Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dford3lem2 Structured version   Visualization version   GIF version

Theorem dford3lem2 40032
 Description: Lemma for dford3 40033. (Contributed by Stefan O'Rear, 28-Oct-2014.)
Assertion
Ref Expression
dford3lem2 ((Tr 𝑥 ∧ ∀𝑦𝑥 Tr 𝑦) → 𝑥 ∈ On)
Distinct variable group:   𝑥,𝑦

Proof of Theorem dford3lem2
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suctr 6245 . . . 4 (Tr 𝑥 → Tr suc 𝑥)
2 vex 3444 . . . . 5 𝑥 ∈ V
32sucid 6241 . . . 4 𝑥 ∈ suc 𝑥
42sucex 7513 . . . . 5 suc 𝑥 ∈ V
5 treq 5143 . . . . . 6 (𝑐 = suc 𝑥 → (Tr 𝑐 ↔ Tr suc 𝑥))
6 eleq2 2878 . . . . . 6 (𝑐 = suc 𝑥 → (𝑥𝑐𝑥 ∈ suc 𝑥))
75, 6anbi12d 633 . . . . 5 (𝑐 = suc 𝑥 → ((Tr 𝑐𝑥𝑐) ↔ (Tr suc 𝑥𝑥 ∈ suc 𝑥)))
84, 7spcev 3555 . . . 4 ((Tr suc 𝑥𝑥 ∈ suc 𝑥) → ∃𝑐(Tr 𝑐𝑥𝑐))
91, 3, 8sylancl 589 . . 3 (Tr 𝑥 → ∃𝑐(Tr 𝑐𝑥𝑐))
109adantr 484 . 2 ((Tr 𝑥 ∧ ∀𝑦𝑥 Tr 𝑦) → ∃𝑐(Tr 𝑐𝑥𝑐))
11 simprl 770 . . . . . 6 ((∀𝑏𝑎 ((Tr 𝑏 ∧ ∀𝑦𝑏 Tr 𝑦) → 𝑏 ∈ On) ∧ (Tr 𝑎 ∧ ∀𝑦𝑎 Tr 𝑦)) → Tr 𝑎)
12 dford3lem1 40031 . . . . . . . . 9 ((Tr 𝑎 ∧ ∀𝑦𝑎 Tr 𝑦) → ∀𝑏𝑎 (Tr 𝑏 ∧ ∀𝑦𝑏 Tr 𝑦))
13 ralim 3130 . . . . . . . . 9 (∀𝑏𝑎 ((Tr 𝑏 ∧ ∀𝑦𝑏 Tr 𝑦) → 𝑏 ∈ On) → (∀𝑏𝑎 (Tr 𝑏 ∧ ∀𝑦𝑏 Tr 𝑦) → ∀𝑏𝑎 𝑏 ∈ On))
1412, 13syl5 34 . . . . . . . 8 (∀𝑏𝑎 ((Tr 𝑏 ∧ ∀𝑦𝑏 Tr 𝑦) → 𝑏 ∈ On) → ((Tr 𝑎 ∧ ∀𝑦𝑎 Tr 𝑦) → ∀𝑏𝑎 𝑏 ∈ On))
1514imp 410 . . . . . . 7 ((∀𝑏𝑎 ((Tr 𝑏 ∧ ∀𝑦𝑏 Tr 𝑦) → 𝑏 ∈ On) ∧ (Tr 𝑎 ∧ ∀𝑦𝑎 Tr 𝑦)) → ∀𝑏𝑎 𝑏 ∈ On)
16 dfss3 3903 . . . . . . 7 (𝑎 ⊆ On ↔ ∀𝑏𝑎 𝑏 ∈ On)
1715, 16sylibr 237 . . . . . 6 ((∀𝑏𝑎 ((Tr 𝑏 ∧ ∀𝑦𝑏 Tr 𝑦) → 𝑏 ∈ On) ∧ (Tr 𝑎 ∧ ∀𝑦𝑎 Tr 𝑦)) → 𝑎 ⊆ On)
18 ordon 7485 . . . . . . 7 Ord On
1918a1i 11 . . . . . 6 ((∀𝑏𝑎 ((Tr 𝑏 ∧ ∀𝑦𝑏 Tr 𝑦) → 𝑏 ∈ On) ∧ (Tr 𝑎 ∧ ∀𝑦𝑎 Tr 𝑦)) → Ord On)
20 trssord 6179 . . . . . 6 ((Tr 𝑎𝑎 ⊆ On ∧ Ord On) → Ord 𝑎)
2111, 17, 19, 20syl3anc 1368 . . . . 5 ((∀𝑏𝑎 ((Tr 𝑏 ∧ ∀𝑦𝑏 Tr 𝑦) → 𝑏 ∈ On) ∧ (Tr 𝑎 ∧ ∀𝑦𝑎 Tr 𝑦)) → Ord 𝑎)
22 vex 3444 . . . . . 6 𝑎 ∈ V
2322elon 6171 . . . . 5 (𝑎 ∈ On ↔ Ord 𝑎)
2421, 23sylibr 237 . . . 4 ((∀𝑏𝑎 ((Tr 𝑏 ∧ ∀𝑦𝑏 Tr 𝑦) → 𝑏 ∈ On) ∧ (Tr 𝑎 ∧ ∀𝑦𝑎 Tr 𝑦)) → 𝑎 ∈ On)
2524ex 416 . . 3 (∀𝑏𝑎 ((Tr 𝑏 ∧ ∀𝑦𝑏 Tr 𝑦) → 𝑏 ∈ On) → ((Tr 𝑎 ∧ ∀𝑦𝑎 Tr 𝑦) → 𝑎 ∈ On))
26 treq 5143 . . . . 5 (𝑎 = 𝑏 → (Tr 𝑎 ↔ Tr 𝑏))
27 raleq 3358 . . . . 5 (𝑎 = 𝑏 → (∀𝑦𝑎 Tr 𝑦 ↔ ∀𝑦𝑏 Tr 𝑦))
2826, 27anbi12d 633 . . . 4 (𝑎 = 𝑏 → ((Tr 𝑎 ∧ ∀𝑦𝑎 Tr 𝑦) ↔ (Tr 𝑏 ∧ ∀𝑦𝑏 Tr 𝑦)))
29 eleq1w 2872 . . . 4 (𝑎 = 𝑏 → (𝑎 ∈ On ↔ 𝑏 ∈ On))
3028, 29imbi12d 348 . . 3 (𝑎 = 𝑏 → (((Tr 𝑎 ∧ ∀𝑦𝑎 Tr 𝑦) → 𝑎 ∈ On) ↔ ((Tr 𝑏 ∧ ∀𝑦𝑏 Tr 𝑦) → 𝑏 ∈ On)))
31 treq 5143 . . . . 5 (𝑎 = 𝑥 → (Tr 𝑎 ↔ Tr 𝑥))
32 raleq 3358 . . . . 5 (𝑎 = 𝑥 → (∀𝑦𝑎 Tr 𝑦 ↔ ∀𝑦𝑥 Tr 𝑦))
3331, 32anbi12d 633 . . . 4 (𝑎 = 𝑥 → ((Tr 𝑎 ∧ ∀𝑦𝑎 Tr 𝑦) ↔ (Tr 𝑥 ∧ ∀𝑦𝑥 Tr 𝑦)))
34 eleq1w 2872 . . . 4 (𝑎 = 𝑥 → (𝑎 ∈ On ↔ 𝑥 ∈ On))
3533, 34imbi12d 348 . . 3 (𝑎 = 𝑥 → (((Tr 𝑎 ∧ ∀𝑦𝑎 Tr 𝑦) → 𝑎 ∈ On) ↔ ((Tr 𝑥 ∧ ∀𝑦𝑥 Tr 𝑦) → 𝑥 ∈ On)))
3625, 30, 35setindtrs 40030 . 2 (∃𝑐(Tr 𝑐𝑥𝑐) → ((Tr 𝑥 ∧ ∀𝑦𝑥 Tr 𝑦) → 𝑥 ∈ On))
3710, 36mpcom 38 1 ((Tr 𝑥 ∧ ∀𝑦𝑥 Tr 𝑦) → 𝑥 ∈ On)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538  ∃wex 1781   ∈ wcel 2111  ∀wral 3106   ⊆ wss 3881  Tr wtr 5137  Ord word 6161  Oncon0 6162  suc csuc 6164 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pr 5296  ax-un 7448  ax-reg 9047 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-br 5032  df-opab 5094  df-tr 5138  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-ord 6165  df-on 6166  df-suc 6168 This theorem is referenced by:  dford3  40033
 Copyright terms: Public domain W3C validator