![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dford3lem1 | Structured version Visualization version GIF version |
Description: Lemma for dford3 42345. (Contributed by Stefan O'Rear, 28-Oct-2014.) |
Ref | Expression |
---|---|
dford3lem1 | ⊢ ((Tr 𝑁 ∧ ∀𝑦 ∈ 𝑁 Tr 𝑦) → ∀𝑏 ∈ 𝑁 (Tr 𝑏 ∧ ∀𝑦 ∈ 𝑏 Tr 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | treq 5266 | . . . . 5 ⊢ (𝑦 = 𝑏 → (Tr 𝑦 ↔ Tr 𝑏)) | |
2 | 1 | cbvralvw 3228 | . . . 4 ⊢ (∀𝑦 ∈ 𝑁 Tr 𝑦 ↔ ∀𝑏 ∈ 𝑁 Tr 𝑏) |
3 | 2 | biimpi 215 | . . 3 ⊢ (∀𝑦 ∈ 𝑁 Tr 𝑦 → ∀𝑏 ∈ 𝑁 Tr 𝑏) |
4 | 3 | adantl 481 | . 2 ⊢ ((Tr 𝑁 ∧ ∀𝑦 ∈ 𝑁 Tr 𝑦) → ∀𝑏 ∈ 𝑁 Tr 𝑏) |
5 | trss 5269 | . . . . . 6 ⊢ (Tr 𝑁 → (𝑏 ∈ 𝑁 → 𝑏 ⊆ 𝑁)) | |
6 | ssralv 4045 | . . . . . 6 ⊢ (𝑏 ⊆ 𝑁 → (∀𝑦 ∈ 𝑁 Tr 𝑦 → ∀𝑦 ∈ 𝑏 Tr 𝑦)) | |
7 | 5, 6 | syl6 35 | . . . . 5 ⊢ (Tr 𝑁 → (𝑏 ∈ 𝑁 → (∀𝑦 ∈ 𝑁 Tr 𝑦 → ∀𝑦 ∈ 𝑏 Tr 𝑦))) |
8 | 7 | com23 86 | . . . 4 ⊢ (Tr 𝑁 → (∀𝑦 ∈ 𝑁 Tr 𝑦 → (𝑏 ∈ 𝑁 → ∀𝑦 ∈ 𝑏 Tr 𝑦))) |
9 | 8 | imp 406 | . . 3 ⊢ ((Tr 𝑁 ∧ ∀𝑦 ∈ 𝑁 Tr 𝑦) → (𝑏 ∈ 𝑁 → ∀𝑦 ∈ 𝑏 Tr 𝑦)) |
10 | 9 | ralrimiv 3139 | . 2 ⊢ ((Tr 𝑁 ∧ ∀𝑦 ∈ 𝑁 Tr 𝑦) → ∀𝑏 ∈ 𝑁 ∀𝑦 ∈ 𝑏 Tr 𝑦) |
11 | r19.26 3105 | . 2 ⊢ (∀𝑏 ∈ 𝑁 (Tr 𝑏 ∧ ∀𝑦 ∈ 𝑏 Tr 𝑦) ↔ (∀𝑏 ∈ 𝑁 Tr 𝑏 ∧ ∀𝑏 ∈ 𝑁 ∀𝑦 ∈ 𝑏 Tr 𝑦)) | |
12 | 4, 10, 11 | sylanbrc 582 | 1 ⊢ ((Tr 𝑁 ∧ ∀𝑦 ∈ 𝑁 Tr 𝑦) → ∀𝑏 ∈ 𝑁 (Tr 𝑏 ∧ ∀𝑦 ∈ 𝑏 Tr 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 ∀wral 3055 ⊆ wss 3943 Tr wtr 5258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-v 3470 df-in 3950 df-ss 3960 df-uni 4903 df-tr 5259 |
This theorem is referenced by: dford3lem2 42344 dford3 42345 |
Copyright terms: Public domain | W3C validator |