|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > hashpw | Structured version Visualization version GIF version | ||
| Description: The size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by Paul Chapman, 30-Nov-2012.) (Proof shortened by Mario Carneiro, 5-Aug-2014.) | 
| Ref | Expression | 
|---|---|
| hashpw | ⊢ (𝐴 ∈ Fin → (♯‘𝒫 𝐴) = (2↑(♯‘𝐴))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pweq 4613 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 2 | 1 | fveq2d 6909 | . . 3 ⊢ (𝑥 = 𝐴 → (♯‘𝒫 𝑥) = (♯‘𝒫 𝐴)) | 
| 3 | fveq2 6905 | . . . 4 ⊢ (𝑥 = 𝐴 → (♯‘𝑥) = (♯‘𝐴)) | |
| 4 | 3 | oveq2d 7448 | . . 3 ⊢ (𝑥 = 𝐴 → (2↑(♯‘𝑥)) = (2↑(♯‘𝐴))) | 
| 5 | 2, 4 | eqeq12d 2752 | . 2 ⊢ (𝑥 = 𝐴 → ((♯‘𝒫 𝑥) = (2↑(♯‘𝑥)) ↔ (♯‘𝒫 𝐴) = (2↑(♯‘𝐴)))) | 
| 6 | vex 3483 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 7 | 6 | pw2en 9120 | . . . 4 ⊢ 𝒫 𝑥 ≈ (2o ↑m 𝑥) | 
| 8 | pwfi 9358 | . . . . . 6 ⊢ (𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin) | |
| 9 | 8 | biimpi 216 | . . . . 5 ⊢ (𝑥 ∈ Fin → 𝒫 𝑥 ∈ Fin) | 
| 10 | df2o2 8516 | . . . . . . 7 ⊢ 2o = {∅, {∅}} | |
| 11 | prfi 9364 | . . . . . . 7 ⊢ {∅, {∅}} ∈ Fin | |
| 12 | 10, 11 | eqeltri 2836 | . . . . . 6 ⊢ 2o ∈ Fin | 
| 13 | mapfi 9389 | . . . . . 6 ⊢ ((2o ∈ Fin ∧ 𝑥 ∈ Fin) → (2o ↑m 𝑥) ∈ Fin) | |
| 14 | 12, 13 | mpan 690 | . . . . 5 ⊢ (𝑥 ∈ Fin → (2o ↑m 𝑥) ∈ Fin) | 
| 15 | hashen 14387 | . . . . 5 ⊢ ((𝒫 𝑥 ∈ Fin ∧ (2o ↑m 𝑥) ∈ Fin) → ((♯‘𝒫 𝑥) = (♯‘(2o ↑m 𝑥)) ↔ 𝒫 𝑥 ≈ (2o ↑m 𝑥))) | |
| 16 | 9, 14, 15 | syl2anc 584 | . . . 4 ⊢ (𝑥 ∈ Fin → ((♯‘𝒫 𝑥) = (♯‘(2o ↑m 𝑥)) ↔ 𝒫 𝑥 ≈ (2o ↑m 𝑥))) | 
| 17 | 7, 16 | mpbiri 258 | . . 3 ⊢ (𝑥 ∈ Fin → (♯‘𝒫 𝑥) = (♯‘(2o ↑m 𝑥))) | 
| 18 | hashmap 14475 | . . . . 5 ⊢ ((2o ∈ Fin ∧ 𝑥 ∈ Fin) → (♯‘(2o ↑m 𝑥)) = ((♯‘2o)↑(♯‘𝑥))) | |
| 19 | 12, 18 | mpan 690 | . . . 4 ⊢ (𝑥 ∈ Fin → (♯‘(2o ↑m 𝑥)) = ((♯‘2o)↑(♯‘𝑥))) | 
| 20 | hash2 14445 | . . . . 5 ⊢ (♯‘2o) = 2 | |
| 21 | 20 | oveq1i 7442 | . . . 4 ⊢ ((♯‘2o)↑(♯‘𝑥)) = (2↑(♯‘𝑥)) | 
| 22 | 19, 21 | eqtrdi 2792 | . . 3 ⊢ (𝑥 ∈ Fin → (♯‘(2o ↑m 𝑥)) = (2↑(♯‘𝑥))) | 
| 23 | 17, 22 | eqtrd 2776 | . 2 ⊢ (𝑥 ∈ Fin → (♯‘𝒫 𝑥) = (2↑(♯‘𝑥))) | 
| 24 | 5, 23 | vtoclga 3576 | 1 ⊢ (𝐴 ∈ Fin → (♯‘𝒫 𝐴) = (2↑(♯‘𝐴))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∅c0 4332 𝒫 cpw 4599 {csn 4625 {cpr 4627 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 2oc2o 8501 ↑m cmap 8867 ≈ cen 8983 Fincfn 8986 2c2 12322 ↑cexp 14103 ♯chash 14370 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-oadd 8511 df-er 8746 df-map 8869 df-pm 8870 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-dju 9942 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-n0 12529 df-z 12616 df-uz 12880 df-fz 13549 df-seq 14044 df-exp 14104 df-hash 14371 | 
| This theorem is referenced by: ackbijnn 15865 | 
| Copyright terms: Public domain | W3C validator |