MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsktrss Structured version   Visualization version   GIF version

Theorem tsktrss 10758
Description: A transitive element of a Tarski class is a part of the class. JFM CLASSES2 th. 8. (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tsktrss ((𝑇 ∈ Tarski ∧ Tr 𝐴𝐴𝑇) → 𝐴𝑇)

Proof of Theorem tsktrss
StepHypRef Expression
1 simp2 1135 . . 3 ((𝑇 ∈ Tarski ∧ Tr 𝐴𝐴𝑇) → Tr 𝐴)
2 dftr4 5271 . . 3 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)
31, 2sylib 217 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝐴𝐴𝑇) → 𝐴 ⊆ 𝒫 𝐴)
4 tskpwss 10749 . . 3 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝒫 𝐴𝑇)
543adant2 1129 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝐴𝐴𝑇) → 𝒫 𝐴𝑇)
63, 5sstrd 3991 1 ((𝑇 ∈ Tarski ∧ Tr 𝐴𝐴𝑇) → 𝐴𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085  wcel 2104  wss 3947  𝒫 cpw 4601  Tr wtr 5264  Tarskictsk 10745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-tr 5265  df-tsk 10746
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator