![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dford3 | Structured version Visualization version GIF version |
Description: Ordinals are precisely the hereditarily transitive classes. Definition 1.2 of [Schloeder] p. 1. (Contributed by Stefan O'Rear, 28-Oct-2014.) |
Ref | Expression |
---|---|
dford3 | ⊢ (Ord 𝑁 ↔ (Tr 𝑁 ∧ ∀𝑥 ∈ 𝑁 Tr 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr 6375 | . . 3 ⊢ (Ord 𝑁 → Tr 𝑁) | |
2 | ordelord 6383 | . . . . 5 ⊢ ((Ord 𝑁 ∧ 𝑥 ∈ 𝑁) → Ord 𝑥) | |
3 | ordtr 6375 | . . . . 5 ⊢ (Ord 𝑥 → Tr 𝑥) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ ((Ord 𝑁 ∧ 𝑥 ∈ 𝑁) → Tr 𝑥) |
5 | 4 | ralrimiva 3146 | . . 3 ⊢ (Ord 𝑁 → ∀𝑥 ∈ 𝑁 Tr 𝑥) |
6 | 1, 5 | jca 512 | . 2 ⊢ (Ord 𝑁 → (Tr 𝑁 ∧ ∀𝑥 ∈ 𝑁 Tr 𝑥)) |
7 | simpl 483 | . . 3 ⊢ ((Tr 𝑁 ∧ ∀𝑥 ∈ 𝑁 Tr 𝑥) → Tr 𝑁) | |
8 | dford3lem1 41750 | . . . . 5 ⊢ ((Tr 𝑁 ∧ ∀𝑥 ∈ 𝑁 Tr 𝑥) → ∀𝑎 ∈ 𝑁 (Tr 𝑎 ∧ ∀𝑥 ∈ 𝑎 Tr 𝑥)) | |
9 | dford3lem2 41751 | . . . . . 6 ⊢ ((Tr 𝑎 ∧ ∀𝑥 ∈ 𝑎 Tr 𝑥) → 𝑎 ∈ On) | |
10 | 9 | ralimi 3083 | . . . . 5 ⊢ (∀𝑎 ∈ 𝑁 (Tr 𝑎 ∧ ∀𝑥 ∈ 𝑎 Tr 𝑥) → ∀𝑎 ∈ 𝑁 𝑎 ∈ On) |
11 | 8, 10 | syl 17 | . . . 4 ⊢ ((Tr 𝑁 ∧ ∀𝑥 ∈ 𝑁 Tr 𝑥) → ∀𝑎 ∈ 𝑁 𝑎 ∈ On) |
12 | dfss3 3969 | . . . 4 ⊢ (𝑁 ⊆ On ↔ ∀𝑎 ∈ 𝑁 𝑎 ∈ On) | |
13 | 11, 12 | sylibr 233 | . . 3 ⊢ ((Tr 𝑁 ∧ ∀𝑥 ∈ 𝑁 Tr 𝑥) → 𝑁 ⊆ On) |
14 | ordon 7760 | . . . 4 ⊢ Ord On | |
15 | 14 | a1i 11 | . . 3 ⊢ ((Tr 𝑁 ∧ ∀𝑥 ∈ 𝑁 Tr 𝑥) → Ord On) |
16 | trssord 6378 | . . 3 ⊢ ((Tr 𝑁 ∧ 𝑁 ⊆ On ∧ Ord On) → Ord 𝑁) | |
17 | 7, 13, 15, 16 | syl3anc 1371 | . 2 ⊢ ((Tr 𝑁 ∧ ∀𝑥 ∈ 𝑁 Tr 𝑥) → Ord 𝑁) |
18 | 6, 17 | impbii 208 | 1 ⊢ (Ord 𝑁 ↔ (Tr 𝑁 ∧ ∀𝑥 ∈ 𝑁 Tr 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∀wral 3061 ⊆ wss 3947 Tr wtr 5264 Ord word 6360 Oncon0 6361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 ax-reg 9583 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-ord 6364 df-on 6365 df-suc 6367 |
This theorem is referenced by: dford4 41753 |
Copyright terms: Public domain | W3C validator |