| Step | Hyp | Ref
| Expression |
| 1 | | setindtr 42981 |
. . 3
⊢
(∀𝑎(𝑎 ⊆ {𝑥 ∣ 𝜑} → 𝑎 ∈ {𝑥 ∣ 𝜑}) → (∃𝑧(Tr 𝑧 ∧ 𝐵 ∈ 𝑧) → 𝐵 ∈ {𝑥 ∣ 𝜑})) |
| 2 | | dfss3 3954 |
. . . 4
⊢ (𝑎 ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑦 ∈ 𝑎 𝑦 ∈ {𝑥 ∣ 𝜑}) |
| 3 | | nfcv 2897 |
. . . . . . 7
⊢
Ⅎ𝑥𝑎 |
| 4 | | nfsab1 2720 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} |
| 5 | 3, 4 | nfralw 3295 |
. . . . . 6
⊢
Ⅎ𝑥∀𝑦 ∈ 𝑎 𝑦 ∈ {𝑥 ∣ 𝜑} |
| 6 | | nfsab1 2720 |
. . . . . 6
⊢
Ⅎ𝑥 𝑎 ∈ {𝑥 ∣ 𝜑} |
| 7 | 5, 6 | nfim 1895 |
. . . . 5
⊢
Ⅎ𝑥(∀𝑦 ∈ 𝑎 𝑦 ∈ {𝑥 ∣ 𝜑} → 𝑎 ∈ {𝑥 ∣ 𝜑}) |
| 8 | | raleq 3307 |
. . . . . 6
⊢ (𝑥 = 𝑎 → (∀𝑦 ∈ 𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑦 ∈ 𝑎 𝑦 ∈ {𝑥 ∣ 𝜑})) |
| 9 | | eleq1w 2816 |
. . . . . 6
⊢ (𝑥 = 𝑎 → (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑎 ∈ {𝑥 ∣ 𝜑})) |
| 10 | 8, 9 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = 𝑎 → ((∀𝑦 ∈ 𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} → 𝑥 ∈ {𝑥 ∣ 𝜑}) ↔ (∀𝑦 ∈ 𝑎 𝑦 ∈ {𝑥 ∣ 𝜑} → 𝑎 ∈ {𝑥 ∣ 𝜑}))) |
| 11 | | setindtrs.a |
. . . . . 6
⊢
(∀𝑦 ∈
𝑥 𝜓 → 𝜑) |
| 12 | | vex 3468 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
| 13 | | setindtrs.b |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| 14 | 12, 13 | elab 3663 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| 15 | 14 | ralbii 3081 |
. . . . . 6
⊢
(∀𝑦 ∈
𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑦 ∈ 𝑥 𝜓) |
| 16 | | abid 2716 |
. . . . . 6
⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
| 17 | 11, 15, 16 | 3imtr4i 292 |
. . . . 5
⊢
(∀𝑦 ∈
𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} → 𝑥 ∈ {𝑥 ∣ 𝜑}) |
| 18 | 7, 10, 17 | chvarfv 2239 |
. . . 4
⊢
(∀𝑦 ∈
𝑎 𝑦 ∈ {𝑥 ∣ 𝜑} → 𝑎 ∈ {𝑥 ∣ 𝜑}) |
| 19 | 2, 18 | sylbi 217 |
. . 3
⊢ (𝑎 ⊆ {𝑥 ∣ 𝜑} → 𝑎 ∈ {𝑥 ∣ 𝜑}) |
| 20 | 1, 19 | mpg 1796 |
. 2
⊢
(∃𝑧(Tr 𝑧 ∧ 𝐵 ∈ 𝑧) → 𝐵 ∈ {𝑥 ∣ 𝜑}) |
| 21 | | elex 3485 |
. . . . 5
⊢ (𝐵 ∈ 𝑧 → 𝐵 ∈ V) |
| 22 | 21 | adantl 481 |
. . . 4
⊢ ((Tr
𝑧 ∧ 𝐵 ∈ 𝑧) → 𝐵 ∈ V) |
| 23 | 22 | exlimiv 1929 |
. . 3
⊢
(∃𝑧(Tr 𝑧 ∧ 𝐵 ∈ 𝑧) → 𝐵 ∈ V) |
| 24 | | setindtrs.c |
. . . 4
⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
| 25 | 24 | elabg 3660 |
. . 3
⊢ (𝐵 ∈ V → (𝐵 ∈ {𝑥 ∣ 𝜑} ↔ 𝜒)) |
| 26 | 23, 25 | syl 17 |
. 2
⊢
(∃𝑧(Tr 𝑧 ∧ 𝐵 ∈ 𝑧) → (𝐵 ∈ {𝑥 ∣ 𝜑} ↔ 𝜒)) |
| 27 | 20, 26 | mpbid 232 |
1
⊢
(∃𝑧(Tr 𝑧 ∧ 𝐵 ∈ 𝑧) → 𝜒) |