Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dford3lem1 Structured version   Visualization version   GIF version

Theorem dford3lem1 42512
Description: Lemma for dford3 42514. (Contributed by Stefan O'Rear, 28-Oct-2014.)
Assertion
Ref Expression
dford3lem1 ((Tr 𝑁 ∧ ∀𝑦𝑁 Tr 𝑦) → ∀𝑏𝑁 (Tr 𝑏 ∧ ∀𝑦𝑏 Tr 𝑦))
Distinct variable group:   𝑦,𝑏,𝑁

Proof of Theorem dford3lem1
StepHypRef Expression
1 treq 5268 . . . . 5 (𝑦 = 𝑏 → (Tr 𝑦 ↔ Tr 𝑏))
21cbvralvw 3225 . . . 4 (∀𝑦𝑁 Tr 𝑦 ↔ ∀𝑏𝑁 Tr 𝑏)
32biimpi 215 . . 3 (∀𝑦𝑁 Tr 𝑦 → ∀𝑏𝑁 Tr 𝑏)
43adantl 480 . 2 ((Tr 𝑁 ∧ ∀𝑦𝑁 Tr 𝑦) → ∀𝑏𝑁 Tr 𝑏)
5 trss 5271 . . . . . 6 (Tr 𝑁 → (𝑏𝑁𝑏𝑁))
6 ssralv 4041 . . . . . 6 (𝑏𝑁 → (∀𝑦𝑁 Tr 𝑦 → ∀𝑦𝑏 Tr 𝑦))
75, 6syl6 35 . . . . 5 (Tr 𝑁 → (𝑏𝑁 → (∀𝑦𝑁 Tr 𝑦 → ∀𝑦𝑏 Tr 𝑦)))
87com23 86 . . . 4 (Tr 𝑁 → (∀𝑦𝑁 Tr 𝑦 → (𝑏𝑁 → ∀𝑦𝑏 Tr 𝑦)))
98imp 405 . . 3 ((Tr 𝑁 ∧ ∀𝑦𝑁 Tr 𝑦) → (𝑏𝑁 → ∀𝑦𝑏 Tr 𝑦))
109ralrimiv 3135 . 2 ((Tr 𝑁 ∧ ∀𝑦𝑁 Tr 𝑦) → ∀𝑏𝑁𝑦𝑏 Tr 𝑦)
11 r19.26 3101 . 2 (∀𝑏𝑁 (Tr 𝑏 ∧ ∀𝑦𝑏 Tr 𝑦) ↔ (∀𝑏𝑁 Tr 𝑏 ∧ ∀𝑏𝑁𝑦𝑏 Tr 𝑦))
124, 10, 11sylanbrc 581 1 ((Tr 𝑁 ∧ ∀𝑦𝑁 Tr 𝑦) → ∀𝑏𝑁 (Tr 𝑏 ∧ ∀𝑦𝑏 Tr 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2098  wral 3051  wss 3939  Tr wtr 5260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3052  df-v 3465  df-ss 3956  df-uni 4904  df-tr 5261
This theorem is referenced by:  dford3lem2  42513  dford3  42514
  Copyright terms: Public domain W3C validator