Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mapex | Structured version Visualization version GIF version |
Description: The class of all functions mapping one set to another is a set. Remark after Definition 10.24 of [Kunen] p. 31. (Contributed by Raph Levien, 4-Dec-2003.) |
Ref | Expression |
---|---|
mapex | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssxp 6573 | . . . 4 ⊢ (𝑓:𝐴⟶𝐵 → 𝑓 ⊆ (𝐴 × 𝐵)) | |
2 | 1 | ss2abi 3980 | . . 3 ⊢ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ⊆ {𝑓 ∣ 𝑓 ⊆ (𝐴 × 𝐵)} |
3 | df-pw 4515 | . . 3 ⊢ 𝒫 (𝐴 × 𝐵) = {𝑓 ∣ 𝑓 ⊆ (𝐴 × 𝐵)} | |
4 | 2, 3 | sseqtrri 3938 | . 2 ⊢ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ⊆ 𝒫 (𝐴 × 𝐵) |
5 | xpexg 7535 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 × 𝐵) ∈ V) | |
6 | 5 | pwexd 5272 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝒫 (𝐴 × 𝐵) ∈ V) |
7 | ssexg 5216 | . 2 ⊢ (({𝑓 ∣ 𝑓:𝐴⟶𝐵} ⊆ 𝒫 (𝐴 × 𝐵) ∧ 𝒫 (𝐴 × 𝐵) ∈ V) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) | |
8 | 4, 6, 7 | sylancr 590 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2110 {cab 2714 Vcvv 3408 ⊆ wss 3866 𝒫 cpw 4513 × cxp 5549 ⟶wf 6376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-xp 5557 df-rel 5558 df-cnv 5559 df-dm 5561 df-rn 5562 df-fun 6382 df-fn 6383 df-f 6384 |
This theorem is referenced by: fnmap 8515 mapvalg 8518 isghm 18622 permsetexOLD 18762 wksfval 27697 measbase 31877 measval 31878 ismeas 31879 isrnmeas 31880 sticksstones4 39827 sticksstones14 39838 sticksstones20 39844 cnfex 42244 opabresexd 44451 upwlksfval 44970 |
Copyright terms: Public domain | W3C validator |