| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapex | Structured version Visualization version GIF version | ||
| Description: The class of all functions mapping one set to another is a set. Remark after Definition 10.24 of [Kunen] p. 31. (Contributed by Raph Levien, 4-Dec-2003.) (Proof shortened by AV, 16-Jun-2025.) |
| Ref | Expression |
|---|---|
| mapex | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝑓:𝐴⟶𝐵)} = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝑓:𝐴⟶𝐵)} | |
| 2 | 1 | fabexg 7934 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝑓:𝐴⟶𝐵)} ∈ V) |
| 3 | id 22 | . . . . 5 ⊢ (𝑓:𝐴⟶𝐵 → 𝑓:𝐴⟶𝐵) | |
| 4 | 3 | ancli 548 | . . . 4 ⊢ (𝑓:𝐴⟶𝐵 → (𝑓:𝐴⟶𝐵 ∧ 𝑓:𝐴⟶𝐵)) |
| 5 | 4 | ss2abi 4042 | . . 3 ⊢ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ⊆ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝑓:𝐴⟶𝐵)} |
| 6 | 5 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ⊆ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝑓:𝐴⟶𝐵)}) |
| 7 | 2, 6 | ssexd 5294 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 {cab 2713 Vcvv 3459 ⊆ wss 3926 ⟶wf 6527 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-dm 5664 df-rn 5665 df-fun 6533 df-fn 6534 df-f 6535 |
| This theorem is referenced by: fnmap 8847 mapvalg 8850 isghmOLD 19199 wksfval 29589 measbase 34228 measval 34229 ismeas 34230 isrnmeas 34231 sticksstones4 42162 sticksstones14 42173 sticksstones20 42179 cnfex 45052 opabresexd 47316 upwlksfval 48110 |
| Copyright terms: Public domain | W3C validator |