Step | Hyp | Ref
| Expression |
1 | | simpl 482 |
. . . 4
⊢ ((𝐵 ∈ dom
𝑅1 ∧ 𝐴 ∈ 𝐵) → 𝐵 ∈ dom
𝑅1) |
2 | | r1funlim 9455 |
. . . . . . . 8
⊢ (Fun
𝑅1 ∧ Lim dom 𝑅1) |
3 | 2 | simpri 485 |
. . . . . . 7
⊢ Lim dom
𝑅1 |
4 | | limord 6310 |
. . . . . . 7
⊢ (Lim dom
𝑅1 → Ord dom 𝑅1) |
5 | 3, 4 | ax-mp 5 |
. . . . . 6
⊢ Ord dom
𝑅1 |
6 | | ordsson 7610 |
. . . . . 6
⊢ (Ord dom
𝑅1 → dom 𝑅1 ⊆
On) |
7 | 5, 6 | ax-mp 5 |
. . . . 5
⊢ dom
𝑅1 ⊆ On |
8 | 7 | sseli 3913 |
. . . 4
⊢ (𝐵 ∈ dom
𝑅1 → 𝐵 ∈ On) |
9 | 1, 8 | syl 17 |
. . 3
⊢ ((𝐵 ∈ dom
𝑅1 ∧ 𝐴 ∈ 𝐵) → 𝐵 ∈ On) |
10 | | onelon 6276 |
. . . . 5
⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ On) |
11 | 8, 10 | sylan 579 |
. . . 4
⊢ ((𝐵 ∈ dom
𝑅1 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ On) |
12 | | suceloni 7635 |
. . . 4
⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
13 | 11, 12 | syl 17 |
. . 3
⊢ ((𝐵 ∈ dom
𝑅1 ∧ 𝐴 ∈ 𝐵) → suc 𝐴 ∈ On) |
14 | | eloni 6261 |
. . . . . 6
⊢ (𝐵 ∈ On → Ord 𝐵) |
15 | | ordsucss 7640 |
. . . . . 6
⊢ (Ord
𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) |
16 | 14, 15 | syl 17 |
. . . . 5
⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) |
17 | 16 | imp 406 |
. . . 4
⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → suc 𝐴 ⊆ 𝐵) |
18 | 8, 17 | sylan 579 |
. . 3
⊢ ((𝐵 ∈ dom
𝑅1 ∧ 𝐴 ∈ 𝐵) → suc 𝐴 ⊆ 𝐵) |
19 | | eleq1 2826 |
. . . . . 6
⊢ (𝑥 = suc 𝐴 → (𝑥 ∈ dom 𝑅1 ↔ suc
𝐴 ∈ dom
𝑅1)) |
20 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑥 = suc 𝐴 → (𝑅1‘𝑥) =
(𝑅1‘suc 𝐴)) |
21 | 20 | eleq2d 2824 |
. . . . . 6
⊢ (𝑥 = suc 𝐴 → ((𝑅1‘𝐴) ∈
(𝑅1‘𝑥) ↔ (𝑅1‘𝐴) ∈
(𝑅1‘suc 𝐴))) |
22 | 19, 21 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = suc 𝐴 → ((𝑥 ∈ dom 𝑅1 →
(𝑅1‘𝐴) ∈ (𝑅1‘𝑥)) ↔ (suc 𝐴 ∈ dom 𝑅1 →
(𝑅1‘𝐴) ∈ (𝑅1‘suc
𝐴)))) |
23 | | eleq1 2826 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ∈ dom 𝑅1 ↔
𝑦 ∈ dom
𝑅1)) |
24 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑅1‘𝑥) =
(𝑅1‘𝑦)) |
25 | 24 | eleq2d 2824 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝑅1‘𝐴) ∈
(𝑅1‘𝑥) ↔ (𝑅1‘𝐴) ∈
(𝑅1‘𝑦))) |
26 | 23, 25 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ dom 𝑅1 →
(𝑅1‘𝐴) ∈ (𝑅1‘𝑥)) ↔ (𝑦 ∈ dom 𝑅1 →
(𝑅1‘𝐴) ∈ (𝑅1‘𝑦)))) |
27 | | eleq1 2826 |
. . . . . 6
⊢ (𝑥 = suc 𝑦 → (𝑥 ∈ dom 𝑅1 ↔ suc
𝑦 ∈ dom
𝑅1)) |
28 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑥 = suc 𝑦 → (𝑅1‘𝑥) =
(𝑅1‘suc 𝑦)) |
29 | 28 | eleq2d 2824 |
. . . . . 6
⊢ (𝑥 = suc 𝑦 → ((𝑅1‘𝐴) ∈
(𝑅1‘𝑥) ↔ (𝑅1‘𝐴) ∈
(𝑅1‘suc 𝑦))) |
30 | 27, 29 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = suc 𝑦 → ((𝑥 ∈ dom 𝑅1 →
(𝑅1‘𝐴) ∈ (𝑅1‘𝑥)) ↔ (suc 𝑦 ∈ dom
𝑅1 → (𝑅1‘𝐴) ∈ (𝑅1‘suc
𝑦)))) |
31 | | eleq1 2826 |
. . . . . 6
⊢ (𝑥 = 𝐵 → (𝑥 ∈ dom 𝑅1 ↔
𝐵 ∈ dom
𝑅1)) |
32 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → (𝑅1‘𝑥) =
(𝑅1‘𝐵)) |
33 | 32 | eleq2d 2824 |
. . . . . 6
⊢ (𝑥 = 𝐵 → ((𝑅1‘𝐴) ∈
(𝑅1‘𝑥) ↔ (𝑅1‘𝐴) ∈
(𝑅1‘𝐵))) |
34 | 31, 33 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = 𝐵 → ((𝑥 ∈ dom 𝑅1 →
(𝑅1‘𝐴) ∈ (𝑅1‘𝑥)) ↔ (𝐵 ∈ dom 𝑅1 →
(𝑅1‘𝐴) ∈ (𝑅1‘𝐵)))) |
35 | | fvex 6769 |
. . . . . . . 8
⊢
(𝑅1‘𝐴) ∈ V |
36 | 35 | pwid 4554 |
. . . . . . 7
⊢
(𝑅1‘𝐴) ∈ 𝒫
(𝑅1‘𝐴) |
37 | | limsuc 7671 |
. . . . . . . . 9
⊢ (Lim dom
𝑅1 → (𝐴 ∈ dom 𝑅1 ↔ suc
𝐴 ∈ dom
𝑅1)) |
38 | 3, 37 | ax-mp 5 |
. . . . . . . 8
⊢ (𝐴 ∈ dom
𝑅1 ↔ suc 𝐴 ∈ dom
𝑅1) |
39 | | r1sucg 9458 |
. . . . . . . 8
⊢ (𝐴 ∈ dom
𝑅1 → (𝑅1‘suc 𝐴) = 𝒫
(𝑅1‘𝐴)) |
40 | 38, 39 | sylbir 234 |
. . . . . . 7
⊢ (suc
𝐴 ∈ dom
𝑅1 → (𝑅1‘suc 𝐴) = 𝒫
(𝑅1‘𝐴)) |
41 | 36, 40 | eleqtrrid 2846 |
. . . . . 6
⊢ (suc
𝐴 ∈ dom
𝑅1 → (𝑅1‘𝐴) ∈ (𝑅1‘suc
𝐴)) |
42 | 41 | a1i 11 |
. . . . 5
⊢ (suc
𝐴 ∈ On → (suc
𝐴 ∈ dom
𝑅1 → (𝑅1‘𝐴) ∈ (𝑅1‘suc
𝐴))) |
43 | | limsuc 7671 |
. . . . . . . 8
⊢ (Lim dom
𝑅1 → (𝑦 ∈ dom 𝑅1 ↔ suc
𝑦 ∈ dom
𝑅1)) |
44 | 3, 43 | ax-mp 5 |
. . . . . . 7
⊢ (𝑦 ∈ dom
𝑅1 ↔ suc 𝑦 ∈ dom
𝑅1) |
45 | | r1tr 9465 |
. . . . . . . . . . 11
⊢ Tr
(𝑅1‘𝑦) |
46 | | dftr4 5192 |
. . . . . . . . . . 11
⊢ (Tr
(𝑅1‘𝑦) ↔ (𝑅1‘𝑦) ⊆ 𝒫
(𝑅1‘𝑦)) |
47 | 45, 46 | mpbi 229 |
. . . . . . . . . 10
⊢
(𝑅1‘𝑦) ⊆ 𝒫
(𝑅1‘𝑦) |
48 | | r1sucg 9458 |
. . . . . . . . . 10
⊢ (𝑦 ∈ dom
𝑅1 → (𝑅1‘suc 𝑦) = 𝒫
(𝑅1‘𝑦)) |
49 | 47, 48 | sseqtrrid 3970 |
. . . . . . . . 9
⊢ (𝑦 ∈ dom
𝑅1 → (𝑅1‘𝑦) ⊆ (𝑅1‘suc
𝑦)) |
50 | 49 | sseld 3916 |
. . . . . . . 8
⊢ (𝑦 ∈ dom
𝑅1 → ((𝑅1‘𝐴) ∈ (𝑅1‘𝑦) →
(𝑅1‘𝐴) ∈ (𝑅1‘suc
𝑦))) |
51 | 50 | a2i 14 |
. . . . . . 7
⊢ ((𝑦 ∈ dom
𝑅1 → (𝑅1‘𝐴) ∈ (𝑅1‘𝑦)) → (𝑦 ∈ dom 𝑅1 →
(𝑅1‘𝐴) ∈ (𝑅1‘suc
𝑦))) |
52 | 44, 51 | syl5bir 242 |
. . . . . 6
⊢ ((𝑦 ∈ dom
𝑅1 → (𝑅1‘𝐴) ∈ (𝑅1‘𝑦)) → (suc 𝑦 ∈ dom
𝑅1 → (𝑅1‘𝐴) ∈ (𝑅1‘suc
𝑦))) |
53 | 52 | a1i 11 |
. . . . 5
⊢ (((𝑦 ∈ On ∧ suc 𝐴 ∈ On) ∧ suc 𝐴 ⊆ 𝑦) → ((𝑦 ∈ dom 𝑅1 →
(𝑅1‘𝐴) ∈ (𝑅1‘𝑦)) → (suc 𝑦 ∈ dom
𝑅1 → (𝑅1‘𝐴) ∈ (𝑅1‘suc
𝑦)))) |
54 | | simprl 767 |
. . . . . . . . . . . 12
⊢ (((Lim
𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1)) →
suc 𝐴 ⊆ 𝑥) |
55 | | simplr 765 |
. . . . . . . . . . . . . 14
⊢ (((Lim
𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1)) →
suc 𝐴 ∈
On) |
56 | | sucelon 7639 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) |
57 | 55, 56 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ (((Lim
𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1)) →
𝐴 ∈
On) |
58 | | limord 6310 |
. . . . . . . . . . . . . 14
⊢ (Lim
𝑥 → Ord 𝑥) |
59 | 58 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((Lim
𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1)) →
Ord 𝑥) |
60 | | ordelsuc 7642 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ On ∧ Ord 𝑥) → (𝐴 ∈ 𝑥 ↔ suc 𝐴 ⊆ 𝑥)) |
61 | 57, 59, 60 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (((Lim
𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1)) →
(𝐴 ∈ 𝑥 ↔ suc 𝐴 ⊆ 𝑥)) |
62 | 54, 61 | mpbird 256 |
. . . . . . . . . . 11
⊢ (((Lim
𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1)) →
𝐴 ∈ 𝑥) |
63 | | limsuc 7671 |
. . . . . . . . . . . 12
⊢ (Lim
𝑥 → (𝐴 ∈ 𝑥 ↔ suc 𝐴 ∈ 𝑥)) |
64 | 63 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((Lim
𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1)) →
(𝐴 ∈ 𝑥 ↔ suc 𝐴 ∈ 𝑥)) |
65 | 62, 64 | mpbid 231 |
. . . . . . . . . 10
⊢ (((Lim
𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1)) →
suc 𝐴 ∈ 𝑥) |
66 | | simprr 769 |
. . . . . . . . . . . . 13
⊢ (((Lim
𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1)) →
𝑥 ∈ dom
𝑅1) |
67 | | ordtr1 6294 |
. . . . . . . . . . . . . 14
⊢ (Ord dom
𝑅1 → ((𝐴 ∈ 𝑥 ∧ 𝑥 ∈ dom 𝑅1) →
𝐴 ∈ dom
𝑅1)) |
68 | 5, 67 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑥 ∧ 𝑥 ∈ dom 𝑅1) →
𝐴 ∈ dom
𝑅1) |
69 | 62, 66, 68 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (((Lim
𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1)) →
𝐴 ∈ dom
𝑅1) |
70 | 69, 39 | syl 17 |
. . . . . . . . . . 11
⊢ (((Lim
𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1)) →
(𝑅1‘suc 𝐴) = 𝒫
(𝑅1‘𝐴)) |
71 | 36, 70 | eleqtrrid 2846 |
. . . . . . . . . 10
⊢ (((Lim
𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1)) →
(𝑅1‘𝐴) ∈ (𝑅1‘suc
𝐴)) |
72 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑦 = suc 𝐴 → (𝑅1‘𝑦) =
(𝑅1‘suc 𝐴)) |
73 | 72 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (𝑦 = suc 𝐴 → ((𝑅1‘𝐴) ∈
(𝑅1‘𝑦) ↔ (𝑅1‘𝐴) ∈
(𝑅1‘suc 𝐴))) |
74 | 73 | rspcev 3552 |
. . . . . . . . . 10
⊢ ((suc
𝐴 ∈ 𝑥 ∧ (𝑅1‘𝐴) ∈
(𝑅1‘suc 𝐴)) → ∃𝑦 ∈ 𝑥 (𝑅1‘𝐴) ∈
(𝑅1‘𝑦)) |
75 | 65, 71, 74 | syl2anc 583 |
. . . . . . . . 9
⊢ (((Lim
𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1)) →
∃𝑦 ∈ 𝑥
(𝑅1‘𝐴) ∈ (𝑅1‘𝑦)) |
76 | | eliun 4925 |
. . . . . . . . 9
⊢
((𝑅1‘𝐴) ∈ ∪
𝑦 ∈ 𝑥 (𝑅1‘𝑦) ↔ ∃𝑦 ∈ 𝑥 (𝑅1‘𝐴) ∈
(𝑅1‘𝑦)) |
77 | 75, 76 | sylibr 233 |
. . . . . . . 8
⊢ (((Lim
𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1)) →
(𝑅1‘𝐴) ∈ ∪
𝑦 ∈ 𝑥 (𝑅1‘𝑦)) |
78 | | simpll 763 |
. . . . . . . . 9
⊢ (((Lim
𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1)) →
Lim 𝑥) |
79 | | r1limg 9460 |
. . . . . . . . 9
⊢ ((𝑥 ∈ dom
𝑅1 ∧ Lim 𝑥) → (𝑅1‘𝑥) = ∪ 𝑦 ∈ 𝑥 (𝑅1‘𝑦)) |
80 | 66, 78, 79 | syl2anc 583 |
. . . . . . . 8
⊢ (((Lim
𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1)) →
(𝑅1‘𝑥) = ∪ 𝑦 ∈ 𝑥 (𝑅1‘𝑦)) |
81 | 77, 80 | eleqtrrd 2842 |
. . . . . . 7
⊢ (((Lim
𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴 ⊆ 𝑥 ∧ 𝑥 ∈ dom 𝑅1)) →
(𝑅1‘𝐴) ∈ (𝑅1‘𝑥)) |
82 | 81 | expr 456 |
. . . . . 6
⊢ (((Lim
𝑥 ∧ suc 𝐴 ∈ On) ∧ suc 𝐴 ⊆ 𝑥) → (𝑥 ∈ dom 𝑅1 →
(𝑅1‘𝐴) ∈ (𝑅1‘𝑥))) |
83 | 82 | a1d 25 |
. . . . 5
⊢ (((Lim
𝑥 ∧ suc 𝐴 ∈ On) ∧ suc 𝐴 ⊆ 𝑥) → (∀𝑦 ∈ 𝑥 (suc 𝐴 ⊆ 𝑦 → (𝑦 ∈ dom 𝑅1 →
(𝑅1‘𝐴) ∈ (𝑅1‘𝑦))) → (𝑥 ∈ dom 𝑅1 →
(𝑅1‘𝐴) ∈ (𝑅1‘𝑥)))) |
84 | 22, 26, 30, 34, 42, 53, 83 | tfindsg 7682 |
. . . 4
⊢ (((𝐵 ∈ On ∧ suc 𝐴 ∈ On) ∧ suc 𝐴 ⊆ 𝐵) → (𝐵 ∈ dom 𝑅1 →
(𝑅1‘𝐴) ∈ (𝑅1‘𝐵))) |
85 | 84 | impr 454 |
. . 3
⊢ (((𝐵 ∈ On ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ dom 𝑅1)) →
(𝑅1‘𝐴) ∈ (𝑅1‘𝐵)) |
86 | 9, 13, 18, 1, 85 | syl22anc 835 |
. 2
⊢ ((𝐵 ∈ dom
𝑅1 ∧ 𝐴 ∈ 𝐵) → (𝑅1‘𝐴) ∈
(𝑅1‘𝐵)) |
87 | 86 | ex 412 |
1
⊢ (𝐵 ∈ dom
𝑅1 → (𝐴 ∈ 𝐵 → (𝑅1‘𝐴) ∈
(𝑅1‘𝐵))) |