MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashpw Structured version   Visualization version   GIF version

Theorem hashpw 14485
Description: The size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by Paul Chapman, 30-Nov-2012.) (Proof shortened by Mario Carneiro, 5-Aug-2014.)
Assertion
Ref Expression
hashpw (𝐴 ∈ Fin → (♯‘𝒫 𝐴) = (2↑(♯‘𝐴)))

Proof of Theorem hashpw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pweq 4636 . . . 4 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
21fveq2d 6924 . . 3 (𝑥 = 𝐴 → (♯‘𝒫 𝑥) = (♯‘𝒫 𝐴))
3 fveq2 6920 . . . 4 (𝑥 = 𝐴 → (♯‘𝑥) = (♯‘𝐴))
43oveq2d 7464 . . 3 (𝑥 = 𝐴 → (2↑(♯‘𝑥)) = (2↑(♯‘𝐴)))
52, 4eqeq12d 2756 . 2 (𝑥 = 𝐴 → ((♯‘𝒫 𝑥) = (2↑(♯‘𝑥)) ↔ (♯‘𝒫 𝐴) = (2↑(♯‘𝐴))))
6 vex 3492 . . . . 5 𝑥 ∈ V
76pw2en 9145 . . . 4 𝒫 𝑥 ≈ (2om 𝑥)
8 pwfi 9385 . . . . . 6 (𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin)
98biimpi 216 . . . . 5 (𝑥 ∈ Fin → 𝒫 𝑥 ∈ Fin)
10 df2o2 8531 . . . . . . 7 2o = {∅, {∅}}
11 prfi 9391 . . . . . . 7 {∅, {∅}} ∈ Fin
1210, 11eqeltri 2840 . . . . . 6 2o ∈ Fin
13 mapfi 9418 . . . . . 6 ((2o ∈ Fin ∧ 𝑥 ∈ Fin) → (2om 𝑥) ∈ Fin)
1412, 13mpan 689 . . . . 5 (𝑥 ∈ Fin → (2om 𝑥) ∈ Fin)
15 hashen 14396 . . . . 5 ((𝒫 𝑥 ∈ Fin ∧ (2om 𝑥) ∈ Fin) → ((♯‘𝒫 𝑥) = (♯‘(2om 𝑥)) ↔ 𝒫 𝑥 ≈ (2om 𝑥)))
169, 14, 15syl2anc 583 . . . 4 (𝑥 ∈ Fin → ((♯‘𝒫 𝑥) = (♯‘(2om 𝑥)) ↔ 𝒫 𝑥 ≈ (2om 𝑥)))
177, 16mpbiri 258 . . 3 (𝑥 ∈ Fin → (♯‘𝒫 𝑥) = (♯‘(2om 𝑥)))
18 hashmap 14484 . . . . 5 ((2o ∈ Fin ∧ 𝑥 ∈ Fin) → (♯‘(2om 𝑥)) = ((♯‘2o)↑(♯‘𝑥)))
1912, 18mpan 689 . . . 4 (𝑥 ∈ Fin → (♯‘(2om 𝑥)) = ((♯‘2o)↑(♯‘𝑥)))
20 hash2 14454 . . . . 5 (♯‘2o) = 2
2120oveq1i 7458 . . . 4 ((♯‘2o)↑(♯‘𝑥)) = (2↑(♯‘𝑥))
2219, 21eqtrdi 2796 . . 3 (𝑥 ∈ Fin → (♯‘(2om 𝑥)) = (2↑(♯‘𝑥)))
2317, 22eqtrd 2780 . 2 (𝑥 ∈ Fin → (♯‘𝒫 𝑥) = (2↑(♯‘𝑥)))
245, 23vtoclga 3589 1 (𝐴 ∈ Fin → (♯‘𝒫 𝐴) = (2↑(♯‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  c0 4352  𝒫 cpw 4622  {csn 4648  {cpr 4650   class class class wbr 5166  cfv 6573  (class class class)co 7448  2oc2o 8516  m cmap 8884  cen 9000  Fincfn 9003  2c2 12348  cexp 14112  chash 14379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-seq 14053  df-exp 14113  df-hash 14380
This theorem is referenced by:  ackbijnn  15876
  Copyright terms: Public domain W3C validator