = (2↑(♯‘𝐴))))
6 vex 3451 . . . . 5 𝑥 ∈ V
76pw2en 9048 . . . 4 𝒫 𝑥 ≈ (2om 𝑥)
8 pwfi 9268 . . . . . 6 (𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin)
98biimpi 216 . . . . 5 (𝑥 ∈ Fin → 𝒫 𝑥 ∈ Fin)
10 df2o2 8443 . . . . . . 7 2o = {∅, {∅}}
11 prfi 9274 . . . . . . 7 {∅, {∅}} ∈ Fin
1210, 11eqeltri 2824 . . . . . 6 2o ∈ Fin
13 mapfi 9299 . . . . . 6 ((2o ∈ Fin ∧ 𝑥 ∈ Fin) → (2om 𝑥) ∈ Fin)
1412, 13mpan 690 . . . . 5 (𝑥 ∈ Fin → (2om 𝑥) ∈ Fin)
15 hashen 14312 . . . . 5 ((𝒫 𝑥 ∈ Fin ∧ (2om 𝑥) ∈ Fin) → ((♯‘𝒫 𝑥) = (♯‘(2om 𝑥)) ↔ 𝒫 𝑥 ≈ (2om 𝑥)))
169, 14, 15syl2anc 584 . . . 4 (𝑥 ∈ Fin → ((♯‘𝒫 𝑥) = (♯‘(2om 𝑥)) ↔ 𝒫 𝑥 ≈ (2om 𝑥)))
177, 16mpbiri 258 . . 3 (𝑥 ∈ Fin → (♯‘𝒫 𝑥) = (♯‘(2om 𝑥)))
18 hashmap 14400 . . . . 5 ((2o ∈ Fin ∧ 𝑥 ∈ Fin) → (♯‘(2om 𝑥)) = ((♯‘2o)↑(♯‘𝑥)))
1912, 18mpan 690 . . . 4 (𝑥 ∈ Fin → (♯‘(2om 𝑥)) = ((♯‘2o)↑(♯‘𝑥)))
20 hash2 14370 . . . . 5 (♯‘2o) = 2
2120oveq1i 7397 . . . 4 ((♯‘2o)↑(♯‘𝑥)) = (2↑(♯‘𝑥))
2219, 21eqtrdi 2780 . . 3 (𝑥 ∈ Fin → (♯‘(2om 𝑥)) = (2↑(♯‘𝑥)))
2317, 22eqtrd 2764 . 2 (𝑥 ∈ Fin → (♯‘𝒫 𝑥) = (2↑(♯‘𝑥)))
245, 23vtoclga 3543 1 (𝐴 ∈ Fin → (♯‘𝒫 𝐴) = (2↑(♯‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  c0 4296  𝒫 cpw 4563  {csn 4589  {cpr 4591   class class class wbr 5107  cfv 6511  (class class class)co 7387  2oc2o 8428  m cmap 8799  cen 8915  Fincfn 8918  2c2 12241  cexp 14026  chash 14295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-seq 13967  df-exp 14027  df-hash 14296
This theorem is referenced by:  ackbijnn  15794
  Copyright terms: Public domain W3C validator