MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapex Structured version   Visualization version   GIF version

Theorem mapex 7920
Description: The class of all functions mapping one set to another is a set. Remark after Definition 10.24 of [Kunen] p. 31. (Contributed by Raph Levien, 4-Dec-2003.) (Proof shortened by AV, 16-Jun-2025.)
Assertion
Ref Expression
mapex ((𝐴𝐶𝐵𝐷) → {𝑓𝑓:𝐴𝐵} ∈ V)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hints:   𝐶(𝑓)   𝐷(𝑓)

Proof of Theorem mapex
StepHypRef Expression
1 eqid 2730 . . 3 {𝑓 ∣ (𝑓:𝐴𝐵𝑓:𝐴𝐵)} = {𝑓 ∣ (𝑓:𝐴𝐵𝑓:𝐴𝐵)}
21fabexg 7917 . 2 ((𝐴𝐶𝐵𝐷) → {𝑓 ∣ (𝑓:𝐴𝐵𝑓:𝐴𝐵)} ∈ V)
3 id 22 . . . . 5 (𝑓:𝐴𝐵𝑓:𝐴𝐵)
43ancli 548 . . . 4 (𝑓:𝐴𝐵 → (𝑓:𝐴𝐵𝑓:𝐴𝐵))
54ss2abi 4033 . . 3 {𝑓𝑓:𝐴𝐵} ⊆ {𝑓 ∣ (𝑓:𝐴𝐵𝑓:𝐴𝐵)}
65a1i 11 . 2 ((𝐴𝐶𝐵𝐷) → {𝑓𝑓:𝐴𝐵} ⊆ {𝑓 ∣ (𝑓:𝐴𝐵𝑓:𝐴𝐵)})
72, 6ssexd 5282 1 ((𝐴𝐶𝐵𝐷) → {𝑓𝑓:𝐴𝐵} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  {cab 2708  Vcvv 3450  wss 3917  wf 6510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-fun 6516  df-fn 6517  df-f 6518
This theorem is referenced by:  fnmap  8809  mapvalg  8812  isghmOLD  19155  wksfval  29544  measbase  34194  measval  34195  ismeas  34196  isrnmeas  34197  sticksstones4  42144  sticksstones14  42155  sticksstones20  42161  cnfex  45029  opabresexd  47292  upwlksfval  48127
  Copyright terms: Public domain W3C validator