MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1sssuc Structured version   Visualization version   GIF version

Theorem r1sssuc 9423
Description: The value of the cumulative hierarchy of sets function is a subset of its value at the successor. JFM CLASSES1 Th. 39. (Contributed by FL, 20-Apr-2011.)
Assertion
Ref Expression
r1sssuc (𝐴 ∈ On → (𝑅1𝐴) ⊆ (𝑅1‘suc 𝐴))

Proof of Theorem r1sssuc
StepHypRef Expression
1 r1tr 9416 . . 3 Tr (𝑅1𝐴)
2 dftr4 5180 . . 3 (Tr (𝑅1𝐴) ↔ (𝑅1𝐴) ⊆ 𝒫 (𝑅1𝐴))
31, 2mpbi 233 . 2 (𝑅1𝐴) ⊆ 𝒫 (𝑅1𝐴)
4 r1suc 9410 . 2 (𝐴 ∈ On → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))
53, 4sseqtrrid 3968 1 (𝐴 ∈ On → (𝑅1𝐴) ⊆ (𝑅1‘suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wss 3880  𝒫 cpw 4527  Tr wtr 5175  Oncon0 6230  suc csuc 6232  cfv 6397  𝑅1cr1 9402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5272  ax-pr 5336  ax-un 7541
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-ral 3067  df-rex 3068  df-reu 3069  df-rab 3071  df-v 3422  df-sbc 3709  df-csb 3826  df-dif 3883  df-un 3885  df-in 3887  df-ss 3897  df-pss 3899  df-nul 4252  df-if 4454  df-pw 4529  df-sn 4556  df-pr 4558  df-tp 4560  df-op 4562  df-uni 4834  df-iun 4920  df-br 5068  df-opab 5130  df-mpt 5150  df-tr 5176  df-id 5469  df-eprel 5474  df-po 5482  df-so 5483  df-fr 5523  df-we 5525  df-xp 5571  df-rel 5572  df-cnv 5573  df-co 5574  df-dm 5575  df-rn 5576  df-res 5577  df-ima 5578  df-pred 6175  df-ord 6233  df-on 6234  df-lim 6235  df-suc 6236  df-iota 6355  df-fun 6399  df-fn 6400  df-f 6401  df-f1 6402  df-fo 6403  df-f1o 6404  df-fv 6405  df-om 7663  df-wrecs 8067  df-recs 8128  df-rdg 8166  df-r1 9404
This theorem is referenced by:  ackbij2lem3  9879
  Copyright terms: Public domain W3C validator