Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dford3 Structured version   Visualization version   GIF version

Theorem dford3 42985
Description: Ordinals are precisely the hereditarily transitive classes. Definition 1.2 of [Schloeder] p. 1. (Contributed by Stefan O'Rear, 28-Oct-2014.)
Assertion
Ref Expression
dford3 (Ord 𝑁 ↔ (Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥))
Distinct variable group:   𝑥,𝑁

Proof of Theorem dford3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 ordtr 6409 . . 3 (Ord 𝑁 → Tr 𝑁)
2 ordelord 6417 . . . . 5 ((Ord 𝑁𝑥𝑁) → Ord 𝑥)
3 ordtr 6409 . . . . 5 (Ord 𝑥 → Tr 𝑥)
42, 3syl 17 . . . 4 ((Ord 𝑁𝑥𝑁) → Tr 𝑥)
54ralrimiva 3152 . . 3 (Ord 𝑁 → ∀𝑥𝑁 Tr 𝑥)
61, 5jca 511 . 2 (Ord 𝑁 → (Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥))
7 simpl 482 . . 3 ((Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥) → Tr 𝑁)
8 dford3lem1 42983 . . . . 5 ((Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥) → ∀𝑎𝑁 (Tr 𝑎 ∧ ∀𝑥𝑎 Tr 𝑥))
9 dford3lem2 42984 . . . . . 6 ((Tr 𝑎 ∧ ∀𝑥𝑎 Tr 𝑥) → 𝑎 ∈ On)
109ralimi 3089 . . . . 5 (∀𝑎𝑁 (Tr 𝑎 ∧ ∀𝑥𝑎 Tr 𝑥) → ∀𝑎𝑁 𝑎 ∈ On)
118, 10syl 17 . . . 4 ((Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥) → ∀𝑎𝑁 𝑎 ∈ On)
12 dfss3 3997 . . . 4 (𝑁 ⊆ On ↔ ∀𝑎𝑁 𝑎 ∈ On)
1311, 12sylibr 234 . . 3 ((Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥) → 𝑁 ⊆ On)
14 ordon 7812 . . . 4 Ord On
1514a1i 11 . . 3 ((Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥) → Ord On)
16 trssord 6412 . . 3 ((Tr 𝑁𝑁 ⊆ On ∧ Ord On) → Ord 𝑁)
177, 13, 15, 16syl3anc 1371 . 2 ((Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥) → Ord 𝑁)
186, 17impbii 209 1 (Ord 𝑁 ↔ (Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  wral 3067  wss 3976  Tr wtr 5283  Ord word 6394  Oncon0 6395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-reg 9661
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-suc 6401
This theorem is referenced by:  dford4  42986
  Copyright terms: Public domain W3C validator