MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsktrss Structured version   Visualization version   GIF version

Theorem tsktrss 10799
Description: A transitive element of a Tarski class is a part of the class. JFM CLASSES2 th. 8. (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tsktrss ((𝑇 ∈ Tarski ∧ Tr 𝐴𝐴𝑇) → 𝐴𝑇)

Proof of Theorem tsktrss
StepHypRef Expression
1 simp2 1136 . . 3 ((𝑇 ∈ Tarski ∧ Tr 𝐴𝐴𝑇) → Tr 𝐴)
2 dftr4 5272 . . 3 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)
31, 2sylib 218 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝐴𝐴𝑇) → 𝐴 ⊆ 𝒫 𝐴)
4 tskpwss 10790 . . 3 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝒫 𝐴𝑇)
543adant2 1130 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝐴𝐴𝑇) → 𝒫 𝐴𝑇)
63, 5sstrd 4006 1 ((𝑇 ∈ Tarski ∧ Tr 𝐴𝐴𝑇) → 𝐴𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2106  wss 3963  𝒫 cpw 4605  Tr wtr 5265  Tarskictsk 10786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-tr 5266  df-tsk 10787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator