MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1ordg Structured version   Visualization version   GIF version

Theorem r1ordg 9546
Description: Ordering relation for the cumulative hierarchy of sets. Part of Proposition 9.10(2) of [TakeutiZaring] p. 77. (Contributed by NM, 8-Sep-2003.)
Assertion
Ref Expression
r1ordg (𝐵 ∈ dom 𝑅1 → (𝐴𝐵 → (𝑅1𝐴) ∈ (𝑅1𝐵)))

Proof of Theorem r1ordg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . . 4 ((𝐵 ∈ dom 𝑅1𝐴𝐵) → 𝐵 ∈ dom 𝑅1)
2 r1funlim 9534 . . . . . . . 8 (Fun 𝑅1 ∧ Lim dom 𝑅1)
32simpri 486 . . . . . . 7 Lim dom 𝑅1
4 limord 6318 . . . . . . 7 (Lim dom 𝑅1 → Ord dom 𝑅1)
53, 4ax-mp 5 . . . . . 6 Ord dom 𝑅1
6 ordsson 7623 . . . . . 6 (Ord dom 𝑅1 → dom 𝑅1 ⊆ On)
75, 6ax-mp 5 . . . . 5 dom 𝑅1 ⊆ On
87sseli 3916 . . . 4 (𝐵 ∈ dom 𝑅1𝐵 ∈ On)
91, 8syl 17 . . 3 ((𝐵 ∈ dom 𝑅1𝐴𝐵) → 𝐵 ∈ On)
10 onelon 6284 . . . . 5 ((𝐵 ∈ On ∧ 𝐴𝐵) → 𝐴 ∈ On)
118, 10sylan 580 . . . 4 ((𝐵 ∈ dom 𝑅1𝐴𝐵) → 𝐴 ∈ On)
12 suceloni 7649 . . . 4 (𝐴 ∈ On → suc 𝐴 ∈ On)
1311, 12syl 17 . . 3 ((𝐵 ∈ dom 𝑅1𝐴𝐵) → suc 𝐴 ∈ On)
14 eloni 6269 . . . . . 6 (𝐵 ∈ On → Ord 𝐵)
15 ordsucss 7655 . . . . . 6 (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
1614, 15syl 17 . . . . 5 (𝐵 ∈ On → (𝐴𝐵 → suc 𝐴𝐵))
1716imp 407 . . . 4 ((𝐵 ∈ On ∧ 𝐴𝐵) → suc 𝐴𝐵)
188, 17sylan 580 . . 3 ((𝐵 ∈ dom 𝑅1𝐴𝐵) → suc 𝐴𝐵)
19 eleq1 2826 . . . . . 6 (𝑥 = suc 𝐴 → (𝑥 ∈ dom 𝑅1 ↔ suc 𝐴 ∈ dom 𝑅1))
20 fveq2 6766 . . . . . . 7 (𝑥 = suc 𝐴 → (𝑅1𝑥) = (𝑅1‘suc 𝐴))
2120eleq2d 2824 . . . . . 6 (𝑥 = suc 𝐴 → ((𝑅1𝐴) ∈ (𝑅1𝑥) ↔ (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴)))
2219, 21imbi12d 345 . . . . 5 (𝑥 = suc 𝐴 → ((𝑥 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑥)) ↔ (suc 𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴))))
23 eleq1 2826 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ∈ dom 𝑅1𝑦 ∈ dom 𝑅1))
24 fveq2 6766 . . . . . . 7 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
2524eleq2d 2824 . . . . . 6 (𝑥 = 𝑦 → ((𝑅1𝐴) ∈ (𝑅1𝑥) ↔ (𝑅1𝐴) ∈ (𝑅1𝑦)))
2623, 25imbi12d 345 . . . . 5 (𝑥 = 𝑦 → ((𝑥 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑥)) ↔ (𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑦))))
27 eleq1 2826 . . . . . 6 (𝑥 = suc 𝑦 → (𝑥 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1))
28 fveq2 6766 . . . . . . 7 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
2928eleq2d 2824 . . . . . 6 (𝑥 = suc 𝑦 → ((𝑅1𝐴) ∈ (𝑅1𝑥) ↔ (𝑅1𝐴) ∈ (𝑅1‘suc 𝑦)))
3027, 29imbi12d 345 . . . . 5 (𝑥 = suc 𝑦 → ((𝑥 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑥)) ↔ (suc 𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝑦))))
31 eleq1 2826 . . . . . 6 (𝑥 = 𝐵 → (𝑥 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1))
32 fveq2 6766 . . . . . . 7 (𝑥 = 𝐵 → (𝑅1𝑥) = (𝑅1𝐵))
3332eleq2d 2824 . . . . . 6 (𝑥 = 𝐵 → ((𝑅1𝐴) ∈ (𝑅1𝑥) ↔ (𝑅1𝐴) ∈ (𝑅1𝐵)))
3431, 33imbi12d 345 . . . . 5 (𝑥 = 𝐵 → ((𝑥 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑥)) ↔ (𝐵 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝐵))))
35 fvex 6779 . . . . . . . 8 (𝑅1𝐴) ∈ V
3635pwid 4557 . . . . . . 7 (𝑅1𝐴) ∈ 𝒫 (𝑅1𝐴)
37 limsuc 7686 . . . . . . . . 9 (Lim dom 𝑅1 → (𝐴 ∈ dom 𝑅1 ↔ suc 𝐴 ∈ dom 𝑅1))
383, 37ax-mp 5 . . . . . . . 8 (𝐴 ∈ dom 𝑅1 ↔ suc 𝐴 ∈ dom 𝑅1)
39 r1sucg 9537 . . . . . . . 8 (𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))
4038, 39sylbir 234 . . . . . . 7 (suc 𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))
4136, 40eleqtrrid 2846 . . . . . 6 (suc 𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴))
4241a1i 11 . . . . 5 (suc 𝐴 ∈ On → (suc 𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴)))
43 limsuc 7686 . . . . . . . 8 (Lim dom 𝑅1 → (𝑦 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1))
443, 43ax-mp 5 . . . . . . 7 (𝑦 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1)
45 r1tr 9544 . . . . . . . . . . 11 Tr (𝑅1𝑦)
46 dftr4 5195 . . . . . . . . . . 11 (Tr (𝑅1𝑦) ↔ (𝑅1𝑦) ⊆ 𝒫 (𝑅1𝑦))
4745, 46mpbi 229 . . . . . . . . . 10 (𝑅1𝑦) ⊆ 𝒫 (𝑅1𝑦)
48 r1sucg 9537 . . . . . . . . . 10 (𝑦 ∈ dom 𝑅1 → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
4947, 48sseqtrrid 3973 . . . . . . . . 9 (𝑦 ∈ dom 𝑅1 → (𝑅1𝑦) ⊆ (𝑅1‘suc 𝑦))
5049sseld 3919 . . . . . . . 8 (𝑦 ∈ dom 𝑅1 → ((𝑅1𝐴) ∈ (𝑅1𝑦) → (𝑅1𝐴) ∈ (𝑅1‘suc 𝑦)))
5150a2i 14 . . . . . . 7 ((𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑦)) → (𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝑦)))
5244, 51syl5bir 242 . . . . . 6 ((𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑦)) → (suc 𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝑦)))
5352a1i 11 . . . . 5 (((𝑦 ∈ On ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑦) → ((𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑦)) → (suc 𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝑦))))
54 simprl 768 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → suc 𝐴𝑥)
55 simplr 766 . . . . . . . . . . . . . 14 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → suc 𝐴 ∈ On)
56 sucelon 7654 . . . . . . . . . . . . . 14 (𝐴 ∈ On ↔ suc 𝐴 ∈ On)
5755, 56sylibr 233 . . . . . . . . . . . . 13 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → 𝐴 ∈ On)
58 limord 6318 . . . . . . . . . . . . . 14 (Lim 𝑥 → Ord 𝑥)
5958ad2antrr 723 . . . . . . . . . . . . 13 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → Ord 𝑥)
60 ordelsuc 7657 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ Ord 𝑥) → (𝐴𝑥 ↔ suc 𝐴𝑥))
6157, 59, 60syl2anc 584 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝐴𝑥 ↔ suc 𝐴𝑥))
6254, 61mpbird 256 . . . . . . . . . . 11 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → 𝐴𝑥)
63 limsuc 7686 . . . . . . . . . . . 12 (Lim 𝑥 → (𝐴𝑥 ↔ suc 𝐴𝑥))
6463ad2antrr 723 . . . . . . . . . . 11 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝐴𝑥 ↔ suc 𝐴𝑥))
6562, 64mpbid 231 . . . . . . . . . 10 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → suc 𝐴𝑥)
66 simprr 770 . . . . . . . . . . . . 13 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → 𝑥 ∈ dom 𝑅1)
67 ordtr1 6302 . . . . . . . . . . . . . 14 (Ord dom 𝑅1 → ((𝐴𝑥𝑥 ∈ dom 𝑅1) → 𝐴 ∈ dom 𝑅1))
685, 67ax-mp 5 . . . . . . . . . . . . 13 ((𝐴𝑥𝑥 ∈ dom 𝑅1) → 𝐴 ∈ dom 𝑅1)
6962, 66, 68syl2anc 584 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → 𝐴 ∈ dom 𝑅1)
7069, 39syl 17 . . . . . . . . . . 11 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))
7136, 70eleqtrrid 2846 . . . . . . . . . 10 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴))
72 fveq2 6766 . . . . . . . . . . . 12 (𝑦 = suc 𝐴 → (𝑅1𝑦) = (𝑅1‘suc 𝐴))
7372eleq2d 2824 . . . . . . . . . . 11 (𝑦 = suc 𝐴 → ((𝑅1𝐴) ∈ (𝑅1𝑦) ↔ (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴)))
7473rspcev 3559 . . . . . . . . . 10 ((suc 𝐴𝑥 ∧ (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴)) → ∃𝑦𝑥 (𝑅1𝐴) ∈ (𝑅1𝑦))
7565, 71, 74syl2anc 584 . . . . . . . . 9 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → ∃𝑦𝑥 (𝑅1𝐴) ∈ (𝑅1𝑦))
76 eliun 4928 . . . . . . . . 9 ((𝑅1𝐴) ∈ 𝑦𝑥 (𝑅1𝑦) ↔ ∃𝑦𝑥 (𝑅1𝐴) ∈ (𝑅1𝑦))
7775, 76sylibr 233 . . . . . . . 8 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝑅1𝐴) ∈ 𝑦𝑥 (𝑅1𝑦))
78 simpll 764 . . . . . . . . 9 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → Lim 𝑥)
79 r1limg 9539 . . . . . . . . 9 ((𝑥 ∈ dom 𝑅1 ∧ Lim 𝑥) → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
8066, 78, 79syl2anc 584 . . . . . . . 8 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
8177, 80eleqtrrd 2842 . . . . . . 7 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝑥𝑥 ∈ dom 𝑅1)) → (𝑅1𝐴) ∈ (𝑅1𝑥))
8281expr 457 . . . . . 6 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑥) → (𝑥 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑥)))
8382a1d 25 . . . . 5 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑥) → (∀𝑦𝑥 (suc 𝐴𝑦 → (𝑦 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑦))) → (𝑥 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝑥))))
8422, 26, 30, 34, 42, 53, 83tfindsg 7697 . . . 4 (((𝐵 ∈ On ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝐵) → (𝐵 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1𝐵)))
8584impr 455 . . 3 (((𝐵 ∈ On ∧ suc 𝐴 ∈ On) ∧ (suc 𝐴𝐵𝐵 ∈ dom 𝑅1)) → (𝑅1𝐴) ∈ (𝑅1𝐵))
869, 13, 18, 1, 85syl22anc 836 . 2 ((𝐵 ∈ dom 𝑅1𝐴𝐵) → (𝑅1𝐴) ∈ (𝑅1𝐵))
8786ex 413 1 (𝐵 ∈ dom 𝑅1 → (𝐴𝐵 → (𝑅1𝐴) ∈ (𝑅1𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  wss 3886  𝒫 cpw 4533   ciun 4924  Tr wtr 5190  dom cdm 5584  Ord word 6258  Oncon0 6259  Lim wlim 6260  suc csuc 6261  Fun wfun 6420  cfv 6426  𝑅1cr1 9530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-ov 7270  df-om 7703  df-2nd 7821  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-r1 9532
This theorem is referenced by:  r1ord3g  9547  r1ord  9548
  Copyright terms: Public domain W3C validator