MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1sssuc Structured version   Visualization version   GIF version

Theorem r1sssuc 9541
Description: The value of the cumulative hierarchy of sets function is a subset of its value at the successor. JFM CLASSES1 Th. 39. (Contributed by FL, 20-Apr-2011.)
Assertion
Ref Expression
r1sssuc (𝐴 ∈ On → (𝑅1𝐴) ⊆ (𝑅1‘suc 𝐴))

Proof of Theorem r1sssuc
StepHypRef Expression
1 r1tr 9534 . . 3 Tr (𝑅1𝐴)
2 dftr4 5196 . . 3 (Tr (𝑅1𝐴) ↔ (𝑅1𝐴) ⊆ 𝒫 (𝑅1𝐴))
31, 2mpbi 229 . 2 (𝑅1𝐴) ⊆ 𝒫 (𝑅1𝐴)
4 r1suc 9528 . 2 (𝐴 ∈ On → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))
53, 4sseqtrrid 3974 1 (𝐴 ∈ On → (𝑅1𝐴) ⊆ (𝑅1‘suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wss 3887  𝒫 cpw 4533  Tr wtr 5191  Oncon0 6266  suc csuc 6268  cfv 6433  𝑅1cr1 9520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-r1 9522
This theorem is referenced by:  ackbij2lem3  9997
  Copyright terms: Public domain W3C validator