Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dford3 Structured version   Visualization version   GIF version

Theorem dford3 40766
Description: Ordinals are precisely the hereditarily transitive classes. (Contributed by Stefan O'Rear, 28-Oct-2014.)
Assertion
Ref Expression
dford3 (Ord 𝑁 ↔ (Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥))
Distinct variable group:   𝑥,𝑁

Proof of Theorem dford3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 ordtr 6265 . . 3 (Ord 𝑁 → Tr 𝑁)
2 ordelord 6273 . . . . 5 ((Ord 𝑁𝑥𝑁) → Ord 𝑥)
3 ordtr 6265 . . . . 5 (Ord 𝑥 → Tr 𝑥)
42, 3syl 17 . . . 4 ((Ord 𝑁𝑥𝑁) → Tr 𝑥)
54ralrimiva 3107 . . 3 (Ord 𝑁 → ∀𝑥𝑁 Tr 𝑥)
61, 5jca 511 . 2 (Ord 𝑁 → (Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥))
7 simpl 482 . . 3 ((Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥) → Tr 𝑁)
8 dford3lem1 40764 . . . . 5 ((Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥) → ∀𝑎𝑁 (Tr 𝑎 ∧ ∀𝑥𝑎 Tr 𝑥))
9 dford3lem2 40765 . . . . . 6 ((Tr 𝑎 ∧ ∀𝑥𝑎 Tr 𝑥) → 𝑎 ∈ On)
109ralimi 3086 . . . . 5 (∀𝑎𝑁 (Tr 𝑎 ∧ ∀𝑥𝑎 Tr 𝑥) → ∀𝑎𝑁 𝑎 ∈ On)
118, 10syl 17 . . . 4 ((Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥) → ∀𝑎𝑁 𝑎 ∈ On)
12 dfss3 3905 . . . 4 (𝑁 ⊆ On ↔ ∀𝑎𝑁 𝑎 ∈ On)
1311, 12sylibr 233 . . 3 ((Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥) → 𝑁 ⊆ On)
14 ordon 7604 . . . 4 Ord On
1514a1i 11 . . 3 ((Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥) → Ord On)
16 trssord 6268 . . 3 ((Tr 𝑁𝑁 ⊆ On ∧ Ord On) → Ord 𝑁)
177, 13, 15, 16syl3anc 1369 . 2 ((Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥) → Ord 𝑁)
186, 17impbii 208 1 (Ord 𝑁 ↔ (Tr 𝑁 ∧ ∀𝑥𝑁 Tr 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wcel 2108  wral 3063  wss 3883  Tr wtr 5187  Ord word 6250  Oncon0 6251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-reg 9281
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255  df-suc 6257
This theorem is referenced by:  dford4  40767
  Copyright terms: Public domain W3C validator