MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapex Structured version   Visualization version   GIF version

Theorem mapex 7877
Description: The class of all functions mapping one set to another is a set. Remark after Definition 10.24 of [Kunen] p. 31. (Contributed by Raph Levien, 4-Dec-2003.) (Proof shortened by AV, 16-Jun-2025.)
Assertion
Ref Expression
mapex ((𝐴𝐶𝐵𝐷) → {𝑓𝑓:𝐴𝐵} ∈ V)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hints:   𝐶(𝑓)   𝐷(𝑓)

Proof of Theorem mapex
StepHypRef Expression
1 eqid 2733 . . 3 {𝑓 ∣ (𝑓:𝐴𝐵𝑓:𝐴𝐵)} = {𝑓 ∣ (𝑓:𝐴𝐵𝑓:𝐴𝐵)}
21fabexg 7874 . 2 ((𝐴𝐶𝐵𝐷) → {𝑓 ∣ (𝑓:𝐴𝐵𝑓:𝐴𝐵)} ∈ V)
3 id 22 . . . . 5 (𝑓:𝐴𝐵𝑓:𝐴𝐵)
43ancli 548 . . . 4 (𝑓:𝐴𝐵 → (𝑓:𝐴𝐵𝑓:𝐴𝐵))
54ss2abi 4015 . . 3 {𝑓𝑓:𝐴𝐵} ⊆ {𝑓 ∣ (𝑓:𝐴𝐵𝑓:𝐴𝐵)}
65a1i 11 . 2 ((𝐴𝐶𝐵𝐷) → {𝑓𝑓:𝐴𝐵} ⊆ {𝑓 ∣ (𝑓:𝐴𝐵𝑓:𝐴𝐵)})
72, 6ssexd 5264 1 ((𝐴𝐶𝐵𝐷) → {𝑓𝑓:𝐴𝐵} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113  {cab 2711  Vcvv 3437  wss 3898  wf 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-xp 5625  df-rel 5626  df-cnv 5627  df-dm 5629  df-rn 5630  df-fun 6488  df-fn 6489  df-f 6490
This theorem is referenced by:  fnmap  8763  mapvalg  8766  isghmOLD  19130  wksfval  29590  measbase  34231  measval  34232  ismeas  34233  isrnmeas  34234  sticksstones4  42262  sticksstones14  42273  sticksstones20  42279  cnfex  45149  opabresexd  47411  upwlksfval  48259
  Copyright terms: Public domain W3C validator