Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dford3 Structured version   Visualization version   GIF version

Theorem dford3 40850
Description: Ordinals are precisely the hereditarily transitive classes. (Contributed by Stefan O'Rear, 28-Oct-2014.)
Assertion
Ref Expression
dford3 (Ord 𝑁 ↔ (Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥))
Distinct variable group:   𝑥,𝑁

Proof of Theorem dford3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 ordtr 6280 . . 3 (Ord 𝑁 → Tr 𝑁)
2 ordelord 6288 . . . . 5 ((Ord 𝑁𝑥𝑁) → Ord 𝑥)
3 ordtr 6280 . . . . 5 (Ord 𝑥 → Tr 𝑥)
42, 3syl 17 . . . 4 ((Ord 𝑁𝑥𝑁) → Tr 𝑥)
54ralrimiva 3103 . . 3 (Ord 𝑁 → ∀𝑥𝑁 Tr 𝑥)
61, 5jca 512 . 2 (Ord 𝑁 → (Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥))
7 simpl 483 . . 3 ((Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥) → Tr 𝑁)
8 dford3lem1 40848 . . . . 5 ((Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥) → ∀𝑎𝑁 (Tr 𝑎 ∧ ∀𝑥𝑎 Tr 𝑥))
9 dford3lem2 40849 . . . . . 6 ((Tr 𝑎 ∧ ∀𝑥𝑎 Tr 𝑥) → 𝑎 ∈ On)
109ralimi 3087 . . . . 5 (∀𝑎𝑁 (Tr 𝑎 ∧ ∀𝑥𝑎 Tr 𝑥) → ∀𝑎𝑁 𝑎 ∈ On)
118, 10syl 17 . . . 4 ((Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥) → ∀𝑎𝑁 𝑎 ∈ On)
12 dfss3 3909 . . . 4 (𝑁 ⊆ On ↔ ∀𝑎𝑁 𝑎 ∈ On)
1311, 12sylibr 233 . . 3 ((Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥) → 𝑁 ⊆ On)
14 ordon 7627 . . . 4 Ord On
1514a1i 11 . . 3 ((Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥) → Ord On)
16 trssord 6283 . . 3 ((Tr 𝑁𝑁 ⊆ On ∧ Ord On) → Ord 𝑁)
177, 13, 15, 16syl3anc 1370 . 2 ((Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥) → Ord 𝑁)
186, 17impbii 208 1 (Ord 𝑁 ↔ (Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wcel 2106  wral 3064  wss 3887  Tr wtr 5191  Ord word 6265  Oncon0 6266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588  ax-reg 9351
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270  df-suc 6272
This theorem is referenced by:  dford4  40851
  Copyright terms: Public domain W3C validator