![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mapex | Structured version Visualization version GIF version |
Description: The class of all functions mapping one set to another is a set. Remark after Definition 10.24 of [Kunen] p. 31. (Contributed by Raph Levien, 4-Dec-2003.) (Proof shortened by AV, 16-Jun-2025.) |
Ref | Expression |
---|---|
mapex | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝑓:𝐴⟶𝐵)} = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝑓:𝐴⟶𝐵)} | |
2 | 1 | fabexg 7976 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝑓:𝐴⟶𝐵)} ∈ V) |
3 | id 22 | . . . . 5 ⊢ (𝑓:𝐴⟶𝐵 → 𝑓:𝐴⟶𝐵) | |
4 | 3 | ancli 548 | . . . 4 ⊢ (𝑓:𝐴⟶𝐵 → (𝑓:𝐴⟶𝐵 ∧ 𝑓:𝐴⟶𝐵)) |
5 | 4 | ss2abi 4090 | . . 3 ⊢ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ⊆ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝑓:𝐴⟶𝐵)} |
6 | 5 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ⊆ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝑓:𝐴⟶𝐵)}) |
7 | 2, 6 | ssexd 5342 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 {cab 2717 Vcvv 3488 ⊆ wss 3976 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-fun 6575 df-fn 6576 df-f 6577 |
This theorem is referenced by: fnmap 8891 mapvalg 8894 isghmOLD 19256 wksfval 29645 measbase 34161 measval 34162 ismeas 34163 isrnmeas 34164 sticksstones4 42106 sticksstones14 42117 sticksstones20 42123 cnfex 44928 opabresexd 47202 upwlksfval 47858 |
Copyright terms: Public domain | W3C validator |