| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapex | Structured version Visualization version GIF version | ||
| Description: The class of all functions mapping one set to another is a set. Remark after Definition 10.24 of [Kunen] p. 31. (Contributed by Raph Levien, 4-Dec-2003.) (Proof shortened by AV, 16-Jun-2025.) |
| Ref | Expression |
|---|---|
| mapex | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝑓:𝐴⟶𝐵)} = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝑓:𝐴⟶𝐵)} | |
| 2 | 1 | fabexg 7868 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝑓:𝐴⟶𝐵)} ∈ V) |
| 3 | id 22 | . . . . 5 ⊢ (𝑓:𝐴⟶𝐵 → 𝑓:𝐴⟶𝐵) | |
| 4 | 3 | ancli 548 | . . . 4 ⊢ (𝑓:𝐴⟶𝐵 → (𝑓:𝐴⟶𝐵 ∧ 𝑓:𝐴⟶𝐵)) |
| 5 | 4 | ss2abi 4018 | . . 3 ⊢ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ⊆ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝑓:𝐴⟶𝐵)} |
| 6 | 5 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ⊆ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝑓:𝐴⟶𝐵)}) |
| 7 | 2, 6 | ssexd 5262 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 {cab 2709 Vcvv 3436 ⊆ wss 3902 ⟶wf 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-dm 5626 df-rn 5627 df-fun 6483 df-fn 6484 df-f 6485 |
| This theorem is referenced by: fnmap 8757 mapvalg 8760 isghmOLD 19126 wksfval 29586 measbase 34205 measval 34206 ismeas 34207 isrnmeas 34208 sticksstones4 42181 sticksstones14 42192 sticksstones20 42198 cnfex 45064 opabresexd 47317 upwlksfval 48165 |
| Copyright terms: Public domain | W3C validator |