MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapex Structured version   Visualization version   GIF version

Theorem mapex 7881
Description: The class of all functions mapping one set to another is a set. Remark after Definition 10.24 of [Kunen] p. 31. (Contributed by Raph Levien, 4-Dec-2003.) (Proof shortened by AV, 16-Jun-2025.)
Assertion
Ref Expression
mapex ((𝐴𝐶𝐵𝐷) → {𝑓𝑓:𝐴𝐵} ∈ V)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hints:   𝐶(𝑓)   𝐷(𝑓)

Proof of Theorem mapex
StepHypRef Expression
1 eqid 2729 . . 3 {𝑓 ∣ (𝑓:𝐴𝐵𝑓:𝐴𝐵)} = {𝑓 ∣ (𝑓:𝐴𝐵𝑓:𝐴𝐵)}
21fabexg 7878 . 2 ((𝐴𝐶𝐵𝐷) → {𝑓 ∣ (𝑓:𝐴𝐵𝑓:𝐴𝐵)} ∈ V)
3 id 22 . . . . 5 (𝑓:𝐴𝐵𝑓:𝐴𝐵)
43ancli 548 . . . 4 (𝑓:𝐴𝐵 → (𝑓:𝐴𝐵𝑓:𝐴𝐵))
54ss2abi 4021 . . 3 {𝑓𝑓:𝐴𝐵} ⊆ {𝑓 ∣ (𝑓:𝐴𝐵𝑓:𝐴𝐵)}
65a1i 11 . 2 ((𝐴𝐶𝐵𝐷) → {𝑓𝑓:𝐴𝐵} ⊆ {𝑓 ∣ (𝑓:𝐴𝐵𝑓:𝐴𝐵)})
72, 6ssexd 5266 1 ((𝐴𝐶𝐵𝐷) → {𝑓𝑓:𝐴𝐵} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  {cab 2707  Vcvv 3438  wss 3905  wf 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-xp 5629  df-rel 5630  df-cnv 5631  df-dm 5633  df-rn 5634  df-fun 6488  df-fn 6489  df-f 6490
This theorem is referenced by:  fnmap  8767  mapvalg  8770  isghmOLD  19113  wksfval  29573  measbase  34163  measval  34164  ismeas  34165  isrnmeas  34166  sticksstones4  42122  sticksstones14  42133  sticksstones20  42139  cnfex  45006  opabresexd  47272  upwlksfval  48120
  Copyright terms: Public domain W3C validator