Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashpw Structured version   Visualization version   GIF version

Theorem hashpw 13847
 Description: The size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by Paul Chapman, 30-Nov-2012.) (Proof shortened by Mario Carneiro, 5-Aug-2014.)
Assertion
Ref Expression
hashpw (𝐴 ∈ Fin → (♯‘𝒫 𝐴) = (2↑(♯‘𝐴)))

Proof of Theorem hashpw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pweq 4510 . . . 4 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
21fveq2d 6662 . . 3 (𝑥 = 𝐴 → (♯‘𝒫 𝑥) = (♯‘𝒫 𝐴))
3 fveq2 6658 . . . 4 (𝑥 = 𝐴 → (♯‘𝑥) = (♯‘𝐴))
43oveq2d 7166 . . 3 (𝑥 = 𝐴 → (2↑(♯‘𝑥)) = (2↑(♯‘𝐴)))
52, 4eqeq12d 2774 . 2 (𝑥 = 𝐴 → ((♯‘𝒫 𝑥) = (2↑(♯‘𝑥)) ↔ (♯‘𝒫 𝐴) = (2↑(♯‘𝐴))))
6 vex 3413 . . . . 5 𝑥 ∈ V
76pw2en 8645 . . . 4 𝒫 𝑥 ≈ (2om 𝑥)
8 pwfi 8746 . . . . . 6 (𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin)
98biimpi 219 . . . . 5 (𝑥 ∈ Fin → 𝒫 𝑥 ∈ Fin)
10 df2o2 8128 . . . . . . 7 2o = {∅, {∅}}
11 prfi 8826 . . . . . . 7 {∅, {∅}} ∈ Fin
1210, 11eqeltri 2848 . . . . . 6 2o ∈ Fin
13 mapfi 8853 . . . . . 6 ((2o ∈ Fin ∧ 𝑥 ∈ Fin) → (2om 𝑥) ∈ Fin)
1412, 13mpan 689 . . . . 5 (𝑥 ∈ Fin → (2om 𝑥) ∈ Fin)
15 hashen 13757 . . . . 5 ((𝒫 𝑥 ∈ Fin ∧ (2om 𝑥) ∈ Fin) → ((♯‘𝒫 𝑥) = (♯‘(2om 𝑥)) ↔ 𝒫 𝑥 ≈ (2om 𝑥)))
169, 14, 15syl2anc 587 . . . 4 (𝑥 ∈ Fin → ((♯‘𝒫 𝑥) = (♯‘(2om 𝑥)) ↔ 𝒫 𝑥 ≈ (2om 𝑥)))
177, 16mpbiri 261 . . 3 (𝑥 ∈ Fin → (♯‘𝒫 𝑥) = (♯‘(2om 𝑥)))
18 hashmap 13846 . . . . 5 ((2o ∈ Fin ∧ 𝑥 ∈ Fin) → (♯‘(2om 𝑥)) = ((♯‘2o)↑(♯‘𝑥)))
1912, 18mpan 689 . . . 4 (𝑥 ∈ Fin → (♯‘(2om 𝑥)) = ((♯‘2o)↑(♯‘𝑥)))
20 hash2 13816 . . . . 5 (♯‘2o) = 2
2120oveq1i 7160 . . . 4 ((♯‘2o)↑(♯‘𝑥)) = (2↑(♯‘𝑥))
2219, 21eqtrdi 2809 . . 3 (𝑥 ∈ Fin → (♯‘(2om 𝑥)) = (2↑(♯‘𝑥)))
2317, 22eqtrd 2793 . 2 (𝑥 ∈ Fin → (♯‘𝒫 𝑥) = (2↑(♯‘𝑥)))
245, 23vtoclga 3492 1 (𝐴 ∈ Fin → (♯‘𝒫 𝐴) = (2↑(♯‘𝐴)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   = wceq 1538   ∈ wcel 2111  ∅c0 4225  𝒫 cpw 4494  {csn 4522  {cpr 4524   class class class wbr 5032  ‘cfv 6335  (class class class)co 7150  2oc2o 8106   ↑m cmap 8416   ≈ cen 8524  Fincfn 8527  2c2 11729  ↑cexp 13479  ♯chash 13740 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-oadd 8116  df-er 8299  df-map 8418  df-pm 8419  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-dju 9363  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-n0 11935  df-z 12021  df-uz 12283  df-fz 12940  df-seq 13419  df-exp 13480  df-hash 13741 This theorem is referenced by:  ackbijnn  15231
 Copyright terms: Public domain W3C validator