MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1ordg Structured version   Visualization version   GIF version

Theorem r1ordg 9818
Description: Ordering relation for the cumulative hierarchy of sets. Part of Proposition 9.10(2) of [TakeutiZaring] p. 77. (Contributed by NM, 8-Sep-2003.)
Assertion
Ref Expression
r1ordg (𝐵 ∈ dom 𝑅1 → (𝐴𝐵 → (𝑅1𝐴) ∈ (𝑅1𝐵)))

Proof of Theorem r1ordg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐵 ∈ dom 𝑅1𝐴𝐵) → 𝐵 ∈ dom 𝑅1)
2 r1funlim 9806 . . . . . . . 8 (Fun 𝑅1 ∧ Lim dom 𝑅1)
32simpri 485 . . . . . . 7 Lim dom 𝑅1
4 limord 6444 . . . . . . 7 (Lim dom 𝑅1 → Ord dom 𝑅1)
53, 4ax-mp 5 . . . . . 6 Ord dom 𝑅1
6 ordsson 7803 . . . . . 6 (Ord dom 𝑅1 → dom 𝑅1 ⊆ On)
75, 6ax-mp 5 . . . . 5 dom 𝑅1 ⊆ On
87sseli 3979 . . . 4 (𝐵 ∈ dom 𝑅1𝐵 ∈ On)
91, 8syl 17 . . 3 ((𝐵 ∈ dom 𝑅1𝐴𝐵) → 𝐵 ∈ On)
10 onelon 6409 . . . . 5 ((𝐵 ∈ On ∧ 𝐴𝐵) → 𝐴 ∈ On)
118, 10sylan 580 . . . 4 ((𝐵 ∈ dom 𝑅1𝐴𝐵) → 𝐴 ∈ On)
12 onsuc 7831 . . . 4 (𝐴 ∈ On → suc 𝐴 ∈ On)
1311, 12syl 17 . . 3 ((𝐵 ∈ dom 𝑅1𝐴𝐵) → suc 𝐴 ∈ On)
14 eloni 6394 . . . . . 6 (𝐵 ∈ On → Ord 𝐵)
15 ordsucss 7838 . . . . . 6 (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
1614, 15syl 17 . . . . 5 (𝐵 ∈ On → (𝐴𝐵 → suc 𝐴𝐵))
1716imp 406 . . . 4 ((𝐵 ∈ On ∧ 𝐴𝐵) → suc 𝐴𝐵)
188, 17sylan 580 . . 3 ((𝐵 ∈ dom 𝑅1𝐴𝐵) → suc 𝐴𝐵)
19 eleq1 2829 . . . . . 6 (𝑥 = suc 𝐴 → (𝑥 ∈ dom 𝑅1 ↔ suc 𝐴 ∈ dom 𝑅1))
20 fveq2 6906 . . . . . . 7 (𝑥 = suc 𝐴 → (𝑅1𝑥) = (𝑅1‘suc 𝐴))
2120eleq2d 2827 . . . . . 6 (𝑥 = suc 𝐴 → ((𝑅1𝐴) ∈ (𝑅1𝑥) ↔ (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴)))
2219, 21imbi12d 344 . . . . 5 (𝑥 = suc 𝐴 → ((𝑥 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑥)) ↔ (suc 𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴))))
23 eleq1 2829 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ∈ dom 𝑅1𝑦 ∈ dom 𝑅1))
24 fveq2 6906 . . . . . . 7 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
2524eleq2d 2827 . . . . . 6 (𝑥 = 𝑦 → ((𝑅1𝐴) ∈ (𝑅1𝑥) ↔ (𝑅1𝐴) ∈ (𝑅1𝑦)))
2623, 25imbi12d 344 . . . . 5 (𝑥 = 𝑦 → ((𝑥 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑥)) ↔ (𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑦))))
27 eleq1 2829 . . . . . 6 (𝑥 = suc 𝑦 → (𝑥 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1))
28 fveq2 6906 . . . . . . 7 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
2928eleq2d 2827 . . . . . 6 (𝑥 = suc 𝑦 → ((𝑅1𝐴) ∈ (𝑅1𝑥) ↔ (𝑅1𝐴) ∈ (𝑅1‘suc 𝑦)))
3027, 29imbi12d 344 . . . . 5 (𝑥 = suc 𝑦 → ((𝑥 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑥)) ↔ (suc 𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝑦))))
31 eleq1 2829 . . . . . 6 (𝑥 = 𝐵 → (𝑥 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1))
32 fveq2 6906 . . . . . . 7 (𝑥 = 𝐵 → (𝑅1𝑥) = (𝑅1𝐵))
3332eleq2d 2827 . . . . . 6 (𝑥 = 𝐵 → ((𝑅1𝐴) ∈ (𝑅1𝑥) ↔ (𝑅1𝐴) ∈ (𝑅1𝐵)))
3431, 33imbi12d 344 . . . . 5 (𝑥 = 𝐵 → ((𝑥 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑥)) ↔ (𝐵 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝐵))))
35 fvex 6919 . . . . . . . 8 (𝑅1𝐴) ∈ V
3635pwid 4622 . . . . . . 7 (𝑅1𝐴) ∈ 𝒫 (𝑅1𝐴)
37 limsuc 7870 . . . . . . . . 9 (Lim dom 𝑅1 → (𝐴 ∈ dom 𝑅1 ↔ suc 𝐴 ∈ dom 𝑅1))
383, 37ax-mp 5 . . . . . . . 8 (𝐴 ∈ dom 𝑅1 ↔ suc 𝐴 ∈ dom 𝑅1)
39 r1sucg 9809 . . . . . . . 8 (𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))
4038, 39sylbir 235 . . . . . . 7 (suc 𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))
4136, 40eleqtrrid 2848 . . . . . 6 (suc 𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴))
4241a1i 11 . . . . 5 (suc 𝐴 ∈ On → (suc 𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴)))
43 limsuc 7870 . . . . . . . 8 (Lim dom 𝑅1 → (𝑦 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1))
443, 43ax-mp 5 . . . . . . 7 (𝑦 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1)
45 r1tr 9816 . . . . . . . . . . 11 Tr (𝑅1𝑦)
46 dftr4 5266 . . . . . . . . . . 11 (Tr (𝑅1𝑦) ↔ (𝑅1𝑦) ⊆ 𝒫 (𝑅1𝑦))
4745, 46mpbi 230 . . . . . . . . . 10 (𝑅1𝑦) ⊆ 𝒫 (𝑅1𝑦)
48 r1sucg 9809 . . . . . . . . . 10 (𝑦 ∈ dom 𝑅1 → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
4947, 48sseqtrrid 4027 . . . . . . . . 9 (𝑦 ∈ dom 𝑅1 → (𝑅1𝑦) ⊆ (𝑅1‘suc 𝑦))
5049sseld 3982 . . . . . . . 8 (𝑦 ∈ dom 𝑅1 → ((𝑅1𝐴) ∈ (𝑅1𝑦) → (𝑅1𝐴) ∈ (𝑅1‘suc 𝑦)))
5150a2i 14 . . . . . . 7 ((𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑦)) → (𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝑦)))
5244, 51biimtrrid 243 . . . . . 6 ((𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑦)) → (suc 𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝑦)))
5352a1i 11 . . . . 5 (((𝑦 ∈ On ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑦) → ((𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑦)) → (suc 𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝑦))))
54 simprl 771 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → suc 𝐴𝑥)
55 simplr 769 . . . . . . . . . . . . . 14 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → suc 𝐴 ∈ On)
56 onsucb 7837 . . . . . . . . . . . . . 14 (𝐴 ∈ On ↔ suc 𝐴 ∈ On)
5755, 56sylibr 234 . . . . . . . . . . . . 13 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → 𝐴 ∈ On)
58 limord 6444 . . . . . . . . . . . . . 14 (Lim 𝑥 → Ord 𝑥)
5958ad2antrr 726 . . . . . . . . . . . . 13 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → Ord 𝑥)
60 ordelsuc 7840 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ Ord 𝑥) → (𝐴𝑥 ↔ suc 𝐴𝑥))
6157, 59, 60syl2anc 584 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝐴𝑥 ↔ suc 𝐴𝑥))
6254, 61mpbird 257 . . . . . . . . . . 11 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → 𝐴𝑥)
63 limsuc 7870 . . . . . . . . . . . 12 (Lim 𝑥 → (𝐴𝑥 ↔ suc 𝐴𝑥))
6463ad2antrr 726 . . . . . . . . . . 11 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝐴𝑥 ↔ suc 𝐴𝑥))
6562, 64mpbid 232 . . . . . . . . . 10 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → suc 𝐴𝑥)
66 simprr 773 . . . . . . . . . . . . 13 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → 𝑥 ∈ dom 𝑅1)
67 ordtr1 6427 . . . . . . . . . . . . . 14 (Ord dom 𝑅1 → ((𝐴𝑥𝑥 ∈ dom 𝑅1) → 𝐴 ∈ dom 𝑅1))
685, 67ax-mp 5 . . . . . . . . . . . . 13 ((𝐴𝑥𝑥 ∈ dom 𝑅1) → 𝐴 ∈ dom 𝑅1)
6962, 66, 68syl2anc 584 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → 𝐴 ∈ dom 𝑅1)
7069, 39syl 17 . . . . . . . . . . 11 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))
7136, 70eleqtrrid 2848 . . . . . . . . . 10 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴))
72 fveq2 6906 . . . . . . . . . . . 12 (𝑦 = suc 𝐴 → (𝑅1𝑦) = (𝑅1‘suc 𝐴))
7372eleq2d 2827 . . . . . . . . . . 11 (𝑦 = suc 𝐴 → ((𝑅1𝐴) ∈ (𝑅1𝑦) ↔ (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴)))
7473rspcev 3622 . . . . . . . . . 10 ((suc 𝐴𝑥 ∧ (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴)) → ∃𝑦𝑥 (𝑅1𝐴) ∈ (𝑅1𝑦))
7565, 71, 74syl2anc 584 . . . . . . . . 9 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → ∃𝑦𝑥 (𝑅1𝐴) ∈ (𝑅1𝑦))
76 eliun 4995 . . . . . . . . 9 ((𝑅1𝐴) ∈ 𝑦𝑥 (𝑅1𝑦) ↔ ∃𝑦𝑥 (𝑅1𝐴) ∈ (𝑅1𝑦))
7775, 76sylibr 234 . . . . . . . 8 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝑅1𝐴) ∈ 𝑦𝑥 (𝑅1𝑦))
78 simpll 767 . . . . . . . . 9 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → Lim 𝑥)
79 r1limg 9811 . . . . . . . . 9 ((𝑥 ∈ dom 𝑅1 ∧ Lim 𝑥) → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
8066, 78, 79syl2anc 584 . . . . . . . 8 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
8177, 80eleqtrrd 2844 . . . . . . 7 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝑅1𝐴) ∈ (𝑅1𝑥))
8281expr 456 . . . . . 6 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑥) → (𝑥 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑥)))
8382a1d 25 . . . . 5 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑥) → (∀𝑦𝑥 (suc 𝐴𝑦 → (𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑦))) → (𝑥 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑥))))
8422, 26, 30, 34, 42, 53, 83tfindsg 7882 . . . 4 (((𝐵 ∈ On ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝐵) → (𝐵 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝐵)))
8584impr 454 . . 3 (((𝐵 ∈ On ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝐵𝐵 ∈ dom 𝑅1)) → (𝑅1𝐴) ∈ (𝑅1𝐵))
869, 13, 18, 1, 85syl22anc 839 . 2 ((𝐵 ∈ dom 𝑅1𝐴𝐵) → (𝑅1𝐴) ∈ (𝑅1𝐵))
8786ex 412 1 (𝐵 ∈ dom 𝑅1 → (𝐴𝐵 → (𝑅1𝐴) ∈ (𝑅1𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  wss 3951  𝒫 cpw 4600   ciun 4991  Tr wtr 5259  dom cdm 5685  Ord word 6383  Oncon0 6384  Lim wlim 6385  suc csuc 6386  Fun wfun 6555  cfv 6561  𝑅1cr1 9802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-r1 9804
This theorem is referenced by:  r1ord3g  9819  r1ord  9820
  Copyright terms: Public domain W3C validator