MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1ordg Structured version   Visualization version   GIF version

Theorem r1ordg 9467
Description: Ordering relation for the cumulative hierarchy of sets. Part of Proposition 9.10(2) of [TakeutiZaring] p. 77. (Contributed by NM, 8-Sep-2003.)
Assertion
Ref Expression
r1ordg (𝐵 ∈ dom 𝑅1 → (𝐴𝐵 → (𝑅1𝐴) ∈ (𝑅1𝐵)))

Proof of Theorem r1ordg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐵 ∈ dom 𝑅1𝐴𝐵) → 𝐵 ∈ dom 𝑅1)
2 r1funlim 9455 . . . . . . . 8 (Fun 𝑅1 ∧ Lim dom 𝑅1)
32simpri 485 . . . . . . 7 Lim dom 𝑅1
4 limord 6310 . . . . . . 7 (Lim dom 𝑅1 → Ord dom 𝑅1)
53, 4ax-mp 5 . . . . . 6 Ord dom 𝑅1
6 ordsson 7610 . . . . . 6 (Ord dom 𝑅1 → dom 𝑅1 ⊆ On)
75, 6ax-mp 5 . . . . 5 dom 𝑅1 ⊆ On
87sseli 3913 . . . 4 (𝐵 ∈ dom 𝑅1𝐵 ∈ On)
91, 8syl 17 . . 3 ((𝐵 ∈ dom 𝑅1𝐴𝐵) → 𝐵 ∈ On)
10 onelon 6276 . . . . 5 ((𝐵 ∈ On ∧ 𝐴𝐵) → 𝐴 ∈ On)
118, 10sylan 579 . . . 4 ((𝐵 ∈ dom 𝑅1𝐴𝐵) → 𝐴 ∈ On)
12 suceloni 7635 . . . 4 (𝐴 ∈ On → suc 𝐴 ∈ On)
1311, 12syl 17 . . 3 ((𝐵 ∈ dom 𝑅1𝐴𝐵) → suc 𝐴 ∈ On)
14 eloni 6261 . . . . . 6 (𝐵 ∈ On → Ord 𝐵)
15 ordsucss 7640 . . . . . 6 (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
1614, 15syl 17 . . . . 5 (𝐵 ∈ On → (𝐴𝐵 → suc 𝐴𝐵))
1716imp 406 . . . 4 ((𝐵 ∈ On ∧ 𝐴𝐵) → suc 𝐴𝐵)
188, 17sylan 579 . . 3 ((𝐵 ∈ dom 𝑅1𝐴𝐵) → suc 𝐴𝐵)
19 eleq1 2826 . . . . . 6 (𝑥 = suc 𝐴 → (𝑥 ∈ dom 𝑅1 ↔ suc 𝐴 ∈ dom 𝑅1))
20 fveq2 6756 . . . . . . 7 (𝑥 = suc 𝐴 → (𝑅1𝑥) = (𝑅1‘suc 𝐴))
2120eleq2d 2824 . . . . . 6 (𝑥 = suc 𝐴 → ((𝑅1𝐴) ∈ (𝑅1𝑥) ↔ (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴)))
2219, 21imbi12d 344 . . . . 5 (𝑥 = suc 𝐴 → ((𝑥 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑥)) ↔ (suc 𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴))))
23 eleq1 2826 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ∈ dom 𝑅1𝑦 ∈ dom 𝑅1))
24 fveq2 6756 . . . . . . 7 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
2524eleq2d 2824 . . . . . 6 (𝑥 = 𝑦 → ((𝑅1𝐴) ∈ (𝑅1𝑥) ↔ (𝑅1𝐴) ∈ (𝑅1𝑦)))
2623, 25imbi12d 344 . . . . 5 (𝑥 = 𝑦 → ((𝑥 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑥)) ↔ (𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑦))))
27 eleq1 2826 . . . . . 6 (𝑥 = suc 𝑦 → (𝑥 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1))
28 fveq2 6756 . . . . . . 7 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
2928eleq2d 2824 . . . . . 6 (𝑥 = suc 𝑦 → ((𝑅1𝐴) ∈ (𝑅1𝑥) ↔ (𝑅1𝐴) ∈ (𝑅1‘suc 𝑦)))
3027, 29imbi12d 344 . . . . 5 (𝑥 = suc 𝑦 → ((𝑥 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑥)) ↔ (suc 𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝑦))))
31 eleq1 2826 . . . . . 6 (𝑥 = 𝐵 → (𝑥 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1))
32 fveq2 6756 . . . . . . 7 (𝑥 = 𝐵 → (𝑅1𝑥) = (𝑅1𝐵))
3332eleq2d 2824 . . . . . 6 (𝑥 = 𝐵 → ((𝑅1𝐴) ∈ (𝑅1𝑥) ↔ (𝑅1𝐴) ∈ (𝑅1𝐵)))
3431, 33imbi12d 344 . . . . 5 (𝑥 = 𝐵 → ((𝑥 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑥)) ↔ (𝐵 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝐵))))
35 fvex 6769 . . . . . . . 8 (𝑅1𝐴) ∈ V
3635pwid 4554 . . . . . . 7 (𝑅1𝐴) ∈ 𝒫 (𝑅1𝐴)
37 limsuc 7671 . . . . . . . . 9 (Lim dom 𝑅1 → (𝐴 ∈ dom 𝑅1 ↔ suc 𝐴 ∈ dom 𝑅1))
383, 37ax-mp 5 . . . . . . . 8 (𝐴 ∈ dom 𝑅1 ↔ suc 𝐴 ∈ dom 𝑅1)
39 r1sucg 9458 . . . . . . . 8 (𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))
4038, 39sylbir 234 . . . . . . 7 (suc 𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))
4136, 40eleqtrrid 2846 . . . . . 6 (suc 𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴))
4241a1i 11 . . . . 5 (suc 𝐴 ∈ On → (suc 𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴)))
43 limsuc 7671 . . . . . . . 8 (Lim dom 𝑅1 → (𝑦 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1))
443, 43ax-mp 5 . . . . . . 7 (𝑦 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1)
45 r1tr 9465 . . . . . . . . . . 11 Tr (𝑅1𝑦)
46 dftr4 5192 . . . . . . . . . . 11 (Tr (𝑅1𝑦) ↔ (𝑅1𝑦) ⊆ 𝒫 (𝑅1𝑦))
4745, 46mpbi 229 . . . . . . . . . 10 (𝑅1𝑦) ⊆ 𝒫 (𝑅1𝑦)
48 r1sucg 9458 . . . . . . . . . 10 (𝑦 ∈ dom 𝑅1 → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
4947, 48sseqtrrid 3970 . . . . . . . . 9 (𝑦 ∈ dom 𝑅1 → (𝑅1𝑦) ⊆ (𝑅1‘suc 𝑦))
5049sseld 3916 . . . . . . . 8 (𝑦 ∈ dom 𝑅1 → ((𝑅1𝐴) ∈ (𝑅1𝑦) → (𝑅1𝐴) ∈ (𝑅1‘suc 𝑦)))
5150a2i 14 . . . . . . 7 ((𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑦)) → (𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝑦)))
5244, 51syl5bir 242 . . . . . 6 ((𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑦)) → (suc 𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝑦)))
5352a1i 11 . . . . 5 (((𝑦 ∈ On ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑦) → ((𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑦)) → (suc 𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝑦))))
54 simprl 767 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → suc 𝐴𝑥)
55 simplr 765 . . . . . . . . . . . . . 14 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → suc 𝐴 ∈ On)
56 sucelon 7639 . . . . . . . . . . . . . 14 (𝐴 ∈ On ↔ suc 𝐴 ∈ On)
5755, 56sylibr 233 . . . . . . . . . . . . 13 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → 𝐴 ∈ On)
58 limord 6310 . . . . . . . . . . . . . 14 (Lim 𝑥 → Ord 𝑥)
5958ad2antrr 722 . . . . . . . . . . . . 13 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → Ord 𝑥)
60 ordelsuc 7642 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ Ord 𝑥) → (𝐴𝑥 ↔ suc 𝐴𝑥))
6157, 59, 60syl2anc 583 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝐴𝑥 ↔ suc 𝐴𝑥))
6254, 61mpbird 256 . . . . . . . . . . 11 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → 𝐴𝑥)
63 limsuc 7671 . . . . . . . . . . . 12 (Lim 𝑥 → (𝐴𝑥 ↔ suc 𝐴𝑥))
6463ad2antrr 722 . . . . . . . . . . 11 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝐴𝑥 ↔ suc 𝐴𝑥))
6562, 64mpbid 231 . . . . . . . . . 10 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → suc 𝐴𝑥)
66 simprr 769 . . . . . . . . . . . . 13 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → 𝑥 ∈ dom 𝑅1)
67 ordtr1 6294 . . . . . . . . . . . . . 14 (Ord dom 𝑅1 → ((𝐴𝑥𝑥 ∈ dom 𝑅1) → 𝐴 ∈ dom 𝑅1))
685, 67ax-mp 5 . . . . . . . . . . . . 13 ((𝐴𝑥𝑥 ∈ dom 𝑅1) → 𝐴 ∈ dom 𝑅1)
6962, 66, 68syl2anc 583 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → 𝐴 ∈ dom 𝑅1)
7069, 39syl 17 . . . . . . . . . . 11 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))
7136, 70eleqtrrid 2846 . . . . . . . . . 10 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴))
72 fveq2 6756 . . . . . . . . . . . 12 (𝑦 = suc 𝐴 → (𝑅1𝑦) = (𝑅1‘suc 𝐴))
7372eleq2d 2824 . . . . . . . . . . 11 (𝑦 = suc 𝐴 → ((𝑅1𝐴) ∈ (𝑅1𝑦) ↔ (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴)))
7473rspcev 3552 . . . . . . . . . 10 ((suc 𝐴𝑥 ∧ (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴)) → ∃𝑦𝑥 (𝑅1𝐴) ∈ (𝑅1𝑦))
7565, 71, 74syl2anc 583 . . . . . . . . 9 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → ∃𝑦𝑥 (𝑅1𝐴) ∈ (𝑅1𝑦))
76 eliun 4925 . . . . . . . . 9 ((𝑅1𝐴) ∈ 𝑦𝑥 (𝑅1𝑦) ↔ ∃𝑦𝑥 (𝑅1𝐴) ∈ (𝑅1𝑦))
7775, 76sylibr 233 . . . . . . . 8 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝑅1𝐴) ∈ 𝑦𝑥 (𝑅1𝑦))
78 simpll 763 . . . . . . . . 9 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → Lim 𝑥)
79 r1limg 9460 . . . . . . . . 9 ((𝑥 ∈ dom 𝑅1 ∧ Lim 𝑥) → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
8066, 78, 79syl2anc 583 . . . . . . . 8 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
8177, 80eleqtrrd 2842 . . . . . . 7 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝑅1𝐴) ∈ (𝑅1𝑥))
8281expr 456 . . . . . 6 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑥) → (𝑥 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑥)))
8382a1d 25 . . . . 5 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑥) → (∀𝑦𝑥 (suc 𝐴𝑦 → (𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑦))) → (𝑥 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑥))))
8422, 26, 30, 34, 42, 53, 83tfindsg 7682 . . . 4 (((𝐵 ∈ On ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝐵) → (𝐵 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝐵)))
8584impr 454 . . 3 (((𝐵 ∈ On ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝐵𝐵 ∈ dom 𝑅1)) → (𝑅1𝐴) ∈ (𝑅1𝐵))
869, 13, 18, 1, 85syl22anc 835 . 2 ((𝐵 ∈ dom 𝑅1𝐴𝐵) → (𝑅1𝐴) ∈ (𝑅1𝐵))
8786ex 412 1 (𝐵 ∈ dom 𝑅1 → (𝐴𝐵 → (𝑅1𝐴) ∈ (𝑅1𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  wss 3883  𝒫 cpw 4530   ciun 4921  Tr wtr 5187  dom cdm 5580  Ord word 6250  Oncon0 6251  Lim wlim 6252  suc csuc 6253  Fun wfun 6412  cfv 6418  𝑅1cr1 9451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-r1 9453
This theorem is referenced by:  r1ord3g  9468  r1ord  9469
  Copyright terms: Public domain W3C validator