Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dford3lem1 | Structured version Visualization version GIF version |
Description: Lemma for dford3 40850. (Contributed by Stefan O'Rear, 28-Oct-2014.) |
Ref | Expression |
---|---|
dford3lem1 | ⊢ ((Tr 𝑁 ∧ ∀𝑦 ∈ 𝑁 Tr 𝑦) → ∀𝑏 ∈ 𝑁 (Tr 𝑏 ∧ ∀𝑦 ∈ 𝑏 Tr 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | treq 5197 | . . . . 5 ⊢ (𝑦 = 𝑏 → (Tr 𝑦 ↔ Tr 𝑏)) | |
2 | 1 | cbvralvw 3383 | . . . 4 ⊢ (∀𝑦 ∈ 𝑁 Tr 𝑦 ↔ ∀𝑏 ∈ 𝑁 Tr 𝑏) |
3 | 2 | biimpi 215 | . . 3 ⊢ (∀𝑦 ∈ 𝑁 Tr 𝑦 → ∀𝑏 ∈ 𝑁 Tr 𝑏) |
4 | 3 | adantl 482 | . 2 ⊢ ((Tr 𝑁 ∧ ∀𝑦 ∈ 𝑁 Tr 𝑦) → ∀𝑏 ∈ 𝑁 Tr 𝑏) |
5 | trss 5200 | . . . . . 6 ⊢ (Tr 𝑁 → (𝑏 ∈ 𝑁 → 𝑏 ⊆ 𝑁)) | |
6 | ssralv 3987 | . . . . . 6 ⊢ (𝑏 ⊆ 𝑁 → (∀𝑦 ∈ 𝑁 Tr 𝑦 → ∀𝑦 ∈ 𝑏 Tr 𝑦)) | |
7 | 5, 6 | syl6 35 | . . . . 5 ⊢ (Tr 𝑁 → (𝑏 ∈ 𝑁 → (∀𝑦 ∈ 𝑁 Tr 𝑦 → ∀𝑦 ∈ 𝑏 Tr 𝑦))) |
8 | 7 | com23 86 | . . . 4 ⊢ (Tr 𝑁 → (∀𝑦 ∈ 𝑁 Tr 𝑦 → (𝑏 ∈ 𝑁 → ∀𝑦 ∈ 𝑏 Tr 𝑦))) |
9 | 8 | imp 407 | . . 3 ⊢ ((Tr 𝑁 ∧ ∀𝑦 ∈ 𝑁 Tr 𝑦) → (𝑏 ∈ 𝑁 → ∀𝑦 ∈ 𝑏 Tr 𝑦)) |
10 | 9 | ralrimiv 3102 | . 2 ⊢ ((Tr 𝑁 ∧ ∀𝑦 ∈ 𝑁 Tr 𝑦) → ∀𝑏 ∈ 𝑁 ∀𝑦 ∈ 𝑏 Tr 𝑦) |
11 | r19.26 3095 | . 2 ⊢ (∀𝑏 ∈ 𝑁 (Tr 𝑏 ∧ ∀𝑦 ∈ 𝑏 Tr 𝑦) ↔ (∀𝑏 ∈ 𝑁 Tr 𝑏 ∧ ∀𝑏 ∈ 𝑁 ∀𝑦 ∈ 𝑏 Tr 𝑦)) | |
12 | 4, 10, 11 | sylanbrc 583 | 1 ⊢ ((Tr 𝑁 ∧ ∀𝑦 ∈ 𝑁 Tr 𝑦) → ∀𝑏 ∈ 𝑁 (Tr 𝑏 ∧ ∀𝑦 ∈ 𝑏 Tr 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 Tr wtr 5191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-v 3434 df-in 3894 df-ss 3904 df-uni 4840 df-tr 5192 |
This theorem is referenced by: dford3lem2 40849 dford3 40850 |
Copyright terms: Public domain | W3C validator |