Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dford3 Structured version   Visualization version   GIF version

Theorem dford3 38119
Description: Ordinals are precisely the hereditarily transitive classes. (Contributed by Stefan O'Rear, 28-Oct-2014.)
Assertion
Ref Expression
dford3 (Ord 𝑁 ↔ (Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥))
Distinct variable group:   𝑥,𝑁

Proof of Theorem dford3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 ordtr 5879 . . 3 (Ord 𝑁 → Tr 𝑁)
2 ordelord 5887 . . . . 5 ((Ord 𝑁𝑥𝑁) → Ord 𝑥)
3 ordtr 5879 . . . . 5 (Ord 𝑥 → Tr 𝑥)
42, 3syl 17 . . . 4 ((Ord 𝑁𝑥𝑁) → Tr 𝑥)
54ralrimiva 3115 . . 3 (Ord 𝑁 → ∀𝑥𝑁 Tr 𝑥)
61, 5jca 501 . 2 (Ord 𝑁 → (Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥))
7 simpl 468 . . 3 ((Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥) → Tr 𝑁)
8 dford3lem1 38117 . . . . 5 ((Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥) → ∀𝑎𝑁 (Tr 𝑎 ∧ ∀𝑥𝑎 Tr 𝑥))
9 dford3lem2 38118 . . . . . 6 ((Tr 𝑎 ∧ ∀𝑥𝑎 Tr 𝑥) → 𝑎 ∈ On)
109ralimi 3101 . . . . 5 (∀𝑎𝑁 (Tr 𝑎 ∧ ∀𝑥𝑎 Tr 𝑥) → ∀𝑎𝑁 𝑎 ∈ On)
118, 10syl 17 . . . 4 ((Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥) → ∀𝑎𝑁 𝑎 ∈ On)
12 dfss3 3741 . . . 4 (𝑁 ⊆ On ↔ ∀𝑎𝑁 𝑎 ∈ On)
1311, 12sylibr 224 . . 3 ((Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥) → 𝑁 ⊆ On)
14 ordon 7133 . . . 4 Ord On
1514a1i 11 . . 3 ((Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥) → Ord On)
16 trssord 5882 . . 3 ((Tr 𝑁𝑁 ⊆ On ∧ Ord On) → Ord 𝑁)
177, 13, 15, 16syl3anc 1476 . 2 ((Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥) → Ord 𝑁)
186, 17impbii 199 1 (Ord 𝑁 ↔ (Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 382  wcel 2145  wral 3061  wss 3723  Tr wtr 4887  Ord word 5864  Oncon0 5865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pr 5035  ax-un 7100  ax-reg 8657
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-tr 4888  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-ord 5868  df-on 5869  df-suc 5871
This theorem is referenced by:  dford4  38120
  Copyright terms: Public domain W3C validator