| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapex | Structured version Visualization version GIF version | ||
| Description: The class of all functions mapping one set to another is a set. Remark after Definition 10.24 of [Kunen] p. 31. (Contributed by Raph Levien, 4-Dec-2003.) (Proof shortened by AV, 16-Jun-2025.) |
| Ref | Expression |
|---|---|
| mapex | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝑓:𝐴⟶𝐵)} = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝑓:𝐴⟶𝐵)} | |
| 2 | 1 | fabexg 7878 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝑓:𝐴⟶𝐵)} ∈ V) |
| 3 | id 22 | . . . . 5 ⊢ (𝑓:𝐴⟶𝐵 → 𝑓:𝐴⟶𝐵) | |
| 4 | 3 | ancli 548 | . . . 4 ⊢ (𝑓:𝐴⟶𝐵 → (𝑓:𝐴⟶𝐵 ∧ 𝑓:𝐴⟶𝐵)) |
| 5 | 4 | ss2abi 4021 | . . 3 ⊢ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ⊆ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝑓:𝐴⟶𝐵)} |
| 6 | 5 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ⊆ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝑓:𝐴⟶𝐵)}) |
| 7 | 2, 6 | ssexd 5266 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 {cab 2707 Vcvv 3438 ⊆ wss 3905 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 df-dm 5633 df-rn 5634 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: fnmap 8767 mapvalg 8770 isghmOLD 19113 wksfval 29573 measbase 34163 measval 34164 ismeas 34165 isrnmeas 34166 sticksstones4 42122 sticksstones14 42133 sticksstones20 42139 cnfex 45006 opabresexd 47272 upwlksfval 48120 |
| Copyright terms: Public domain | W3C validator |