MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij2lem3 Structured version   Visualization version   GIF version

Theorem ackbij2lem3 10185
Description: Lemma for ackbij2 10187. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypotheses
Ref Expression
ackbij.f 𝐹 = (π‘₯ ∈ (𝒫 Ο‰ ∩ Fin) ↦ (cardβ€˜βˆͺ 𝑦 ∈ π‘₯ ({𝑦} Γ— 𝒫 𝑦)))
ackbij.g 𝐺 = (π‘₯ ∈ V ↦ (𝑦 ∈ 𝒫 dom π‘₯ ↦ (πΉβ€˜(π‘₯ β€œ 𝑦))))
Assertion
Ref Expression
ackbij2lem3 (𝐴 ∈ Ο‰ β†’ (rec(𝐺, βˆ…)β€˜π΄) βŠ† (rec(𝐺, βˆ…)β€˜suc 𝐴))
Distinct variable groups:   π‘₯,𝐹,𝑦   π‘₯,𝐺,𝑦   π‘₯,𝐴,𝑦

Proof of Theorem ackbij2lem3
Dummy variables π‘Ž 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6846 . . . 4 (π‘Ž = βˆ… β†’ (rec(𝐺, βˆ…)β€˜π‘Ž) = (rec(𝐺, βˆ…)β€˜βˆ…))
2 suceq 6387 . . . . . 6 (π‘Ž = βˆ… β†’ suc π‘Ž = suc βˆ…)
32fveq2d 6850 . . . . 5 (π‘Ž = βˆ… β†’ (rec(𝐺, βˆ…)β€˜suc π‘Ž) = (rec(𝐺, βˆ…)β€˜suc βˆ…))
4 fveq2 6846 . . . . 5 (π‘Ž = βˆ… β†’ (𝑅1β€˜π‘Ž) = (𝑅1β€˜βˆ…))
53, 4reseq12d 5942 . . . 4 (π‘Ž = βˆ… β†’ ((rec(𝐺, βˆ…)β€˜suc π‘Ž) β†Ύ (𝑅1β€˜π‘Ž)) = ((rec(𝐺, βˆ…)β€˜suc βˆ…) β†Ύ (𝑅1β€˜βˆ…)))
61, 5eqeq12d 2749 . . 3 (π‘Ž = βˆ… β†’ ((rec(𝐺, βˆ…)β€˜π‘Ž) = ((rec(𝐺, βˆ…)β€˜suc π‘Ž) β†Ύ (𝑅1β€˜π‘Ž)) ↔ (rec(𝐺, βˆ…)β€˜βˆ…) = ((rec(𝐺, βˆ…)β€˜suc βˆ…) β†Ύ (𝑅1β€˜βˆ…))))
7 fveq2 6846 . . . 4 (π‘Ž = 𝑏 β†’ (rec(𝐺, βˆ…)β€˜π‘Ž) = (rec(𝐺, βˆ…)β€˜π‘))
8 suceq 6387 . . . . . 6 (π‘Ž = 𝑏 β†’ suc π‘Ž = suc 𝑏)
98fveq2d 6850 . . . . 5 (π‘Ž = 𝑏 β†’ (rec(𝐺, βˆ…)β€˜suc π‘Ž) = (rec(𝐺, βˆ…)β€˜suc 𝑏))
10 fveq2 6846 . . . . 5 (π‘Ž = 𝑏 β†’ (𝑅1β€˜π‘Ž) = (𝑅1β€˜π‘))
119, 10reseq12d 5942 . . . 4 (π‘Ž = 𝑏 β†’ ((rec(𝐺, βˆ…)β€˜suc π‘Ž) β†Ύ (𝑅1β€˜π‘Ž)) = ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)))
127, 11eqeq12d 2749 . . 3 (π‘Ž = 𝑏 β†’ ((rec(𝐺, βˆ…)β€˜π‘Ž) = ((rec(𝐺, βˆ…)β€˜suc π‘Ž) β†Ύ (𝑅1β€˜π‘Ž)) ↔ (rec(𝐺, βˆ…)β€˜π‘) = ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘))))
13 fveq2 6846 . . . 4 (π‘Ž = suc 𝑏 β†’ (rec(𝐺, βˆ…)β€˜π‘Ž) = (rec(𝐺, βˆ…)β€˜suc 𝑏))
14 suceq 6387 . . . . . 6 (π‘Ž = suc 𝑏 β†’ suc π‘Ž = suc suc 𝑏)
1514fveq2d 6850 . . . . 5 (π‘Ž = suc 𝑏 β†’ (rec(𝐺, βˆ…)β€˜suc π‘Ž) = (rec(𝐺, βˆ…)β€˜suc suc 𝑏))
16 fveq2 6846 . . . . 5 (π‘Ž = suc 𝑏 β†’ (𝑅1β€˜π‘Ž) = (𝑅1β€˜suc 𝑏))
1715, 16reseq12d 5942 . . . 4 (π‘Ž = suc 𝑏 β†’ ((rec(𝐺, βˆ…)β€˜suc π‘Ž) β†Ύ (𝑅1β€˜π‘Ž)) = ((rec(𝐺, βˆ…)β€˜suc suc 𝑏) β†Ύ (𝑅1β€˜suc 𝑏)))
1813, 17eqeq12d 2749 . . 3 (π‘Ž = suc 𝑏 β†’ ((rec(𝐺, βˆ…)β€˜π‘Ž) = ((rec(𝐺, βˆ…)β€˜suc π‘Ž) β†Ύ (𝑅1β€˜π‘Ž)) ↔ (rec(𝐺, βˆ…)β€˜suc 𝑏) = ((rec(𝐺, βˆ…)β€˜suc suc 𝑏) β†Ύ (𝑅1β€˜suc 𝑏))))
19 fveq2 6846 . . . 4 (π‘Ž = 𝐴 β†’ (rec(𝐺, βˆ…)β€˜π‘Ž) = (rec(𝐺, βˆ…)β€˜π΄))
20 suceq 6387 . . . . . 6 (π‘Ž = 𝐴 β†’ suc π‘Ž = suc 𝐴)
2120fveq2d 6850 . . . . 5 (π‘Ž = 𝐴 β†’ (rec(𝐺, βˆ…)β€˜suc π‘Ž) = (rec(𝐺, βˆ…)β€˜suc 𝐴))
22 fveq2 6846 . . . . 5 (π‘Ž = 𝐴 β†’ (𝑅1β€˜π‘Ž) = (𝑅1β€˜π΄))
2321, 22reseq12d 5942 . . . 4 (π‘Ž = 𝐴 β†’ ((rec(𝐺, βˆ…)β€˜suc π‘Ž) β†Ύ (𝑅1β€˜π‘Ž)) = ((rec(𝐺, βˆ…)β€˜suc 𝐴) β†Ύ (𝑅1β€˜π΄)))
2419, 23eqeq12d 2749 . . 3 (π‘Ž = 𝐴 β†’ ((rec(𝐺, βˆ…)β€˜π‘Ž) = ((rec(𝐺, βˆ…)β€˜suc π‘Ž) β†Ύ (𝑅1β€˜π‘Ž)) ↔ (rec(𝐺, βˆ…)β€˜π΄) = ((rec(𝐺, βˆ…)β€˜suc 𝐴) β†Ύ (𝑅1β€˜π΄))))
25 res0 5945 . . . 4 ((rec(𝐺, βˆ…)β€˜suc βˆ…) β†Ύ βˆ…) = βˆ…
26 r10 9712 . . . . 5 (𝑅1β€˜βˆ…) = βˆ…
2726reseq2i 5938 . . . 4 ((rec(𝐺, βˆ…)β€˜suc βˆ…) β†Ύ (𝑅1β€˜βˆ…)) = ((rec(𝐺, βˆ…)β€˜suc βˆ…) β†Ύ βˆ…)
28 0ex 5268 . . . . 5 βˆ… ∈ V
2928rdg0 8371 . . . 4 (rec(𝐺, βˆ…)β€˜βˆ…) = βˆ…
3025, 27, 293eqtr4ri 2772 . . 3 (rec(𝐺, βˆ…)β€˜βˆ…) = ((rec(𝐺, βˆ…)β€˜suc βˆ…) β†Ύ (𝑅1β€˜βˆ…))
31 peano2 7831 . . . . . . . 8 (𝑏 ∈ Ο‰ β†’ suc 𝑏 ∈ Ο‰)
32 ackbij.f . . . . . . . . 9 𝐹 = (π‘₯ ∈ (𝒫 Ο‰ ∩ Fin) ↦ (cardβ€˜βˆͺ 𝑦 ∈ π‘₯ ({𝑦} Γ— 𝒫 𝑦)))
33 ackbij.g . . . . . . . . 9 𝐺 = (π‘₯ ∈ V ↦ (𝑦 ∈ 𝒫 dom π‘₯ ↦ (πΉβ€˜(π‘₯ β€œ 𝑦))))
3432, 33ackbij2lem2 10184 . . . . . . . 8 (suc 𝑏 ∈ Ο‰ β†’ (rec(𝐺, βˆ…)β€˜suc 𝑏):(𝑅1β€˜suc 𝑏)–1-1-ontoβ†’(cardβ€˜(𝑅1β€˜suc 𝑏)))
3531, 34syl 17 . . . . . . 7 (𝑏 ∈ Ο‰ β†’ (rec(𝐺, βˆ…)β€˜suc 𝑏):(𝑅1β€˜suc 𝑏)–1-1-ontoβ†’(cardβ€˜(𝑅1β€˜suc 𝑏)))
36 f1ofn 6789 . . . . . . 7 ((rec(𝐺, βˆ…)β€˜suc 𝑏):(𝑅1β€˜suc 𝑏)–1-1-ontoβ†’(cardβ€˜(𝑅1β€˜suc 𝑏)) β†’ (rec(𝐺, βˆ…)β€˜suc 𝑏) Fn (𝑅1β€˜suc 𝑏))
3735, 36syl 17 . . . . . 6 (𝑏 ∈ Ο‰ β†’ (rec(𝐺, βˆ…)β€˜suc 𝑏) Fn (𝑅1β€˜suc 𝑏))
3837adantr 482 . . . . 5 ((𝑏 ∈ Ο‰ ∧ (rec(𝐺, βˆ…)β€˜π‘) = ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘))) β†’ (rec(𝐺, βˆ…)β€˜suc 𝑏) Fn (𝑅1β€˜suc 𝑏))
39 peano2 7831 . . . . . . . 8 (suc 𝑏 ∈ Ο‰ β†’ suc suc 𝑏 ∈ Ο‰)
4032, 33ackbij2lem2 10184 . . . . . . . 8 (suc suc 𝑏 ∈ Ο‰ β†’ (rec(𝐺, βˆ…)β€˜suc suc 𝑏):(𝑅1β€˜suc suc 𝑏)–1-1-ontoβ†’(cardβ€˜(𝑅1β€˜suc suc 𝑏)))
41 f1ofn 6789 . . . . . . . 8 ((rec(𝐺, βˆ…)β€˜suc suc 𝑏):(𝑅1β€˜suc suc 𝑏)–1-1-ontoβ†’(cardβ€˜(𝑅1β€˜suc suc 𝑏)) β†’ (rec(𝐺, βˆ…)β€˜suc suc 𝑏) Fn (𝑅1β€˜suc suc 𝑏))
4231, 39, 40, 414syl 19 . . . . . . 7 (𝑏 ∈ Ο‰ β†’ (rec(𝐺, βˆ…)β€˜suc suc 𝑏) Fn (𝑅1β€˜suc suc 𝑏))
43 nnon 7812 . . . . . . . . 9 (suc 𝑏 ∈ Ο‰ β†’ suc 𝑏 ∈ On)
4431, 43syl 17 . . . . . . . 8 (𝑏 ∈ Ο‰ β†’ suc 𝑏 ∈ On)
45 r1sssuc 9727 . . . . . . . 8 (suc 𝑏 ∈ On β†’ (𝑅1β€˜suc 𝑏) βŠ† (𝑅1β€˜suc suc 𝑏))
4644, 45syl 17 . . . . . . 7 (𝑏 ∈ Ο‰ β†’ (𝑅1β€˜suc 𝑏) βŠ† (𝑅1β€˜suc suc 𝑏))
47 fnssres 6628 . . . . . . 7 (((rec(𝐺, βˆ…)β€˜suc suc 𝑏) Fn (𝑅1β€˜suc suc 𝑏) ∧ (𝑅1β€˜suc 𝑏) βŠ† (𝑅1β€˜suc suc 𝑏)) β†’ ((rec(𝐺, βˆ…)β€˜suc suc 𝑏) β†Ύ (𝑅1β€˜suc 𝑏)) Fn (𝑅1β€˜suc 𝑏))
4842, 46, 47syl2anc 585 . . . . . 6 (𝑏 ∈ Ο‰ β†’ ((rec(𝐺, βˆ…)β€˜suc suc 𝑏) β†Ύ (𝑅1β€˜suc 𝑏)) Fn (𝑅1β€˜suc 𝑏))
4948adantr 482 . . . . 5 ((𝑏 ∈ Ο‰ ∧ (rec(𝐺, βˆ…)β€˜π‘) = ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘))) β†’ ((rec(𝐺, βˆ…)β€˜suc suc 𝑏) β†Ύ (𝑅1β€˜suc 𝑏)) Fn (𝑅1β€˜suc 𝑏))
50 nnon 7812 . . . . . . . . . . . . . . 15 (𝑏 ∈ Ο‰ β†’ 𝑏 ∈ On)
51 r1suc 9714 . . . . . . . . . . . . . . 15 (𝑏 ∈ On β†’ (𝑅1β€˜suc 𝑏) = 𝒫 (𝑅1β€˜π‘))
5250, 51syl 17 . . . . . . . . . . . . . 14 (𝑏 ∈ Ο‰ β†’ (𝑅1β€˜suc 𝑏) = 𝒫 (𝑅1β€˜π‘))
5352eleq2d 2820 . . . . . . . . . . . . 13 (𝑏 ∈ Ο‰ β†’ (𝑐 ∈ (𝑅1β€˜suc 𝑏) ↔ 𝑐 ∈ 𝒫 (𝑅1β€˜π‘)))
5453biimpa 478 . . . . . . . . . . . 12 ((𝑏 ∈ Ο‰ ∧ 𝑐 ∈ (𝑅1β€˜suc 𝑏)) β†’ 𝑐 ∈ 𝒫 (𝑅1β€˜π‘))
5554elpwid 4573 . . . . . . . . . . 11 ((𝑏 ∈ Ο‰ ∧ 𝑐 ∈ (𝑅1β€˜suc 𝑏)) β†’ 𝑐 βŠ† (𝑅1β€˜π‘))
56 resima2 5976 . . . . . . . . . . 11 (𝑐 βŠ† (𝑅1β€˜π‘) β†’ (((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) β€œ 𝑐) = ((rec(𝐺, βˆ…)β€˜suc 𝑏) β€œ 𝑐))
5755, 56syl 17 . . . . . . . . . 10 ((𝑏 ∈ Ο‰ ∧ 𝑐 ∈ (𝑅1β€˜suc 𝑏)) β†’ (((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) β€œ 𝑐) = ((rec(𝐺, βˆ…)β€˜suc 𝑏) β€œ 𝑐))
5857fveq2d 6850 . . . . . . . . 9 ((𝑏 ∈ Ο‰ ∧ 𝑐 ∈ (𝑅1β€˜suc 𝑏)) β†’ (πΉβ€˜(((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) β€œ 𝑐)) = (πΉβ€˜((rec(𝐺, βˆ…)β€˜suc 𝑏) β€œ 𝑐)))
59 fvex 6859 . . . . . . . . . . . . 13 (rec(𝐺, βˆ…)β€˜suc 𝑏) ∈ V
6059resex 5989 . . . . . . . . . . . 12 ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) ∈ V
61 dmeq 5863 . . . . . . . . . . . . . . 15 (π‘₯ = ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) β†’ dom π‘₯ = dom ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)))
6261pweqd 4581 . . . . . . . . . . . . . 14 (π‘₯ = ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) β†’ 𝒫 dom π‘₯ = 𝒫 dom ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)))
63 imaeq1 6012 . . . . . . . . . . . . . . 15 (π‘₯ = ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) β†’ (π‘₯ β€œ 𝑦) = (((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) β€œ 𝑦))
6463fveq2d 6850 . . . . . . . . . . . . . 14 (π‘₯ = ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) β†’ (πΉβ€˜(π‘₯ β€œ 𝑦)) = (πΉβ€˜(((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) β€œ 𝑦)))
6562, 64mpteq12dv 5200 . . . . . . . . . . . . 13 (π‘₯ = ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) β†’ (𝑦 ∈ 𝒫 dom π‘₯ ↦ (πΉβ€˜(π‘₯ β€œ 𝑦))) = (𝑦 ∈ 𝒫 dom ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) ↦ (πΉβ€˜(((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) β€œ 𝑦))))
6660dmex 7852 . . . . . . . . . . . . . . 15 dom ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) ∈ V
6766pwex 5339 . . . . . . . . . . . . . 14 𝒫 dom ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) ∈ V
6867mptex 7177 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 dom ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) ↦ (πΉβ€˜(((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) β€œ 𝑦))) ∈ V
6965, 33, 68fvmpt 6952 . . . . . . . . . . . 12 (((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) ∈ V β†’ (πΊβ€˜((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘))) = (𝑦 ∈ 𝒫 dom ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) ↦ (πΉβ€˜(((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) β€œ 𝑦))))
7060, 69ax-mp 5 . . . . . . . . . . 11 (πΊβ€˜((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘))) = (𝑦 ∈ 𝒫 dom ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) ↦ (πΉβ€˜(((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) β€œ 𝑦)))
7170fveq1i 6847 . . . . . . . . . 10 ((πΊβ€˜((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)))β€˜π‘) = ((𝑦 ∈ 𝒫 dom ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) ↦ (πΉβ€˜(((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) β€œ 𝑦)))β€˜π‘)
72 r1sssuc 9727 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ On β†’ (𝑅1β€˜π‘) βŠ† (𝑅1β€˜suc 𝑏))
7350, 72syl 17 . . . . . . . . . . . . . . . 16 (𝑏 ∈ Ο‰ β†’ (𝑅1β€˜π‘) βŠ† (𝑅1β€˜suc 𝑏))
74 fnssres 6628 . . . . . . . . . . . . . . . 16 (((rec(𝐺, βˆ…)β€˜suc 𝑏) Fn (𝑅1β€˜suc 𝑏) ∧ (𝑅1β€˜π‘) βŠ† (𝑅1β€˜suc 𝑏)) β†’ ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) Fn (𝑅1β€˜π‘))
7537, 73, 74syl2anc 585 . . . . . . . . . . . . . . 15 (𝑏 ∈ Ο‰ β†’ ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) Fn (𝑅1β€˜π‘))
7675fndmd 6611 . . . . . . . . . . . . . 14 (𝑏 ∈ Ο‰ β†’ dom ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) = (𝑅1β€˜π‘))
7776pweqd 4581 . . . . . . . . . . . . 13 (𝑏 ∈ Ο‰ β†’ 𝒫 dom ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) = 𝒫 (𝑅1β€˜π‘))
7877adantr 482 . . . . . . . . . . . 12 ((𝑏 ∈ Ο‰ ∧ 𝑐 ∈ (𝑅1β€˜suc 𝑏)) β†’ 𝒫 dom ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) = 𝒫 (𝑅1β€˜π‘))
7954, 78eleqtrrd 2837 . . . . . . . . . . 11 ((𝑏 ∈ Ο‰ ∧ 𝑐 ∈ (𝑅1β€˜suc 𝑏)) β†’ 𝑐 ∈ 𝒫 dom ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)))
80 imaeq2 6013 . . . . . . . . . . . . 13 (𝑦 = 𝑐 β†’ (((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) β€œ 𝑦) = (((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) β€œ 𝑐))
8180fveq2d 6850 . . . . . . . . . . . 12 (𝑦 = 𝑐 β†’ (πΉβ€˜(((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) β€œ 𝑦)) = (πΉβ€˜(((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) β€œ 𝑐)))
82 eqid 2733 . . . . . . . . . . . 12 (𝑦 ∈ 𝒫 dom ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) ↦ (πΉβ€˜(((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) β€œ 𝑦))) = (𝑦 ∈ 𝒫 dom ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) ↦ (πΉβ€˜(((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) β€œ 𝑦)))
83 fvex 6859 . . . . . . . . . . . 12 (πΉβ€˜(((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) β€œ 𝑐)) ∈ V
8481, 82, 83fvmpt 6952 . . . . . . . . . . 11 (𝑐 ∈ 𝒫 dom ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) β†’ ((𝑦 ∈ 𝒫 dom ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) ↦ (πΉβ€˜(((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) β€œ 𝑦)))β€˜π‘) = (πΉβ€˜(((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) β€œ 𝑐)))
8579, 84syl 17 . . . . . . . . . 10 ((𝑏 ∈ Ο‰ ∧ 𝑐 ∈ (𝑅1β€˜suc 𝑏)) β†’ ((𝑦 ∈ 𝒫 dom ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) ↦ (πΉβ€˜(((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) β€œ 𝑦)))β€˜π‘) = (πΉβ€˜(((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) β€œ 𝑐)))
8671, 85eqtrid 2785 . . . . . . . . 9 ((𝑏 ∈ Ο‰ ∧ 𝑐 ∈ (𝑅1β€˜suc 𝑏)) β†’ ((πΊβ€˜((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)))β€˜π‘) = (πΉβ€˜(((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) β€œ 𝑐)))
87 dmeq 5863 . . . . . . . . . . . . . . 15 (π‘₯ = (rec(𝐺, βˆ…)β€˜suc 𝑏) β†’ dom π‘₯ = dom (rec(𝐺, βˆ…)β€˜suc 𝑏))
8887pweqd 4581 . . . . . . . . . . . . . 14 (π‘₯ = (rec(𝐺, βˆ…)β€˜suc 𝑏) β†’ 𝒫 dom π‘₯ = 𝒫 dom (rec(𝐺, βˆ…)β€˜suc 𝑏))
89 imaeq1 6012 . . . . . . . . . . . . . . 15 (π‘₯ = (rec(𝐺, βˆ…)β€˜suc 𝑏) β†’ (π‘₯ β€œ 𝑦) = ((rec(𝐺, βˆ…)β€˜suc 𝑏) β€œ 𝑦))
9089fveq2d 6850 . . . . . . . . . . . . . 14 (π‘₯ = (rec(𝐺, βˆ…)β€˜suc 𝑏) β†’ (πΉβ€˜(π‘₯ β€œ 𝑦)) = (πΉβ€˜((rec(𝐺, βˆ…)β€˜suc 𝑏) β€œ 𝑦)))
9188, 90mpteq12dv 5200 . . . . . . . . . . . . 13 (π‘₯ = (rec(𝐺, βˆ…)β€˜suc 𝑏) β†’ (𝑦 ∈ 𝒫 dom π‘₯ ↦ (πΉβ€˜(π‘₯ β€œ 𝑦))) = (𝑦 ∈ 𝒫 dom (rec(𝐺, βˆ…)β€˜suc 𝑏) ↦ (πΉβ€˜((rec(𝐺, βˆ…)β€˜suc 𝑏) β€œ 𝑦))))
9259dmex 7852 . . . . . . . . . . . . . . 15 dom (rec(𝐺, βˆ…)β€˜suc 𝑏) ∈ V
9392pwex 5339 . . . . . . . . . . . . . 14 𝒫 dom (rec(𝐺, βˆ…)β€˜suc 𝑏) ∈ V
9493mptex 7177 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 dom (rec(𝐺, βˆ…)β€˜suc 𝑏) ↦ (πΉβ€˜((rec(𝐺, βˆ…)β€˜suc 𝑏) β€œ 𝑦))) ∈ V
9591, 33, 94fvmpt 6952 . . . . . . . . . . . 12 ((rec(𝐺, βˆ…)β€˜suc 𝑏) ∈ V β†’ (πΊβ€˜(rec(𝐺, βˆ…)β€˜suc 𝑏)) = (𝑦 ∈ 𝒫 dom (rec(𝐺, βˆ…)β€˜suc 𝑏) ↦ (πΉβ€˜((rec(𝐺, βˆ…)β€˜suc 𝑏) β€œ 𝑦))))
9659, 95ax-mp 5 . . . . . . . . . . 11 (πΊβ€˜(rec(𝐺, βˆ…)β€˜suc 𝑏)) = (𝑦 ∈ 𝒫 dom (rec(𝐺, βˆ…)β€˜suc 𝑏) ↦ (πΉβ€˜((rec(𝐺, βˆ…)β€˜suc 𝑏) β€œ 𝑦)))
9796fveq1i 6847 . . . . . . . . . 10 ((πΊβ€˜(rec(𝐺, βˆ…)β€˜suc 𝑏))β€˜π‘) = ((𝑦 ∈ 𝒫 dom (rec(𝐺, βˆ…)β€˜suc 𝑏) ↦ (πΉβ€˜((rec(𝐺, βˆ…)β€˜suc 𝑏) β€œ 𝑦)))β€˜π‘)
98 r1tr 9720 . . . . . . . . . . . . . . 15 Tr (𝑅1β€˜suc 𝑏)
9998a1i 11 . . . . . . . . . . . . . 14 (𝑏 ∈ Ο‰ β†’ Tr (𝑅1β€˜suc 𝑏))
100 dftr4 5233 . . . . . . . . . . . . . 14 (Tr (𝑅1β€˜suc 𝑏) ↔ (𝑅1β€˜suc 𝑏) βŠ† 𝒫 (𝑅1β€˜suc 𝑏))
10199, 100sylib 217 . . . . . . . . . . . . 13 (𝑏 ∈ Ο‰ β†’ (𝑅1β€˜suc 𝑏) βŠ† 𝒫 (𝑅1β€˜suc 𝑏))
102101sselda 3948 . . . . . . . . . . . 12 ((𝑏 ∈ Ο‰ ∧ 𝑐 ∈ (𝑅1β€˜suc 𝑏)) β†’ 𝑐 ∈ 𝒫 (𝑅1β€˜suc 𝑏))
103 f1odm 6792 . . . . . . . . . . . . . . 15 ((rec(𝐺, βˆ…)β€˜suc 𝑏):(𝑅1β€˜suc 𝑏)–1-1-ontoβ†’(cardβ€˜(𝑅1β€˜suc 𝑏)) β†’ dom (rec(𝐺, βˆ…)β€˜suc 𝑏) = (𝑅1β€˜suc 𝑏))
10435, 103syl 17 . . . . . . . . . . . . . 14 (𝑏 ∈ Ο‰ β†’ dom (rec(𝐺, βˆ…)β€˜suc 𝑏) = (𝑅1β€˜suc 𝑏))
105104pweqd 4581 . . . . . . . . . . . . 13 (𝑏 ∈ Ο‰ β†’ 𝒫 dom (rec(𝐺, βˆ…)β€˜suc 𝑏) = 𝒫 (𝑅1β€˜suc 𝑏))
106105adantr 482 . . . . . . . . . . . 12 ((𝑏 ∈ Ο‰ ∧ 𝑐 ∈ (𝑅1β€˜suc 𝑏)) β†’ 𝒫 dom (rec(𝐺, βˆ…)β€˜suc 𝑏) = 𝒫 (𝑅1β€˜suc 𝑏))
107102, 106eleqtrrd 2837 . . . . . . . . . . 11 ((𝑏 ∈ Ο‰ ∧ 𝑐 ∈ (𝑅1β€˜suc 𝑏)) β†’ 𝑐 ∈ 𝒫 dom (rec(𝐺, βˆ…)β€˜suc 𝑏))
108 imaeq2 6013 . . . . . . . . . . . . 13 (𝑦 = 𝑐 β†’ ((rec(𝐺, βˆ…)β€˜suc 𝑏) β€œ 𝑦) = ((rec(𝐺, βˆ…)β€˜suc 𝑏) β€œ 𝑐))
109108fveq2d 6850 . . . . . . . . . . . 12 (𝑦 = 𝑐 β†’ (πΉβ€˜((rec(𝐺, βˆ…)β€˜suc 𝑏) β€œ 𝑦)) = (πΉβ€˜((rec(𝐺, βˆ…)β€˜suc 𝑏) β€œ 𝑐)))
110 eqid 2733 . . . . . . . . . . . 12 (𝑦 ∈ 𝒫 dom (rec(𝐺, βˆ…)β€˜suc 𝑏) ↦ (πΉβ€˜((rec(𝐺, βˆ…)β€˜suc 𝑏) β€œ 𝑦))) = (𝑦 ∈ 𝒫 dom (rec(𝐺, βˆ…)β€˜suc 𝑏) ↦ (πΉβ€˜((rec(𝐺, βˆ…)β€˜suc 𝑏) β€œ 𝑦)))
111 fvex 6859 . . . . . . . . . . . 12 (πΉβ€˜((rec(𝐺, βˆ…)β€˜suc 𝑏) β€œ 𝑐)) ∈ V
112109, 110, 111fvmpt 6952 . . . . . . . . . . 11 (𝑐 ∈ 𝒫 dom (rec(𝐺, βˆ…)β€˜suc 𝑏) β†’ ((𝑦 ∈ 𝒫 dom (rec(𝐺, βˆ…)β€˜suc 𝑏) ↦ (πΉβ€˜((rec(𝐺, βˆ…)β€˜suc 𝑏) β€œ 𝑦)))β€˜π‘) = (πΉβ€˜((rec(𝐺, βˆ…)β€˜suc 𝑏) β€œ 𝑐)))
113107, 112syl 17 . . . . . . . . . 10 ((𝑏 ∈ Ο‰ ∧ 𝑐 ∈ (𝑅1β€˜suc 𝑏)) β†’ ((𝑦 ∈ 𝒫 dom (rec(𝐺, βˆ…)β€˜suc 𝑏) ↦ (πΉβ€˜((rec(𝐺, βˆ…)β€˜suc 𝑏) β€œ 𝑦)))β€˜π‘) = (πΉβ€˜((rec(𝐺, βˆ…)β€˜suc 𝑏) β€œ 𝑐)))
11497, 113eqtrid 2785 . . . . . . . . 9 ((𝑏 ∈ Ο‰ ∧ 𝑐 ∈ (𝑅1β€˜suc 𝑏)) β†’ ((πΊβ€˜(rec(𝐺, βˆ…)β€˜suc 𝑏))β€˜π‘) = (πΉβ€˜((rec(𝐺, βˆ…)β€˜suc 𝑏) β€œ 𝑐)))
11558, 86, 1143eqtr4d 2783 . . . . . . . 8 ((𝑏 ∈ Ο‰ ∧ 𝑐 ∈ (𝑅1β€˜suc 𝑏)) β†’ ((πΊβ€˜((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)))β€˜π‘) = ((πΊβ€˜(rec(𝐺, βˆ…)β€˜suc 𝑏))β€˜π‘))
116115adantlr 714 . . . . . . 7 (((𝑏 ∈ Ο‰ ∧ (rec(𝐺, βˆ…)β€˜π‘) = ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘))) ∧ 𝑐 ∈ (𝑅1β€˜suc 𝑏)) β†’ ((πΊβ€˜((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)))β€˜π‘) = ((πΊβ€˜(rec(𝐺, βˆ…)β€˜suc 𝑏))β€˜π‘))
117 fveq2 6846 . . . . . . . . 9 ((rec(𝐺, βˆ…)β€˜π‘) = ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) β†’ (πΊβ€˜(rec(𝐺, βˆ…)β€˜π‘)) = (πΊβ€˜((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘))))
118117fveq1d 6848 . . . . . . . 8 ((rec(𝐺, βˆ…)β€˜π‘) = ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) β†’ ((πΊβ€˜(rec(𝐺, βˆ…)β€˜π‘))β€˜π‘) = ((πΊβ€˜((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)))β€˜π‘))
119118ad2antlr 726 . . . . . . 7 (((𝑏 ∈ Ο‰ ∧ (rec(𝐺, βˆ…)β€˜π‘) = ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘))) ∧ 𝑐 ∈ (𝑅1β€˜suc 𝑏)) β†’ ((πΊβ€˜(rec(𝐺, βˆ…)β€˜π‘))β€˜π‘) = ((πΊβ€˜((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)))β€˜π‘))
120 rdgsuc 8374 . . . . . . . . . 10 (suc 𝑏 ∈ On β†’ (rec(𝐺, βˆ…)β€˜suc suc 𝑏) = (πΊβ€˜(rec(𝐺, βˆ…)β€˜suc 𝑏)))
12144, 120syl 17 . . . . . . . . 9 (𝑏 ∈ Ο‰ β†’ (rec(𝐺, βˆ…)β€˜suc suc 𝑏) = (πΊβ€˜(rec(𝐺, βˆ…)β€˜suc 𝑏)))
122121fveq1d 6848 . . . . . . . 8 (𝑏 ∈ Ο‰ β†’ ((rec(𝐺, βˆ…)β€˜suc suc 𝑏)β€˜π‘) = ((πΊβ€˜(rec(𝐺, βˆ…)β€˜suc 𝑏))β€˜π‘))
123122ad2antrr 725 . . . . . . 7 (((𝑏 ∈ Ο‰ ∧ (rec(𝐺, βˆ…)β€˜π‘) = ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘))) ∧ 𝑐 ∈ (𝑅1β€˜suc 𝑏)) β†’ ((rec(𝐺, βˆ…)β€˜suc suc 𝑏)β€˜π‘) = ((πΊβ€˜(rec(𝐺, βˆ…)β€˜suc 𝑏))β€˜π‘))
124116, 119, 1233eqtr4rd 2784 . . . . . 6 (((𝑏 ∈ Ο‰ ∧ (rec(𝐺, βˆ…)β€˜π‘) = ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘))) ∧ 𝑐 ∈ (𝑅1β€˜suc 𝑏)) β†’ ((rec(𝐺, βˆ…)β€˜suc suc 𝑏)β€˜π‘) = ((πΊβ€˜(rec(𝐺, βˆ…)β€˜π‘))β€˜π‘))
125 fvres 6865 . . . . . . 7 (𝑐 ∈ (𝑅1β€˜suc 𝑏) β†’ (((rec(𝐺, βˆ…)β€˜suc suc 𝑏) β†Ύ (𝑅1β€˜suc 𝑏))β€˜π‘) = ((rec(𝐺, βˆ…)β€˜suc suc 𝑏)β€˜π‘))
126125adantl 483 . . . . . 6 (((𝑏 ∈ Ο‰ ∧ (rec(𝐺, βˆ…)β€˜π‘) = ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘))) ∧ 𝑐 ∈ (𝑅1β€˜suc 𝑏)) β†’ (((rec(𝐺, βˆ…)β€˜suc suc 𝑏) β†Ύ (𝑅1β€˜suc 𝑏))β€˜π‘) = ((rec(𝐺, βˆ…)β€˜suc suc 𝑏)β€˜π‘))
127 rdgsuc 8374 . . . . . . . . 9 (𝑏 ∈ On β†’ (rec(𝐺, βˆ…)β€˜suc 𝑏) = (πΊβ€˜(rec(𝐺, βˆ…)β€˜π‘)))
12850, 127syl 17 . . . . . . . 8 (𝑏 ∈ Ο‰ β†’ (rec(𝐺, βˆ…)β€˜suc 𝑏) = (πΊβ€˜(rec(𝐺, βˆ…)β€˜π‘)))
129128fveq1d 6848 . . . . . . 7 (𝑏 ∈ Ο‰ β†’ ((rec(𝐺, βˆ…)β€˜suc 𝑏)β€˜π‘) = ((πΊβ€˜(rec(𝐺, βˆ…)β€˜π‘))β€˜π‘))
130129ad2antrr 725 . . . . . 6 (((𝑏 ∈ Ο‰ ∧ (rec(𝐺, βˆ…)β€˜π‘) = ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘))) ∧ 𝑐 ∈ (𝑅1β€˜suc 𝑏)) β†’ ((rec(𝐺, βˆ…)β€˜suc 𝑏)β€˜π‘) = ((πΊβ€˜(rec(𝐺, βˆ…)β€˜π‘))β€˜π‘))
131124, 126, 1303eqtr4rd 2784 . . . . 5 (((𝑏 ∈ Ο‰ ∧ (rec(𝐺, βˆ…)β€˜π‘) = ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘))) ∧ 𝑐 ∈ (𝑅1β€˜suc 𝑏)) β†’ ((rec(𝐺, βˆ…)β€˜suc 𝑏)β€˜π‘) = (((rec(𝐺, βˆ…)β€˜suc suc 𝑏) β†Ύ (𝑅1β€˜suc 𝑏))β€˜π‘))
13238, 49, 131eqfnfvd 6989 . . . 4 ((𝑏 ∈ Ο‰ ∧ (rec(𝐺, βˆ…)β€˜π‘) = ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘))) β†’ (rec(𝐺, βˆ…)β€˜suc 𝑏) = ((rec(𝐺, βˆ…)β€˜suc suc 𝑏) β†Ύ (𝑅1β€˜suc 𝑏)))
133132ex 414 . . 3 (𝑏 ∈ Ο‰ β†’ ((rec(𝐺, βˆ…)β€˜π‘) = ((rec(𝐺, βˆ…)β€˜suc 𝑏) β†Ύ (𝑅1β€˜π‘)) β†’ (rec(𝐺, βˆ…)β€˜suc 𝑏) = ((rec(𝐺, βˆ…)β€˜suc suc 𝑏) β†Ύ (𝑅1β€˜suc 𝑏))))
1346, 12, 18, 24, 30, 133finds 7839 . 2 (𝐴 ∈ Ο‰ β†’ (rec(𝐺, βˆ…)β€˜π΄) = ((rec(𝐺, βˆ…)β€˜suc 𝐴) β†Ύ (𝑅1β€˜π΄)))
135 resss 5966 . 2 ((rec(𝐺, βˆ…)β€˜suc 𝐴) β†Ύ (𝑅1β€˜π΄)) βŠ† (rec(𝐺, βˆ…)β€˜suc 𝐴)
136134, 135eqsstrdi 4002 1 (𝐴 ∈ Ο‰ β†’ (rec(𝐺, βˆ…)β€˜π΄) βŠ† (rec(𝐺, βˆ…)β€˜suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  Vcvv 3447   ∩ cin 3913   βŠ† wss 3914  βˆ…c0 4286  π’« cpw 4564  {csn 4590  βˆͺ ciun 4958   ↦ cmpt 5192  Tr wtr 5226   Γ— cxp 5635  dom cdm 5637   β†Ύ cres 5639   β€œ cima 5640  Oncon0 6321  suc csuc 6323   Fn wfn 6495  β€“1-1-ontoβ†’wf1o 6499  β€˜cfv 6500  Ο‰com 7806  reccrdg 8359  Fincfn 8889  π‘…1cr1 9706  cardccrd 9879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-2o 8417  df-oadd 8420  df-er 8654  df-map 8773  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-r1 9708  df-dju 9845  df-card 9883
This theorem is referenced by:  ackbij2lem4  10186
  Copyright terms: Public domain W3C validator