MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1ordg Structured version   Visualization version   GIF version

Theorem r1ordg 9738
Description: Ordering relation for the cumulative hierarchy of sets. Part of Proposition 9.10(2) of [TakeutiZaring] p. 77. (Contributed by NM, 8-Sep-2003.)
Assertion
Ref Expression
r1ordg (𝐵 ∈ dom 𝑅1 → (𝐴𝐵 → (𝑅1𝐴) ∈ (𝑅1𝐵)))

Proof of Theorem r1ordg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐵 ∈ dom 𝑅1𝐴𝐵) → 𝐵 ∈ dom 𝑅1)
2 r1funlim 9726 . . . . . . . 8 (Fun 𝑅1 ∧ Lim dom 𝑅1)
32simpri 485 . . . . . . 7 Lim dom 𝑅1
4 limord 6396 . . . . . . 7 (Lim dom 𝑅1 → Ord dom 𝑅1)
53, 4ax-mp 5 . . . . . 6 Ord dom 𝑅1
6 ordsson 7762 . . . . . 6 (Ord dom 𝑅1 → dom 𝑅1 ⊆ On)
75, 6ax-mp 5 . . . . 5 dom 𝑅1 ⊆ On
87sseli 3945 . . . 4 (𝐵 ∈ dom 𝑅1𝐵 ∈ On)
91, 8syl 17 . . 3 ((𝐵 ∈ dom 𝑅1𝐴𝐵) → 𝐵 ∈ On)
10 onelon 6360 . . . . 5 ((𝐵 ∈ On ∧ 𝐴𝐵) → 𝐴 ∈ On)
118, 10sylan 580 . . . 4 ((𝐵 ∈ dom 𝑅1𝐴𝐵) → 𝐴 ∈ On)
12 onsuc 7790 . . . 4 (𝐴 ∈ On → suc 𝐴 ∈ On)
1311, 12syl 17 . . 3 ((𝐵 ∈ dom 𝑅1𝐴𝐵) → suc 𝐴 ∈ On)
14 eloni 6345 . . . . . 6 (𝐵 ∈ On → Ord 𝐵)
15 ordsucss 7796 . . . . . 6 (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
1614, 15syl 17 . . . . 5 (𝐵 ∈ On → (𝐴𝐵 → suc 𝐴𝐵))
1716imp 406 . . . 4 ((𝐵 ∈ On ∧ 𝐴𝐵) → suc 𝐴𝐵)
188, 17sylan 580 . . 3 ((𝐵 ∈ dom 𝑅1𝐴𝐵) → suc 𝐴𝐵)
19 eleq1 2817 . . . . . 6 (𝑥 = suc 𝐴 → (𝑥 ∈ dom 𝑅1 ↔ suc 𝐴 ∈ dom 𝑅1))
20 fveq2 6861 . . . . . . 7 (𝑥 = suc 𝐴 → (𝑅1𝑥) = (𝑅1‘suc 𝐴))
2120eleq2d 2815 . . . . . 6 (𝑥 = suc 𝐴 → ((𝑅1𝐴) ∈ (𝑅1𝑥) ↔ (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴)))
2219, 21imbi12d 344 . . . . 5 (𝑥 = suc 𝐴 → ((𝑥 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑥)) ↔ (suc 𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴))))
23 eleq1 2817 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ∈ dom 𝑅1𝑦 ∈ dom 𝑅1))
24 fveq2 6861 . . . . . . 7 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
2524eleq2d 2815 . . . . . 6 (𝑥 = 𝑦 → ((𝑅1𝐴) ∈ (𝑅1𝑥) ↔ (𝑅1𝐴) ∈ (𝑅1𝑦)))
2623, 25imbi12d 344 . . . . 5 (𝑥 = 𝑦 → ((𝑥 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑥)) ↔ (𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑦))))
27 eleq1 2817 . . . . . 6 (𝑥 = suc 𝑦 → (𝑥 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1))
28 fveq2 6861 . . . . . . 7 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
2928eleq2d 2815 . . . . . 6 (𝑥 = suc 𝑦 → ((𝑅1𝐴) ∈ (𝑅1𝑥) ↔ (𝑅1𝐴) ∈ (𝑅1‘suc 𝑦)))
3027, 29imbi12d 344 . . . . 5 (𝑥 = suc 𝑦 → ((𝑥 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑥)) ↔ (suc 𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝑦))))
31 eleq1 2817 . . . . . 6 (𝑥 = 𝐵 → (𝑥 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1))
32 fveq2 6861 . . . . . . 7 (𝑥 = 𝐵 → (𝑅1𝑥) = (𝑅1𝐵))
3332eleq2d 2815 . . . . . 6 (𝑥 = 𝐵 → ((𝑅1𝐴) ∈ (𝑅1𝑥) ↔ (𝑅1𝐴) ∈ (𝑅1𝐵)))
3431, 33imbi12d 344 . . . . 5 (𝑥 = 𝐵 → ((𝑥 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑥)) ↔ (𝐵 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝐵))))
35 fvex 6874 . . . . . . . 8 (𝑅1𝐴) ∈ V
3635pwid 4588 . . . . . . 7 (𝑅1𝐴) ∈ 𝒫 (𝑅1𝐴)
37 limsuc 7828 . . . . . . . . 9 (Lim dom 𝑅1 → (𝐴 ∈ dom 𝑅1 ↔ suc 𝐴 ∈ dom 𝑅1))
383, 37ax-mp 5 . . . . . . . 8 (𝐴 ∈ dom 𝑅1 ↔ suc 𝐴 ∈ dom 𝑅1)
39 r1sucg 9729 . . . . . . . 8 (𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))
4038, 39sylbir 235 . . . . . . 7 (suc 𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))
4136, 40eleqtrrid 2836 . . . . . 6 (suc 𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴))
4241a1i 11 . . . . 5 (suc 𝐴 ∈ On → (suc 𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴)))
43 limsuc 7828 . . . . . . . 8 (Lim dom 𝑅1 → (𝑦 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1))
443, 43ax-mp 5 . . . . . . 7 (𝑦 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1)
45 r1tr 9736 . . . . . . . . . . 11 Tr (𝑅1𝑦)
46 dftr4 5224 . . . . . . . . . . 11 (Tr (𝑅1𝑦) ↔ (𝑅1𝑦) ⊆ 𝒫 (𝑅1𝑦))
4745, 46mpbi 230 . . . . . . . . . 10 (𝑅1𝑦) ⊆ 𝒫 (𝑅1𝑦)
48 r1sucg 9729 . . . . . . . . . 10 (𝑦 ∈ dom 𝑅1 → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
4947, 48sseqtrrid 3993 . . . . . . . . 9 (𝑦 ∈ dom 𝑅1 → (𝑅1𝑦) ⊆ (𝑅1‘suc 𝑦))
5049sseld 3948 . . . . . . . 8 (𝑦 ∈ dom 𝑅1 → ((𝑅1𝐴) ∈ (𝑅1𝑦) → (𝑅1𝐴) ∈ (𝑅1‘suc 𝑦)))
5150a2i 14 . . . . . . 7 ((𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑦)) → (𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝑦)))
5244, 51biimtrrid 243 . . . . . 6 ((𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑦)) → (suc 𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝑦)))
5352a1i 11 . . . . 5 (((𝑦 ∈ On ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑦) → ((𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑦)) → (suc 𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝑦))))
54 simprl 770 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → suc 𝐴𝑥)
55 simplr 768 . . . . . . . . . . . . . 14 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → suc 𝐴 ∈ On)
56 onsucb 7795 . . . . . . . . . . . . . 14 (𝐴 ∈ On ↔ suc 𝐴 ∈ On)
5755, 56sylibr 234 . . . . . . . . . . . . 13 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → 𝐴 ∈ On)
58 limord 6396 . . . . . . . . . . . . . 14 (Lim 𝑥 → Ord 𝑥)
5958ad2antrr 726 . . . . . . . . . . . . 13 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → Ord 𝑥)
60 ordelsuc 7798 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ Ord 𝑥) → (𝐴𝑥 ↔ suc 𝐴𝑥))
6157, 59, 60syl2anc 584 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝐴𝑥 ↔ suc 𝐴𝑥))
6254, 61mpbird 257 . . . . . . . . . . 11 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → 𝐴𝑥)
63 limsuc 7828 . . . . . . . . . . . 12 (Lim 𝑥 → (𝐴𝑥 ↔ suc 𝐴𝑥))
6463ad2antrr 726 . . . . . . . . . . 11 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝐴𝑥 ↔ suc 𝐴𝑥))
6562, 64mpbid 232 . . . . . . . . . 10 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → suc 𝐴𝑥)
66 simprr 772 . . . . . . . . . . . . 13 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → 𝑥 ∈ dom 𝑅1)
67 ordtr1 6379 . . . . . . . . . . . . . 14 (Ord dom 𝑅1 → ((𝐴𝑥𝑥 ∈ dom 𝑅1) → 𝐴 ∈ dom 𝑅1))
685, 67ax-mp 5 . . . . . . . . . . . . 13 ((𝐴𝑥𝑥 ∈ dom 𝑅1) → 𝐴 ∈ dom 𝑅1)
6962, 66, 68syl2anc 584 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → 𝐴 ∈ dom 𝑅1)
7069, 39syl 17 . . . . . . . . . . 11 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))
7136, 70eleqtrrid 2836 . . . . . . . . . 10 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴))
72 fveq2 6861 . . . . . . . . . . . 12 (𝑦 = suc 𝐴 → (𝑅1𝑦) = (𝑅1‘suc 𝐴))
7372eleq2d 2815 . . . . . . . . . . 11 (𝑦 = suc 𝐴 → ((𝑅1𝐴) ∈ (𝑅1𝑦) ↔ (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴)))
7473rspcev 3591 . . . . . . . . . 10 ((suc 𝐴𝑥 ∧ (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴)) → ∃𝑦𝑥 (𝑅1𝐴) ∈ (𝑅1𝑦))
7565, 71, 74syl2anc 584 . . . . . . . . 9 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → ∃𝑦𝑥 (𝑅1𝐴) ∈ (𝑅1𝑦))
76 eliun 4962 . . . . . . . . 9 ((𝑅1𝐴) ∈ 𝑦𝑥 (𝑅1𝑦) ↔ ∃𝑦𝑥 (𝑅1𝐴) ∈ (𝑅1𝑦))
7775, 76sylibr 234 . . . . . . . 8 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝑅1𝐴) ∈ 𝑦𝑥 (𝑅1𝑦))
78 simpll 766 . . . . . . . . 9 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → Lim 𝑥)
79 r1limg 9731 . . . . . . . . 9 ((𝑥 ∈ dom 𝑅1 ∧ Lim 𝑥) → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
8066, 78, 79syl2anc 584 . . . . . . . 8 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
8177, 80eleqtrrd 2832 . . . . . . 7 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝑅1𝐴) ∈ (𝑅1𝑥))
8281expr 456 . . . . . 6 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑥) → (𝑥 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑥)))
8382a1d 25 . . . . 5 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑥) → (∀𝑦𝑥 (suc 𝐴𝑦 → (𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑦))) → (𝑥 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑥))))
8422, 26, 30, 34, 42, 53, 83tfindsg 7840 . . . 4 (((𝐵 ∈ On ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝐵) → (𝐵 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝐵)))
8584impr 454 . . 3 (((𝐵 ∈ On ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝐵𝐵 ∈ dom 𝑅1)) → (𝑅1𝐴) ∈ (𝑅1𝐵))
869, 13, 18, 1, 85syl22anc 838 . 2 ((𝐵 ∈ dom 𝑅1𝐴𝐵) → (𝑅1𝐴) ∈ (𝑅1𝐵))
8786ex 412 1 (𝐵 ∈ dom 𝑅1 → (𝐴𝐵 → (𝑅1𝐴) ∈ (𝑅1𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  wss 3917  𝒫 cpw 4566   ciun 4958  Tr wtr 5217  dom cdm 5641  Ord word 6334  Oncon0 6335  Lim wlim 6336  suc csuc 6337  Fun wfun 6508  cfv 6514  𝑅1cr1 9722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-r1 9724
This theorem is referenced by:  r1ord3g  9739  r1ord  9740
  Copyright terms: Public domain W3C validator