MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssenen Structured version   Visualization version   GIF version

Theorem ssenen 9115
Description: Equinumerosity of equinumerous subsets of a set. (Contributed by NM, 30-Sep-2004.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
ssenen (𝐴𝐵 → {𝑥 ∣ (𝑥𝐴𝑥𝐶)} ≈ {𝑥 ∣ (𝑥𝐵𝑥𝐶)})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem ssenen
Dummy variables 𝑦 𝑧 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 8928 . . 3 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
2 f1odm 6804 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵 → dom 𝑓 = 𝐴)
3 vex 3451 . . . . . . . 8 𝑓 ∈ V
43dmex 7885 . . . . . . 7 dom 𝑓 ∈ V
52, 4eqeltrrdi 2837 . . . . . 6 (𝑓:𝐴1-1-onto𝐵𝐴 ∈ V)
6 pwexg 5333 . . . . . 6 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
7 inex1g 5274 . . . . . 6 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) ∈ V)
85, 6, 73syl 18 . . . . 5 (𝑓:𝐴1-1-onto𝐵 → (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) ∈ V)
9 f1ofo 6807 . . . . . . . 8 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴onto𝐵)
10 forn 6775 . . . . . . . 8 (𝑓:𝐴onto𝐵 → ran 𝑓 = 𝐵)
119, 10syl 17 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵 → ran 𝑓 = 𝐵)
123rnex 7886 . . . . . . 7 ran 𝑓 ∈ V
1311, 12eqeltrrdi 2837 . . . . . 6 (𝑓:𝐴1-1-onto𝐵𝐵 ∈ V)
14 pwexg 5333 . . . . . 6 (𝐵 ∈ V → 𝒫 𝐵 ∈ V)
15 inex1g 5274 . . . . . 6 (𝒫 𝐵 ∈ V → (𝒫 𝐵 ∩ {𝑥𝑥𝐶}) ∈ V)
1613, 14, 153syl 18 . . . . 5 (𝑓:𝐴1-1-onto𝐵 → (𝒫 𝐵 ∩ {𝑥𝑥𝐶}) ∈ V)
17 f1of1 6799 . . . . . . . . . . 11 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴1-1𝐵)
1817adantr 480 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto𝐵𝑦𝐴) → 𝑓:𝐴1-1𝐵)
1913adantr 480 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto𝐵𝑦𝐴) → 𝐵 ∈ V)
20 simpr 484 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto𝐵𝑦𝐴) → 𝑦𝐴)
21 vex 3451 . . . . . . . . . . 11 𝑦 ∈ V
2221a1i 11 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto𝐵𝑦𝐴) → 𝑦 ∈ V)
23 f1imaen2g 8986 . . . . . . . . . 10 (((𝑓:𝐴1-1𝐵𝐵 ∈ V) ∧ (𝑦𝐴𝑦 ∈ V)) → (𝑓𝑦) ≈ 𝑦)
2418, 19, 20, 22, 23syl22anc 838 . . . . . . . . 9 ((𝑓:𝐴1-1-onto𝐵𝑦𝐴) → (𝑓𝑦) ≈ 𝑦)
25 entr 8977 . . . . . . . . 9 (((𝑓𝑦) ≈ 𝑦𝑦𝐶) → (𝑓𝑦) ≈ 𝐶)
2624, 25sylan 580 . . . . . . . 8 (((𝑓:𝐴1-1-onto𝐵𝑦𝐴) ∧ 𝑦𝐶) → (𝑓𝑦) ≈ 𝐶)
2726expl 457 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵 → ((𝑦𝐴𝑦𝐶) → (𝑓𝑦) ≈ 𝐶))
28 imassrn 6042 . . . . . . . . 9 (𝑓𝑦) ⊆ ran 𝑓
2928, 10sseqtrid 3989 . . . . . . . 8 (𝑓:𝐴onto𝐵 → (𝑓𝑦) ⊆ 𝐵)
309, 29syl 17 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵 → (𝑓𝑦) ⊆ 𝐵)
3127, 30jctild 525 . . . . . 6 (𝑓:𝐴1-1-onto𝐵 → ((𝑦𝐴𝑦𝐶) → ((𝑓𝑦) ⊆ 𝐵 ∧ (𝑓𝑦) ≈ 𝐶)))
32 elin 3930 . . . . . . 7 (𝑦 ∈ (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) ↔ (𝑦 ∈ 𝒫 𝐴𝑦 ∈ {𝑥𝑥𝐶}))
3321elpw 4567 . . . . . . . 8 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
34 breq1 5110 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐶𝑦𝐶))
3521, 34elab 3646 . . . . . . . 8 (𝑦 ∈ {𝑥𝑥𝐶} ↔ 𝑦𝐶)
3633, 35anbi12i 628 . . . . . . 7 ((𝑦 ∈ 𝒫 𝐴𝑦 ∈ {𝑥𝑥𝐶}) ↔ (𝑦𝐴𝑦𝐶))
3732, 36bitri 275 . . . . . 6 (𝑦 ∈ (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) ↔ (𝑦𝐴𝑦𝐶))
38 elin 3930 . . . . . . 7 ((𝑓𝑦) ∈ (𝒫 𝐵 ∩ {𝑥𝑥𝐶}) ↔ ((𝑓𝑦) ∈ 𝒫 𝐵 ∧ (𝑓𝑦) ∈ {𝑥𝑥𝐶}))
393imaex 7890 . . . . . . . . 9 (𝑓𝑦) ∈ V
4039elpw 4567 . . . . . . . 8 ((𝑓𝑦) ∈ 𝒫 𝐵 ↔ (𝑓𝑦) ⊆ 𝐵)
41 breq1 5110 . . . . . . . . 9 (𝑥 = (𝑓𝑦) → (𝑥𝐶 ↔ (𝑓𝑦) ≈ 𝐶))
4239, 41elab 3646 . . . . . . . 8 ((𝑓𝑦) ∈ {𝑥𝑥𝐶} ↔ (𝑓𝑦) ≈ 𝐶)
4340, 42anbi12i 628 . . . . . . 7 (((𝑓𝑦) ∈ 𝒫 𝐵 ∧ (𝑓𝑦) ∈ {𝑥𝑥𝐶}) ↔ ((𝑓𝑦) ⊆ 𝐵 ∧ (𝑓𝑦) ≈ 𝐶))
4438, 43bitri 275 . . . . . 6 ((𝑓𝑦) ∈ (𝒫 𝐵 ∩ {𝑥𝑥𝐶}) ↔ ((𝑓𝑦) ⊆ 𝐵 ∧ (𝑓𝑦) ≈ 𝐶))
4531, 37, 443imtr4g 296 . . . . 5 (𝑓:𝐴1-1-onto𝐵 → (𝑦 ∈ (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) → (𝑓𝑦) ∈ (𝒫 𝐵 ∩ {𝑥𝑥𝐶})))
46 f1ocnv 6812 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐴)
47 f1of1 6799 . . . . . . . . . . . 12 (𝑓:𝐵1-1-onto𝐴𝑓:𝐵1-1𝐴)
48 f1f1orn 6811 . . . . . . . . . . . 12 (𝑓:𝐵1-1𝐴𝑓:𝐵1-1-onto→ran 𝑓)
49 f1of1 6799 . . . . . . . . . . . 12 (𝑓:𝐵1-1-onto→ran 𝑓𝑓:𝐵1-1→ran 𝑓)
5047, 48, 493syl 18 . . . . . . . . . . 11 (𝑓:𝐵1-1-onto𝐴𝑓:𝐵1-1→ran 𝑓)
51 vex 3451 . . . . . . . . . . . 12 𝑧 ∈ V
5251f1imaen 8988 . . . . . . . . . . 11 ((𝑓:𝐵1-1→ran 𝑓𝑧𝐵) → (𝑓𝑧) ≈ 𝑧)
5350, 52sylan 580 . . . . . . . . . 10 ((𝑓:𝐵1-1-onto𝐴𝑧𝐵) → (𝑓𝑧) ≈ 𝑧)
54 entr 8977 . . . . . . . . . 10 (((𝑓𝑧) ≈ 𝑧𝑧𝐶) → (𝑓𝑧) ≈ 𝐶)
5553, 54sylan 580 . . . . . . . . 9 (((𝑓:𝐵1-1-onto𝐴𝑧𝐵) ∧ 𝑧𝐶) → (𝑓𝑧) ≈ 𝐶)
5655expl 457 . . . . . . . 8 (𝑓:𝐵1-1-onto𝐴 → ((𝑧𝐵𝑧𝐶) → (𝑓𝑧) ≈ 𝐶))
57 f1ofo 6807 . . . . . . . . 9 (𝑓:𝐵1-1-onto𝐴𝑓:𝐵onto𝐴)
58 imassrn 6042 . . . . . . . . . 10 (𝑓𝑧) ⊆ ran 𝑓
59 forn 6775 . . . . . . . . . 10 (𝑓:𝐵onto𝐴 → ran 𝑓 = 𝐴)
6058, 59sseqtrid 3989 . . . . . . . . 9 (𝑓:𝐵onto𝐴 → (𝑓𝑧) ⊆ 𝐴)
6157, 60syl 17 . . . . . . . 8 (𝑓:𝐵1-1-onto𝐴 → (𝑓𝑧) ⊆ 𝐴)
6256, 61jctild 525 . . . . . . 7 (𝑓:𝐵1-1-onto𝐴 → ((𝑧𝐵𝑧𝐶) → ((𝑓𝑧) ⊆ 𝐴 ∧ (𝑓𝑧) ≈ 𝐶)))
6346, 62syl 17 . . . . . 6 (𝑓:𝐴1-1-onto𝐵 → ((𝑧𝐵𝑧𝐶) → ((𝑓𝑧) ⊆ 𝐴 ∧ (𝑓𝑧) ≈ 𝐶)))
64 elin 3930 . . . . . . 7 (𝑧 ∈ (𝒫 𝐵 ∩ {𝑥𝑥𝐶}) ↔ (𝑧 ∈ 𝒫 𝐵𝑧 ∈ {𝑥𝑥𝐶}))
6551elpw 4567 . . . . . . . 8 (𝑧 ∈ 𝒫 𝐵𝑧𝐵)
66 breq1 5110 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥𝐶𝑧𝐶))
6751, 66elab 3646 . . . . . . . 8 (𝑧 ∈ {𝑥𝑥𝐶} ↔ 𝑧𝐶)
6865, 67anbi12i 628 . . . . . . 7 ((𝑧 ∈ 𝒫 𝐵𝑧 ∈ {𝑥𝑥𝐶}) ↔ (𝑧𝐵𝑧𝐶))
6964, 68bitri 275 . . . . . 6 (𝑧 ∈ (𝒫 𝐵 ∩ {𝑥𝑥𝐶}) ↔ (𝑧𝐵𝑧𝐶))
70 elin 3930 . . . . . . 7 ((𝑓𝑧) ∈ (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) ↔ ((𝑓𝑧) ∈ 𝒫 𝐴 ∧ (𝑓𝑧) ∈ {𝑥𝑥𝐶}))
713cnvex 7901 . . . . . . . . . 10 𝑓 ∈ V
7271imaex 7890 . . . . . . . . 9 (𝑓𝑧) ∈ V
7372elpw 4567 . . . . . . . 8 ((𝑓𝑧) ∈ 𝒫 𝐴 ↔ (𝑓𝑧) ⊆ 𝐴)
74 breq1 5110 . . . . . . . . 9 (𝑥 = (𝑓𝑧) → (𝑥𝐶 ↔ (𝑓𝑧) ≈ 𝐶))
7572, 74elab 3646 . . . . . . . 8 ((𝑓𝑧) ∈ {𝑥𝑥𝐶} ↔ (𝑓𝑧) ≈ 𝐶)
7673, 75anbi12i 628 . . . . . . 7 (((𝑓𝑧) ∈ 𝒫 𝐴 ∧ (𝑓𝑧) ∈ {𝑥𝑥𝐶}) ↔ ((𝑓𝑧) ⊆ 𝐴 ∧ (𝑓𝑧) ≈ 𝐶))
7770, 76bitri 275 . . . . . 6 ((𝑓𝑧) ∈ (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) ↔ ((𝑓𝑧) ⊆ 𝐴 ∧ (𝑓𝑧) ≈ 𝐶))
7863, 69, 773imtr4g 296 . . . . 5 (𝑓:𝐴1-1-onto𝐵 → (𝑧 ∈ (𝒫 𝐵 ∩ {𝑥𝑥𝐶}) → (𝑓𝑧) ∈ (𝒫 𝐴 ∩ {𝑥𝑥𝐶})))
79 simpl 482 . . . . . . . . . . 11 ((𝑧 ∈ 𝒫 𝐵𝑧 ∈ {𝑥𝑥𝐶}) → 𝑧 ∈ 𝒫 𝐵)
8079elpwid 4572 . . . . . . . . . 10 ((𝑧 ∈ 𝒫 𝐵𝑧 ∈ {𝑥𝑥𝐶}) → 𝑧𝐵)
8164, 80sylbi 217 . . . . . . . . 9 (𝑧 ∈ (𝒫 𝐵 ∩ {𝑥𝑥𝐶}) → 𝑧𝐵)
82 imaeq2 6027 . . . . . . . . . . . 12 (𝑦 = (𝑓𝑧) → (𝑓𝑦) = (𝑓 “ (𝑓𝑧)))
83 f1orel 6803 . . . . . . . . . . . . . . . 16 (𝑓:𝐴1-1-onto𝐵 → Rel 𝑓)
84 dfrel2 6162 . . . . . . . . . . . . . . . 16 (Rel 𝑓𝑓 = 𝑓)
8583, 84sylib 218 . . . . . . . . . . . . . . 15 (𝑓:𝐴1-1-onto𝐵𝑓 = 𝑓)
8685imaeq1d 6030 . . . . . . . . . . . . . 14 (𝑓:𝐴1-1-onto𝐵 → (𝑓 “ (𝑓𝑧)) = (𝑓 “ (𝑓𝑧)))
8786adantr 480 . . . . . . . . . . . . 13 ((𝑓:𝐴1-1-onto𝐵𝑧𝐵) → (𝑓 “ (𝑓𝑧)) = (𝑓 “ (𝑓𝑧)))
8846, 47syl 17 . . . . . . . . . . . . . 14 (𝑓:𝐴1-1-onto𝐵𝑓:𝐵1-1𝐴)
89 f1imacnv 6816 . . . . . . . . . . . . . 14 ((𝑓:𝐵1-1𝐴𝑧𝐵) → (𝑓 “ (𝑓𝑧)) = 𝑧)
9088, 89sylan 580 . . . . . . . . . . . . 13 ((𝑓:𝐴1-1-onto𝐵𝑧𝐵) → (𝑓 “ (𝑓𝑧)) = 𝑧)
9187, 90eqtr3d 2766 . . . . . . . . . . . 12 ((𝑓:𝐴1-1-onto𝐵𝑧𝐵) → (𝑓 “ (𝑓𝑧)) = 𝑧)
9282, 91sylan9eqr 2786 . . . . . . . . . . 11 (((𝑓:𝐴1-1-onto𝐵𝑧𝐵) ∧ 𝑦 = (𝑓𝑧)) → (𝑓𝑦) = 𝑧)
9392eqcomd 2735 . . . . . . . . . 10 (((𝑓:𝐴1-1-onto𝐵𝑧𝐵) ∧ 𝑦 = (𝑓𝑧)) → 𝑧 = (𝑓𝑦))
9493ex 412 . . . . . . . . 9 ((𝑓:𝐴1-1-onto𝐵𝑧𝐵) → (𝑦 = (𝑓𝑧) → 𝑧 = (𝑓𝑦)))
9581, 94sylan2 593 . . . . . . . 8 ((𝑓:𝐴1-1-onto𝐵𝑧 ∈ (𝒫 𝐵 ∩ {𝑥𝑥𝐶})) → (𝑦 = (𝑓𝑧) → 𝑧 = (𝑓𝑦)))
9695adantrl 716 . . . . . . 7 ((𝑓:𝐴1-1-onto𝐵 ∧ (𝑦 ∈ (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) ∧ 𝑧 ∈ (𝒫 𝐵 ∩ {𝑥𝑥𝐶}))) → (𝑦 = (𝑓𝑧) → 𝑧 = (𝑓𝑦)))
97 simpl 482 . . . . . . . . . . 11 ((𝑦 ∈ 𝒫 𝐴𝑦 ∈ {𝑥𝑥𝐶}) → 𝑦 ∈ 𝒫 𝐴)
9897elpwid 4572 . . . . . . . . . 10 ((𝑦 ∈ 𝒫 𝐴𝑦 ∈ {𝑥𝑥𝐶}) → 𝑦𝐴)
9932, 98sylbi 217 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) → 𝑦𝐴)
100 imaeq2 6027 . . . . . . . . . . . 12 (𝑧 = (𝑓𝑦) → (𝑓𝑧) = (𝑓 “ (𝑓𝑦)))
101 f1imacnv 6816 . . . . . . . . . . . . 13 ((𝑓:𝐴1-1𝐵𝑦𝐴) → (𝑓 “ (𝑓𝑦)) = 𝑦)
10217, 101sylan 580 . . . . . . . . . . . 12 ((𝑓:𝐴1-1-onto𝐵𝑦𝐴) → (𝑓 “ (𝑓𝑦)) = 𝑦)
103100, 102sylan9eqr 2786 . . . . . . . . . . 11 (((𝑓:𝐴1-1-onto𝐵𝑦𝐴) ∧ 𝑧 = (𝑓𝑦)) → (𝑓𝑧) = 𝑦)
104103eqcomd 2735 . . . . . . . . . 10 (((𝑓:𝐴1-1-onto𝐵𝑦𝐴) ∧ 𝑧 = (𝑓𝑦)) → 𝑦 = (𝑓𝑧))
105104ex 412 . . . . . . . . 9 ((𝑓:𝐴1-1-onto𝐵𝑦𝐴) → (𝑧 = (𝑓𝑦) → 𝑦 = (𝑓𝑧)))
10699, 105sylan2 593 . . . . . . . 8 ((𝑓:𝐴1-1-onto𝐵𝑦 ∈ (𝒫 𝐴 ∩ {𝑥𝑥𝐶})) → (𝑧 = (𝑓𝑦) → 𝑦 = (𝑓𝑧)))
107106adantrr 717 . . . . . . 7 ((𝑓:𝐴1-1-onto𝐵 ∧ (𝑦 ∈ (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) ∧ 𝑧 ∈ (𝒫 𝐵 ∩ {𝑥𝑥𝐶}))) → (𝑧 = (𝑓𝑦) → 𝑦 = (𝑓𝑧)))
10896, 107impbid 212 . . . . . 6 ((𝑓:𝐴1-1-onto𝐵 ∧ (𝑦 ∈ (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) ∧ 𝑧 ∈ (𝒫 𝐵 ∩ {𝑥𝑥𝐶}))) → (𝑦 = (𝑓𝑧) ↔ 𝑧 = (𝑓𝑦)))
109108ex 412 . . . . 5 (𝑓:𝐴1-1-onto𝐵 → ((𝑦 ∈ (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) ∧ 𝑧 ∈ (𝒫 𝐵 ∩ {𝑥𝑥𝐶})) → (𝑦 = (𝑓𝑧) ↔ 𝑧 = (𝑓𝑦))))
1108, 16, 45, 78, 109en3d 8960 . . . 4 (𝑓:𝐴1-1-onto𝐵 → (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) ≈ (𝒫 𝐵 ∩ {𝑥𝑥𝐶}))
111110exlimiv 1930 . . 3 (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) ≈ (𝒫 𝐵 ∩ {𝑥𝑥𝐶}))
1121, 111sylbi 217 . 2 (𝐴𝐵 → (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) ≈ (𝒫 𝐵 ∩ {𝑥𝑥𝐶}))
113 df-pw 4565 . . . 4 𝒫 𝐴 = {𝑥𝑥𝐴}
114113ineq1i 4179 . . 3 (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) = ({𝑥𝑥𝐴} ∩ {𝑥𝑥𝐶})
115 inab 4272 . . 3 ({𝑥𝑥𝐴} ∩ {𝑥𝑥𝐶}) = {𝑥 ∣ (𝑥𝐴𝑥𝐶)}
116114, 115eqtri 2752 . 2 (𝒫 𝐴 ∩ {𝑥𝑥𝐶}) = {𝑥 ∣ (𝑥𝐴𝑥𝐶)}
117 df-pw 4565 . . . 4 𝒫 𝐵 = {𝑥𝑥𝐵}
118117ineq1i 4179 . . 3 (𝒫 𝐵 ∩ {𝑥𝑥𝐶}) = ({𝑥𝑥𝐵} ∩ {𝑥𝑥𝐶})
119 inab 4272 . . 3 ({𝑥𝑥𝐵} ∩ {𝑥𝑥𝐶}) = {𝑥 ∣ (𝑥𝐵𝑥𝐶)}
120118, 119eqtri 2752 . 2 (𝒫 𝐵 ∩ {𝑥𝑥𝐶}) = {𝑥 ∣ (𝑥𝐵𝑥𝐶)}
121112, 116, 1203brtr3g 5140 1 (𝐴𝐵 → {𝑥 ∣ (𝑥𝐴𝑥𝐶)} ≈ {𝑥 ∣ (𝑥𝐵𝑥𝐶)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  Vcvv 3447  cin 3913  wss 3914  𝒫 cpw 4563   class class class wbr 5107  ccnv 5637  dom cdm 5638  ran crn 5639  cima 5641  Rel wrel 5643  1-1wf1 6508  ontowfo 6509  1-1-ontowf1o 6510  cen 8915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-er 8671  df-en 8919
This theorem is referenced by:  infmap2  10170
  Copyright terms: Public domain W3C validator