| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dford3lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for dford3 42977. (Contributed by Stefan O'Rear, 28-Oct-2014.) |
| Ref | Expression |
|---|---|
| dford3lem1 | ⊢ ((Tr 𝑁 ∧ ∀𝑦 ∈ 𝑁 Tr 𝑦) → ∀𝑏 ∈ 𝑁 (Tr 𝑏 ∧ ∀𝑦 ∈ 𝑏 Tr 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | treq 5234 | . . . . 5 ⊢ (𝑦 = 𝑏 → (Tr 𝑦 ↔ Tr 𝑏)) | |
| 2 | 1 | cbvralvw 3218 | . . . 4 ⊢ (∀𝑦 ∈ 𝑁 Tr 𝑦 ↔ ∀𝑏 ∈ 𝑁 Tr 𝑏) |
| 3 | 2 | biimpi 216 | . . 3 ⊢ (∀𝑦 ∈ 𝑁 Tr 𝑦 → ∀𝑏 ∈ 𝑁 Tr 𝑏) |
| 4 | 3 | adantl 481 | . 2 ⊢ ((Tr 𝑁 ∧ ∀𝑦 ∈ 𝑁 Tr 𝑦) → ∀𝑏 ∈ 𝑁 Tr 𝑏) |
| 5 | trss 5237 | . . . . . 6 ⊢ (Tr 𝑁 → (𝑏 ∈ 𝑁 → 𝑏 ⊆ 𝑁)) | |
| 6 | ssralv 4025 | . . . . . 6 ⊢ (𝑏 ⊆ 𝑁 → (∀𝑦 ∈ 𝑁 Tr 𝑦 → ∀𝑦 ∈ 𝑏 Tr 𝑦)) | |
| 7 | 5, 6 | syl6 35 | . . . . 5 ⊢ (Tr 𝑁 → (𝑏 ∈ 𝑁 → (∀𝑦 ∈ 𝑁 Tr 𝑦 → ∀𝑦 ∈ 𝑏 Tr 𝑦))) |
| 8 | 7 | com23 86 | . . . 4 ⊢ (Tr 𝑁 → (∀𝑦 ∈ 𝑁 Tr 𝑦 → (𝑏 ∈ 𝑁 → ∀𝑦 ∈ 𝑏 Tr 𝑦))) |
| 9 | 8 | imp 406 | . . 3 ⊢ ((Tr 𝑁 ∧ ∀𝑦 ∈ 𝑁 Tr 𝑦) → (𝑏 ∈ 𝑁 → ∀𝑦 ∈ 𝑏 Tr 𝑦)) |
| 10 | 9 | ralrimiv 3129 | . 2 ⊢ ((Tr 𝑁 ∧ ∀𝑦 ∈ 𝑁 Tr 𝑦) → ∀𝑏 ∈ 𝑁 ∀𝑦 ∈ 𝑏 Tr 𝑦) |
| 11 | r19.26 3097 | . 2 ⊢ (∀𝑏 ∈ 𝑁 (Tr 𝑏 ∧ ∀𝑦 ∈ 𝑏 Tr 𝑦) ↔ (∀𝑏 ∈ 𝑁 Tr 𝑏 ∧ ∀𝑏 ∈ 𝑁 ∀𝑦 ∈ 𝑏 Tr 𝑦)) | |
| 12 | 4, 10, 11 | sylanbrc 583 | 1 ⊢ ((Tr 𝑁 ∧ ∀𝑦 ∈ 𝑁 Tr 𝑦) → ∀𝑏 ∈ 𝑁 (Tr 𝑏 ∧ ∀𝑦 ∈ 𝑏 Tr 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ∀wral 3050 ⊆ wss 3924 Tr wtr 5226 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-v 3459 df-ss 3941 df-uni 4881 df-tr 5227 |
| This theorem is referenced by: dford3lem2 42976 dford3 42977 |
| Copyright terms: Public domain | W3C validator |