![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mapex | Structured version Visualization version GIF version |
Description: The class of all functions mapping one set to another is a set. Remark after Definition 10.24 of [Kunen] p. 31. (Contributed by Raph Levien, 4-Dec-2003.) |
Ref | Expression |
---|---|
mapex | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssxp 6697 | . . . 4 ⊢ (𝑓:𝐴⟶𝐵 → 𝑓 ⊆ (𝐴 × 𝐵)) | |
2 | 1 | ss2abi 4024 | . . 3 ⊢ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ⊆ {𝑓 ∣ 𝑓 ⊆ (𝐴 × 𝐵)} |
3 | df-pw 4563 | . . 3 ⊢ 𝒫 (𝐴 × 𝐵) = {𝑓 ∣ 𝑓 ⊆ (𝐴 × 𝐵)} | |
4 | 2, 3 | sseqtrri 3982 | . 2 ⊢ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ⊆ 𝒫 (𝐴 × 𝐵) |
5 | xpexg 7685 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 × 𝐵) ∈ V) | |
6 | 5 | pwexd 5335 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝒫 (𝐴 × 𝐵) ∈ V) |
7 | ssexg 5281 | . 2 ⊢ (({𝑓 ∣ 𝑓:𝐴⟶𝐵} ⊆ 𝒫 (𝐴 × 𝐵) ∧ 𝒫 (𝐴 × 𝐵) ∈ V) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) | |
8 | 4, 6, 7 | sylancr 588 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 {cab 2710 Vcvv 3444 ⊆ wss 3911 𝒫 cpw 4561 × cxp 5632 ⟶wf 6493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-xp 5640 df-rel 5641 df-cnv 5642 df-dm 5644 df-rn 5645 df-fun 6499 df-fn 6500 df-f 6501 |
This theorem is referenced by: fnmap 8775 mapvalg 8778 isghm 19013 permsetexOLD 19156 wksfval 28599 measbase 32853 measval 32854 ismeas 32855 isrnmeas 32856 sticksstones4 40603 sticksstones14 40614 sticksstones20 40620 cnfex 43321 opabresexd 45605 upwlksfval 46123 |
Copyright terms: Public domain | W3C validator |