![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dford3lem1 | Structured version Visualization version GIF version |
Description: Lemma for dford3 41757. (Contributed by Stefan O'Rear, 28-Oct-2014.) |
Ref | Expression |
---|---|
dford3lem1 | ⊢ ((Tr 𝑁 ∧ ∀𝑦 ∈ 𝑁 Tr 𝑦) → ∀𝑏 ∈ 𝑁 (Tr 𝑏 ∧ ∀𝑦 ∈ 𝑏 Tr 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | treq 5273 | . . . . 5 ⊢ (𝑦 = 𝑏 → (Tr 𝑦 ↔ Tr 𝑏)) | |
2 | 1 | cbvralvw 3234 | . . . 4 ⊢ (∀𝑦 ∈ 𝑁 Tr 𝑦 ↔ ∀𝑏 ∈ 𝑁 Tr 𝑏) |
3 | 2 | biimpi 215 | . . 3 ⊢ (∀𝑦 ∈ 𝑁 Tr 𝑦 → ∀𝑏 ∈ 𝑁 Tr 𝑏) |
4 | 3 | adantl 482 | . 2 ⊢ ((Tr 𝑁 ∧ ∀𝑦 ∈ 𝑁 Tr 𝑦) → ∀𝑏 ∈ 𝑁 Tr 𝑏) |
5 | trss 5276 | . . . . . 6 ⊢ (Tr 𝑁 → (𝑏 ∈ 𝑁 → 𝑏 ⊆ 𝑁)) | |
6 | ssralv 4050 | . . . . . 6 ⊢ (𝑏 ⊆ 𝑁 → (∀𝑦 ∈ 𝑁 Tr 𝑦 → ∀𝑦 ∈ 𝑏 Tr 𝑦)) | |
7 | 5, 6 | syl6 35 | . . . . 5 ⊢ (Tr 𝑁 → (𝑏 ∈ 𝑁 → (∀𝑦 ∈ 𝑁 Tr 𝑦 → ∀𝑦 ∈ 𝑏 Tr 𝑦))) |
8 | 7 | com23 86 | . . . 4 ⊢ (Tr 𝑁 → (∀𝑦 ∈ 𝑁 Tr 𝑦 → (𝑏 ∈ 𝑁 → ∀𝑦 ∈ 𝑏 Tr 𝑦))) |
9 | 8 | imp 407 | . . 3 ⊢ ((Tr 𝑁 ∧ ∀𝑦 ∈ 𝑁 Tr 𝑦) → (𝑏 ∈ 𝑁 → ∀𝑦 ∈ 𝑏 Tr 𝑦)) |
10 | 9 | ralrimiv 3145 | . 2 ⊢ ((Tr 𝑁 ∧ ∀𝑦 ∈ 𝑁 Tr 𝑦) → ∀𝑏 ∈ 𝑁 ∀𝑦 ∈ 𝑏 Tr 𝑦) |
11 | r19.26 3111 | . 2 ⊢ (∀𝑏 ∈ 𝑁 (Tr 𝑏 ∧ ∀𝑦 ∈ 𝑏 Tr 𝑦) ↔ (∀𝑏 ∈ 𝑁 Tr 𝑏 ∧ ∀𝑏 ∈ 𝑁 ∀𝑦 ∈ 𝑏 Tr 𝑦)) | |
12 | 4, 10, 11 | sylanbrc 583 | 1 ⊢ ((Tr 𝑁 ∧ ∀𝑦 ∈ 𝑁 Tr 𝑦) → ∀𝑏 ∈ 𝑁 (Tr 𝑏 ∧ ∀𝑦 ∈ 𝑏 Tr 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∀wral 3061 ⊆ wss 3948 Tr wtr 5265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-v 3476 df-in 3955 df-ss 3965 df-uni 4909 df-tr 5266 |
This theorem is referenced by: dford3lem2 41756 dford3 41757 |
Copyright terms: Public domain | W3C validator |