MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsktrss Structured version   Visualization version   GIF version

Theorem tsktrss 10172
Description: A transitive element of a Tarski class is a part of the class. JFM CLASSES2 th. 8. (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tsktrss ((𝑇 ∈ Tarski ∧ Tr 𝐴𝐴𝑇) → 𝐴𝑇)

Proof of Theorem tsktrss
StepHypRef Expression
1 simp2 1134 . . 3 ((𝑇 ∈ Tarski ∧ Tr 𝐴𝐴𝑇) → Tr 𝐴)
2 dftr4 5141 . . 3 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)
31, 2sylib 221 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝐴𝐴𝑇) → 𝐴 ⊆ 𝒫 𝐴)
4 tskpwss 10163 . . 3 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝒫 𝐴𝑇)
543adant2 1128 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝐴𝐴𝑇) → 𝒫 𝐴𝑇)
63, 5sstrd 3925 1 ((𝑇 ∈ Tarski ∧ Tr 𝐴𝐴𝑇) → 𝐴𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084  wcel 2111  wss 3881  𝒫 cpw 4497  Tr wtr 5136  Tarskictsk 10159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-un 3886  df-in 3888  df-ss 3898  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-tr 5137  df-tsk 10160
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator