MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapex Structured version   Visualization version   GIF version

Theorem mapex 7917
Description: The class of all functions mapping one set to another is a set. Remark after Definition 10.24 of [Kunen] p. 31. (Contributed by Raph Levien, 4-Dec-2003.) (Proof shortened by AV, 16-Jun-2025.)
Assertion
Ref Expression
mapex ((𝐴𝐶𝐵𝐷) → {𝑓𝑓:𝐴𝐵} ∈ V)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hints:   𝐶(𝑓)   𝐷(𝑓)

Proof of Theorem mapex
StepHypRef Expression
1 eqid 2729 . . 3 {𝑓 ∣ (𝑓:𝐴𝐵𝑓:𝐴𝐵)} = {𝑓 ∣ (𝑓:𝐴𝐵𝑓:𝐴𝐵)}
21fabexg 7914 . 2 ((𝐴𝐶𝐵𝐷) → {𝑓 ∣ (𝑓:𝐴𝐵𝑓:𝐴𝐵)} ∈ V)
3 id 22 . . . . 5 (𝑓:𝐴𝐵𝑓:𝐴𝐵)
43ancli 548 . . . 4 (𝑓:𝐴𝐵 → (𝑓:𝐴𝐵𝑓:𝐴𝐵))
54ss2abi 4030 . . 3 {𝑓𝑓:𝐴𝐵} ⊆ {𝑓 ∣ (𝑓:𝐴𝐵𝑓:𝐴𝐵)}
65a1i 11 . 2 ((𝐴𝐶𝐵𝐷) → {𝑓𝑓:𝐴𝐵} ⊆ {𝑓 ∣ (𝑓:𝐴𝐵𝑓:𝐴𝐵)})
72, 6ssexd 5279 1 ((𝐴𝐶𝐵𝐷) → {𝑓𝑓:𝐴𝐵} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  {cab 2707  Vcvv 3447  wss 3914  wf 6507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-fun 6513  df-fn 6514  df-f 6515
This theorem is referenced by:  fnmap  8806  mapvalg  8809  isghmOLD  19148  wksfval  29537  measbase  34187  measval  34188  ismeas  34189  isrnmeas  34190  sticksstones4  42137  sticksstones14  42148  sticksstones20  42154  cnfex  45022  opabresexd  47288  upwlksfval  48123
  Copyright terms: Public domain W3C validator