Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tsktrss | Structured version Visualization version GIF version |
Description: A transitive element of a Tarski class is a part of the class. JFM CLASSES2 th. 8. (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
tsktrss | ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝐴 ∧ 𝐴 ∈ 𝑇) → 𝐴 ⊆ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1136 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝐴 ∧ 𝐴 ∈ 𝑇) → Tr 𝐴) | |
2 | dftr4 5216 | . . 3 ⊢ (Tr 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴) | |
3 | 1, 2 | sylib 217 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝐴 ∧ 𝐴 ∈ 𝑇) → 𝐴 ⊆ 𝒫 𝐴) |
4 | tskpwss 10609 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ⊆ 𝑇) | |
5 | 4 | 3adant2 1130 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝐴 ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ⊆ 𝑇) |
6 | 3, 5 | sstrd 3942 | 1 ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝐴 ∧ 𝐴 ∈ 𝑇) → 𝐴 ⊆ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2105 ⊆ wss 3898 𝒫 cpw 4547 Tr wtr 5209 Tarskictsk 10605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-tr 5210 df-tsk 10606 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |