Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setindtrs Structured version   Visualization version   GIF version

Theorem setindtrs 41335
Description: Set induction scheme without Infinity. See comments at setindtr 41334. (Contributed by Stefan O'Rear, 28-Oct-2014.)
Hypotheses
Ref Expression
setindtrs.a (∀𝑦𝑥 𝜓𝜑)
setindtrs.b (𝑥 = 𝑦 → (𝜑𝜓))
setindtrs.c (𝑥 = 𝐵 → (𝜑𝜒))
Assertion
Ref Expression
setindtrs (∃𝑧(Tr 𝑧𝐵𝑧) → 𝜒)
Distinct variable groups:   𝑥,𝐵,𝑧   𝜑,𝑦   𝜓,𝑥   𝜒,𝑥   𝜑,𝑧   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)   𝜒(𝑦,𝑧)   𝐵(𝑦)

Proof of Theorem setindtrs
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 setindtr 41334 . . 3 (∀𝑎(𝑎 ⊆ {𝑥𝜑} → 𝑎 ∈ {𝑥𝜑}) → (∃𝑧(Tr 𝑧𝐵𝑧) → 𝐵 ∈ {𝑥𝜑}))
2 dfss3 3932 . . . 4 (𝑎 ⊆ {𝑥𝜑} ↔ ∀𝑦𝑎 𝑦 ∈ {𝑥𝜑})
3 nfcv 2907 . . . . . . 7 𝑥𝑎
4 nfsab1 2721 . . . . . . 7 𝑥 𝑦 ∈ {𝑥𝜑}
53, 4nfralw 3294 . . . . . 6 𝑥𝑦𝑎 𝑦 ∈ {𝑥𝜑}
6 nfsab1 2721 . . . . . 6 𝑥 𝑎 ∈ {𝑥𝜑}
75, 6nfim 1899 . . . . 5 𝑥(∀𝑦𝑎 𝑦 ∈ {𝑥𝜑} → 𝑎 ∈ {𝑥𝜑})
8 raleq 3309 . . . . . 6 (𝑥 = 𝑎 → (∀𝑦𝑥 𝑦 ∈ {𝑥𝜑} ↔ ∀𝑦𝑎 𝑦 ∈ {𝑥𝜑}))
9 eleq1w 2820 . . . . . 6 (𝑥 = 𝑎 → (𝑥 ∈ {𝑥𝜑} ↔ 𝑎 ∈ {𝑥𝜑}))
108, 9imbi12d 344 . . . . 5 (𝑥 = 𝑎 → ((∀𝑦𝑥 𝑦 ∈ {𝑥𝜑} → 𝑥 ∈ {𝑥𝜑}) ↔ (∀𝑦𝑎 𝑦 ∈ {𝑥𝜑} → 𝑎 ∈ {𝑥𝜑})))
11 setindtrs.a . . . . . 6 (∀𝑦𝑥 𝜓𝜑)
12 vex 3449 . . . . . . . 8 𝑦 ∈ V
13 setindtrs.b . . . . . . . 8 (𝑥 = 𝑦 → (𝜑𝜓))
1412, 13elab 3630 . . . . . . 7 (𝑦 ∈ {𝑥𝜑} ↔ 𝜓)
1514ralbii 3096 . . . . . 6 (∀𝑦𝑥 𝑦 ∈ {𝑥𝜑} ↔ ∀𝑦𝑥 𝜓)
16 abid 2717 . . . . . 6 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
1711, 15, 163imtr4i 291 . . . . 5 (∀𝑦𝑥 𝑦 ∈ {𝑥𝜑} → 𝑥 ∈ {𝑥𝜑})
187, 10, 17chvarfv 2233 . . . 4 (∀𝑦𝑎 𝑦 ∈ {𝑥𝜑} → 𝑎 ∈ {𝑥𝜑})
192, 18sylbi 216 . . 3 (𝑎 ⊆ {𝑥𝜑} → 𝑎 ∈ {𝑥𝜑})
201, 19mpg 1799 . 2 (∃𝑧(Tr 𝑧𝐵𝑧) → 𝐵 ∈ {𝑥𝜑})
21 elex 3463 . . . . 5 (𝐵𝑧𝐵 ∈ V)
2221adantl 482 . . . 4 ((Tr 𝑧𝐵𝑧) → 𝐵 ∈ V)
2322exlimiv 1933 . . 3 (∃𝑧(Tr 𝑧𝐵𝑧) → 𝐵 ∈ V)
24 setindtrs.c . . . 4 (𝑥 = 𝐵 → (𝜑𝜒))
2524elabg 3628 . . 3 (𝐵 ∈ V → (𝐵 ∈ {𝑥𝜑} ↔ 𝜒))
2623, 25syl 17 . 2 (∃𝑧(Tr 𝑧𝐵𝑧) → (𝐵 ∈ {𝑥𝜑} ↔ 𝜒))
2720, 26mpbid 231 1 (∃𝑧(Tr 𝑧𝐵𝑧) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  {cab 2713  wral 3064  Vcvv 3445  wss 3910  Tr wtr 5222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-reg 9528
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-dif 3913  df-in 3917  df-ss 3927  df-nul 4283  df-uni 4866  df-tr 5223
This theorem is referenced by:  dford3lem2  41337
  Copyright terms: Public domain W3C validator