| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fveq2 6905 | . . . 4
⊢ (𝑎 = ∅ → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘∅)) | 
| 2 |  | suceq 6449 | . . . . . 6
⊢ (𝑎 = ∅ → suc 𝑎 = suc ∅) | 
| 3 | 2 | fveq2d 6909 | . . . . 5
⊢ (𝑎 = ∅ → (rec(𝐺, ∅)‘suc 𝑎) = (rec(𝐺, ∅)‘suc
∅)) | 
| 4 |  | fveq2 6905 | . . . . 5
⊢ (𝑎 = ∅ →
(𝑅1‘𝑎) =
(𝑅1‘∅)) | 
| 5 | 3, 4 | reseq12d 5997 | . . . 4
⊢ (𝑎 = ∅ → ((rec(𝐺, ∅)‘suc 𝑎) ↾
(𝑅1‘𝑎)) = ((rec(𝐺, ∅)‘suc ∅) ↾
(𝑅1‘∅))) | 
| 6 | 1, 5 | eqeq12d 2752 | . . 3
⊢ (𝑎 = ∅ → ((rec(𝐺, ∅)‘𝑎) = ((rec(𝐺, ∅)‘suc 𝑎) ↾ (𝑅1‘𝑎)) ↔ (rec(𝐺, ∅)‘∅) = ((rec(𝐺, ∅)‘suc ∅)
↾ (𝑅1‘∅)))) | 
| 7 |  | fveq2 6905 | . . . 4
⊢ (𝑎 = 𝑏 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘𝑏)) | 
| 8 |  | suceq 6449 | . . . . . 6
⊢ (𝑎 = 𝑏 → suc 𝑎 = suc 𝑏) | 
| 9 | 8 | fveq2d 6909 | . . . . 5
⊢ (𝑎 = 𝑏 → (rec(𝐺, ∅)‘suc 𝑎) = (rec(𝐺, ∅)‘suc 𝑏)) | 
| 10 |  | fveq2 6905 | . . . . 5
⊢ (𝑎 = 𝑏 → (𝑅1‘𝑎) =
(𝑅1‘𝑏)) | 
| 11 | 9, 10 | reseq12d 5997 | . . . 4
⊢ (𝑎 = 𝑏 → ((rec(𝐺, ∅)‘suc 𝑎) ↾ (𝑅1‘𝑎)) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏))) | 
| 12 | 7, 11 | eqeq12d 2752 | . . 3
⊢ (𝑎 = 𝑏 → ((rec(𝐺, ∅)‘𝑎) = ((rec(𝐺, ∅)‘suc 𝑎) ↾ (𝑅1‘𝑎)) ↔ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)))) | 
| 13 |  | fveq2 6905 | . . . 4
⊢ (𝑎 = suc 𝑏 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘suc 𝑏)) | 
| 14 |  | suceq 6449 | . . . . . 6
⊢ (𝑎 = suc 𝑏 → suc 𝑎 = suc suc 𝑏) | 
| 15 | 14 | fveq2d 6909 | . . . . 5
⊢ (𝑎 = suc 𝑏 → (rec(𝐺, ∅)‘suc 𝑎) = (rec(𝐺, ∅)‘suc suc 𝑏)) | 
| 16 |  | fveq2 6905 | . . . . 5
⊢ (𝑎 = suc 𝑏 → (𝑅1‘𝑎) =
(𝑅1‘suc 𝑏)) | 
| 17 | 15, 16 | reseq12d 5997 | . . . 4
⊢ (𝑎 = suc 𝑏 → ((rec(𝐺, ∅)‘suc 𝑎) ↾ (𝑅1‘𝑎)) = ((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc
𝑏))) | 
| 18 | 13, 17 | eqeq12d 2752 | . . 3
⊢ (𝑎 = suc 𝑏 → ((rec(𝐺, ∅)‘𝑎) = ((rec(𝐺, ∅)‘suc 𝑎) ↾ (𝑅1‘𝑎)) ↔ (rec(𝐺, ∅)‘suc 𝑏) = ((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc
𝑏)))) | 
| 19 |  | fveq2 6905 | . . . 4
⊢ (𝑎 = 𝐴 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘𝐴)) | 
| 20 |  | suceq 6449 | . . . . . 6
⊢ (𝑎 = 𝐴 → suc 𝑎 = suc 𝐴) | 
| 21 | 20 | fveq2d 6909 | . . . . 5
⊢ (𝑎 = 𝐴 → (rec(𝐺, ∅)‘suc 𝑎) = (rec(𝐺, ∅)‘suc 𝐴)) | 
| 22 |  | fveq2 6905 | . . . . 5
⊢ (𝑎 = 𝐴 → (𝑅1‘𝑎) =
(𝑅1‘𝐴)) | 
| 23 | 21, 22 | reseq12d 5997 | . . . 4
⊢ (𝑎 = 𝐴 → ((rec(𝐺, ∅)‘suc 𝑎) ↾ (𝑅1‘𝑎)) = ((rec(𝐺, ∅)‘suc 𝐴) ↾ (𝑅1‘𝐴))) | 
| 24 | 19, 23 | eqeq12d 2752 | . . 3
⊢ (𝑎 = 𝐴 → ((rec(𝐺, ∅)‘𝑎) = ((rec(𝐺, ∅)‘suc 𝑎) ↾ (𝑅1‘𝑎)) ↔ (rec(𝐺, ∅)‘𝐴) = ((rec(𝐺, ∅)‘suc 𝐴) ↾ (𝑅1‘𝐴)))) | 
| 25 |  | res0 6000 | . . . 4
⊢
((rec(𝐺,
∅)‘suc ∅) ↾ ∅) = ∅ | 
| 26 |  | r10 9809 | . . . . 5
⊢
(𝑅1‘∅) = ∅ | 
| 27 | 26 | reseq2i 5993 | . . . 4
⊢
((rec(𝐺,
∅)‘suc ∅) ↾ (𝑅1‘∅)) =
((rec(𝐺, ∅)‘suc
∅) ↾ ∅) | 
| 28 |  | 0ex 5306 | . . . . 5
⊢ ∅
∈ V | 
| 29 | 28 | rdg0 8462 | . . . 4
⊢
(rec(𝐺,
∅)‘∅) = ∅ | 
| 30 | 25, 27, 29 | 3eqtr4ri 2775 | . . 3
⊢
(rec(𝐺,
∅)‘∅) = ((rec(𝐺, ∅)‘suc ∅) ↾
(𝑅1‘∅)) | 
| 31 |  | peano2 7913 | . . . . . . . 8
⊢ (𝑏 ∈ ω → suc 𝑏 ∈
ω) | 
| 32 |  | ackbij.f | . . . . . . . . 9
⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦
(card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) | 
| 33 |  | ackbij.g | . . . . . . . . 9
⊢ 𝐺 = (𝑥 ∈ V ↦ (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥 “ 𝑦)))) | 
| 34 | 32, 33 | ackbij2lem2 10280 | . . . . . . . 8
⊢ (suc
𝑏 ∈ ω →
(rec(𝐺, ∅)‘suc
𝑏):(𝑅1‘suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc
𝑏))) | 
| 35 | 31, 34 | syl 17 | . . . . . . 7
⊢ (𝑏 ∈ ω →
(rec(𝐺, ∅)‘suc
𝑏):(𝑅1‘suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc
𝑏))) | 
| 36 |  | f1ofn 6848 | . . . . . . 7
⊢
((rec(𝐺,
∅)‘suc 𝑏):(𝑅1‘suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc
𝑏)) → (rec(𝐺, ∅)‘suc 𝑏) Fn
(𝑅1‘suc 𝑏)) | 
| 37 | 35, 36 | syl 17 | . . . . . 6
⊢ (𝑏 ∈ ω →
(rec(𝐺, ∅)‘suc
𝑏) Fn
(𝑅1‘suc 𝑏)) | 
| 38 | 37 | adantr 480 | . . . . 5
⊢ ((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏))) → (rec(𝐺, ∅)‘suc 𝑏) Fn
(𝑅1‘suc 𝑏)) | 
| 39 |  | peano2 7913 | . . . . . . . 8
⊢ (suc
𝑏 ∈ ω → suc
suc 𝑏 ∈
ω) | 
| 40 | 32, 33 | ackbij2lem2 10280 | . . . . . . . 8
⊢ (suc suc
𝑏 ∈ ω →
(rec(𝐺, ∅)‘suc
suc 𝑏):(𝑅1‘suc suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc
suc 𝑏))) | 
| 41 |  | f1ofn 6848 | . . . . . . . 8
⊢
((rec(𝐺,
∅)‘suc suc 𝑏):(𝑅1‘suc suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc
suc 𝑏)) → (rec(𝐺, ∅)‘suc suc 𝑏) Fn
(𝑅1‘suc suc 𝑏)) | 
| 42 | 31, 39, 40, 41 | 4syl 19 | . . . . . . 7
⊢ (𝑏 ∈ ω →
(rec(𝐺, ∅)‘suc
suc 𝑏) Fn
(𝑅1‘suc suc 𝑏)) | 
| 43 |  | nnon 7894 | . . . . . . . . 9
⊢ (suc
𝑏 ∈ ω → suc
𝑏 ∈
On) | 
| 44 | 31, 43 | syl 17 | . . . . . . . 8
⊢ (𝑏 ∈ ω → suc 𝑏 ∈ On) | 
| 45 |  | r1sssuc 9824 | . . . . . . . 8
⊢ (suc
𝑏 ∈ On →
(𝑅1‘suc 𝑏) ⊆ (𝑅1‘suc
suc 𝑏)) | 
| 46 | 44, 45 | syl 17 | . . . . . . 7
⊢ (𝑏 ∈ ω →
(𝑅1‘suc 𝑏) ⊆ (𝑅1‘suc
suc 𝑏)) | 
| 47 |  | fnssres 6690 | . . . . . . 7
⊢
(((rec(𝐺,
∅)‘suc suc 𝑏)
Fn (𝑅1‘suc suc 𝑏) ∧ (𝑅1‘suc
𝑏) ⊆
(𝑅1‘suc suc 𝑏)) → ((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc
𝑏)) Fn
(𝑅1‘suc 𝑏)) | 
| 48 | 42, 46, 47 | syl2anc 584 | . . . . . 6
⊢ (𝑏 ∈ ω →
((rec(𝐺, ∅)‘suc
suc 𝑏) ↾
(𝑅1‘suc 𝑏)) Fn (𝑅1‘suc 𝑏)) | 
| 49 | 48 | adantr 480 | . . . . 5
⊢ ((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏))) → ((rec(𝐺, ∅)‘suc suc 𝑏) ↾
(𝑅1‘suc 𝑏)) Fn (𝑅1‘suc 𝑏)) | 
| 50 |  | nnon 7894 | . . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ ω → 𝑏 ∈ On) | 
| 51 |  | r1suc 9811 | . . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ On →
(𝑅1‘suc 𝑏) = 𝒫
(𝑅1‘𝑏)) | 
| 52 | 50, 51 | syl 17 | . . . . . . . . . . . . . 14
⊢ (𝑏 ∈ ω →
(𝑅1‘suc 𝑏) = 𝒫
(𝑅1‘𝑏)) | 
| 53 | 52 | eleq2d 2826 | . . . . . . . . . . . . 13
⊢ (𝑏 ∈ ω → (𝑐 ∈
(𝑅1‘suc 𝑏) ↔ 𝑐 ∈ 𝒫
(𝑅1‘𝑏))) | 
| 54 | 53 | biimpa 476 | . . . . . . . . . . . 12
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈
(𝑅1‘suc 𝑏)) → 𝑐 ∈ 𝒫
(𝑅1‘𝑏)) | 
| 55 | 54 | elpwid 4608 | . . . . . . . . . . 11
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈
(𝑅1‘suc 𝑏)) → 𝑐 ⊆ (𝑅1‘𝑏)) | 
| 56 |  | resima2 6033 | . . . . . . . . . . 11
⊢ (𝑐 ⊆
(𝑅1‘𝑏) → (((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑐) = ((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐)) | 
| 57 | 55, 56 | syl 17 | . . . . . . . . . 10
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈
(𝑅1‘suc 𝑏)) → (((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑐) = ((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐)) | 
| 58 | 57 | fveq2d 6909 | . . . . . . . . 9
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈
(𝑅1‘suc 𝑏)) → (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑐)) = (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐))) | 
| 59 |  | fvex 6918 | . . . . . . . . . . . . 13
⊢
(rec(𝐺,
∅)‘suc 𝑏)
∈ V | 
| 60 | 59 | resex 6046 | . . . . . . . . . . . 12
⊢
((rec(𝐺,
∅)‘suc 𝑏)
↾ (𝑅1‘𝑏)) ∈ V | 
| 61 |  | dmeq 5913 | . . . . . . . . . . . . . . 15
⊢ (𝑥 = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) → dom 𝑥 = dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏))) | 
| 62 | 61 | pweqd 4616 | . . . . . . . . . . . . . 14
⊢ (𝑥 = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) → 𝒫 dom 𝑥 = 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾
(𝑅1‘𝑏))) | 
| 63 |  | imaeq1 6072 | . . . . . . . . . . . . . . 15
⊢ (𝑥 = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) → (𝑥 “ 𝑦) = (((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑦)) | 
| 64 | 63 | fveq2d 6909 | . . . . . . . . . . . . . 14
⊢ (𝑥 = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) → (𝐹‘(𝑥 “ 𝑦)) = (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑦))) | 
| 65 | 62, 64 | mpteq12dv 5232 | . . . . . . . . . . . . 13
⊢ (𝑥 = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) → (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥 “ 𝑦))) = (𝑦 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑦)))) | 
| 66 | 60 | dmex 7932 | . . . . . . . . . . . . . . 15
⊢ dom
((rec(𝐺, ∅)‘suc
𝑏) ↾
(𝑅1‘𝑏)) ∈ V | 
| 67 | 66 | pwex 5379 | . . . . . . . . . . . . . 14
⊢ 𝒫
dom ((rec(𝐺,
∅)‘suc 𝑏)
↾ (𝑅1‘𝑏)) ∈ V | 
| 68 | 67 | mptex 7244 | . . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝒫 dom
((rec(𝐺, ∅)‘suc
𝑏) ↾
(𝑅1‘𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑦))) ∈ V | 
| 69 | 65, 33, 68 | fvmpt 7015 | . . . . . . . . . . . 12
⊢
(((rec(𝐺,
∅)‘suc 𝑏)
↾ (𝑅1‘𝑏)) ∈ V → (𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏))) = (𝑦 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑦)))) | 
| 70 | 60, 69 | ax-mp 5 | . . . . . . . . . . 11
⊢ (𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏))) = (𝑦 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑦))) | 
| 71 | 70 | fveq1i 6906 | . . . . . . . . . 10
⊢ ((𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)))‘𝑐) = ((𝑦 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑦)))‘𝑐) | 
| 72 |  | r1sssuc 9824 | . . . . . . . . . . . . . . . . 17
⊢ (𝑏 ∈ On →
(𝑅1‘𝑏) ⊆ (𝑅1‘suc
𝑏)) | 
| 73 | 50, 72 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ (𝑏 ∈ ω →
(𝑅1‘𝑏) ⊆ (𝑅1‘suc
𝑏)) | 
| 74 |  | fnssres 6690 | . . . . . . . . . . . . . . . 16
⊢
(((rec(𝐺,
∅)‘suc 𝑏) Fn
(𝑅1‘suc 𝑏) ∧ (𝑅1‘𝑏) ⊆
(𝑅1‘suc 𝑏)) → ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) Fn
(𝑅1‘𝑏)) | 
| 75 | 37, 73, 74 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ ω →
((rec(𝐺, ∅)‘suc
𝑏) ↾
(𝑅1‘𝑏)) Fn (𝑅1‘𝑏)) | 
| 76 | 75 | fndmd 6672 | . . . . . . . . . . . . . 14
⊢ (𝑏 ∈ ω → dom
((rec(𝐺, ∅)‘suc
𝑏) ↾
(𝑅1‘𝑏)) = (𝑅1‘𝑏)) | 
| 77 | 76 | pweqd 4616 | . . . . . . . . . . . . 13
⊢ (𝑏 ∈ ω → 𝒫
dom ((rec(𝐺,
∅)‘suc 𝑏)
↾ (𝑅1‘𝑏)) = 𝒫
(𝑅1‘𝑏)) | 
| 78 | 77 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈
(𝑅1‘suc 𝑏)) → 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾
(𝑅1‘𝑏)) = 𝒫
(𝑅1‘𝑏)) | 
| 79 | 54, 78 | eleqtrrd 2843 | . . . . . . . . . . 11
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈
(𝑅1‘suc 𝑏)) → 𝑐 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏))) | 
| 80 |  | imaeq2 6073 | . . . . . . . . . . . . 13
⊢ (𝑦 = 𝑐 → (((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑦) = (((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑐)) | 
| 81 | 80 | fveq2d 6909 | . . . . . . . . . . . 12
⊢ (𝑦 = 𝑐 → (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑦)) = (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑐))) | 
| 82 |  | eqid 2736 | . . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝒫 dom
((rec(𝐺, ∅)‘suc
𝑏) ↾
(𝑅1‘𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑦))) = (𝑦 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑦))) | 
| 83 |  | fvex 6918 | . . . . . . . . . . . 12
⊢ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑐)) ∈ V | 
| 84 | 81, 82, 83 | fvmpt 7015 | . . . . . . . . . . 11
⊢ (𝑐 ∈ 𝒫 dom
((rec(𝐺, ∅)‘suc
𝑏) ↾
(𝑅1‘𝑏)) → ((𝑦 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑦)))‘𝑐) = (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑐))) | 
| 85 | 79, 84 | syl 17 | . . . . . . . . . 10
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈
(𝑅1‘suc 𝑏)) → ((𝑦 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑦)))‘𝑐) = (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑐))) | 
| 86 | 71, 85 | eqtrid 2788 | . . . . . . . . 9
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈
(𝑅1‘suc 𝑏)) → ((𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)))‘𝑐) = (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑐))) | 
| 87 |  | dmeq 5913 | . . . . . . . . . . . . . . 15
⊢ (𝑥 = (rec(𝐺, ∅)‘suc 𝑏) → dom 𝑥 = dom (rec(𝐺, ∅)‘suc 𝑏)) | 
| 88 | 87 | pweqd 4616 | . . . . . . . . . . . . . 14
⊢ (𝑥 = (rec(𝐺, ∅)‘suc 𝑏) → 𝒫 dom 𝑥 = 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏)) | 
| 89 |  | imaeq1 6072 | . . . . . . . . . . . . . . 15
⊢ (𝑥 = (rec(𝐺, ∅)‘suc 𝑏) → (𝑥 “ 𝑦) = ((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦)) | 
| 90 | 89 | fveq2d 6909 | . . . . . . . . . . . . . 14
⊢ (𝑥 = (rec(𝐺, ∅)‘suc 𝑏) → (𝐹‘(𝑥 “ 𝑦)) = (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦))) | 
| 91 | 88, 90 | mpteq12dv 5232 | . . . . . . . . . . . . 13
⊢ (𝑥 = (rec(𝐺, ∅)‘suc 𝑏) → (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥 “ 𝑦))) = (𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦)))) | 
| 92 | 59 | dmex 7932 | . . . . . . . . . . . . . . 15
⊢ dom
(rec(𝐺, ∅)‘suc
𝑏) ∈
V | 
| 93 | 92 | pwex 5379 | . . . . . . . . . . . . . 14
⊢ 𝒫
dom (rec(𝐺,
∅)‘suc 𝑏)
∈ V | 
| 94 | 93 | mptex 7244 | . . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦))) ∈ V | 
| 95 | 91, 33, 94 | fvmpt 7015 | . . . . . . . . . . . 12
⊢
((rec(𝐺,
∅)‘suc 𝑏)
∈ V → (𝐺‘(rec(𝐺, ∅)‘suc 𝑏)) = (𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦)))) | 
| 96 | 59, 95 | ax-mp 5 | . . . . . . . . . . 11
⊢ (𝐺‘(rec(𝐺, ∅)‘suc 𝑏)) = (𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦))) | 
| 97 | 96 | fveq1i 6906 | . . . . . . . . . 10
⊢ ((𝐺‘(rec(𝐺, ∅)‘suc 𝑏))‘𝑐) = ((𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦)))‘𝑐) | 
| 98 |  | r1tr 9817 | . . . . . . . . . . . . . . 15
⊢ Tr
(𝑅1‘suc 𝑏) | 
| 99 | 98 | a1i 11 | . . . . . . . . . . . . . 14
⊢ (𝑏 ∈ ω → Tr
(𝑅1‘suc 𝑏)) | 
| 100 |  | dftr4 5265 | . . . . . . . . . . . . . 14
⊢ (Tr
(𝑅1‘suc 𝑏) ↔ (𝑅1‘suc
𝑏) ⊆ 𝒫
(𝑅1‘suc 𝑏)) | 
| 101 | 99, 100 | sylib 218 | . . . . . . . . . . . . 13
⊢ (𝑏 ∈ ω →
(𝑅1‘suc 𝑏) ⊆ 𝒫
(𝑅1‘suc 𝑏)) | 
| 102 | 101 | sselda 3982 | . . . . . . . . . . . 12
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈
(𝑅1‘suc 𝑏)) → 𝑐 ∈ 𝒫
(𝑅1‘suc 𝑏)) | 
| 103 |  | f1odm 6851 | . . . . . . . . . . . . . . 15
⊢
((rec(𝐺,
∅)‘suc 𝑏):(𝑅1‘suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc
𝑏)) → dom (rec(𝐺, ∅)‘suc 𝑏) =
(𝑅1‘suc 𝑏)) | 
| 104 | 35, 103 | syl 17 | . . . . . . . . . . . . . 14
⊢ (𝑏 ∈ ω → dom
(rec(𝐺, ∅)‘suc
𝑏) =
(𝑅1‘suc 𝑏)) | 
| 105 | 104 | pweqd 4616 | . . . . . . . . . . . . 13
⊢ (𝑏 ∈ ω → 𝒫
dom (rec(𝐺,
∅)‘suc 𝑏) =
𝒫 (𝑅1‘suc 𝑏)) | 
| 106 | 105 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈
(𝑅1‘suc 𝑏)) → 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) = 𝒫
(𝑅1‘suc 𝑏)) | 
| 107 | 102, 106 | eleqtrrd 2843 | . . . . . . . . . . 11
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈
(𝑅1‘suc 𝑏)) → 𝑐 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏)) | 
| 108 |  | imaeq2 6073 | . . . . . . . . . . . . 13
⊢ (𝑦 = 𝑐 → ((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦) = ((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐)) | 
| 109 | 108 | fveq2d 6909 | . . . . . . . . . . . 12
⊢ (𝑦 = 𝑐 → (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦)) = (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐))) | 
| 110 |  | eqid 2736 | . . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦))) = (𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦))) | 
| 111 |  | fvex 6918 | . . . . . . . . . . . 12
⊢ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐)) ∈ V | 
| 112 | 109, 110,
111 | fvmpt 7015 | . . . . . . . . . . 11
⊢ (𝑐 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) → ((𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦)))‘𝑐) = (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐))) | 
| 113 | 107, 112 | syl 17 | . . . . . . . . . 10
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈
(𝑅1‘suc 𝑏)) → ((𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦)))‘𝑐) = (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐))) | 
| 114 | 97, 113 | eqtrid 2788 | . . . . . . . . 9
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈
(𝑅1‘suc 𝑏)) → ((𝐺‘(rec(𝐺, ∅)‘suc 𝑏))‘𝑐) = (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐))) | 
| 115 | 58, 86, 114 | 3eqtr4d 2786 | . . . . . . . 8
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈
(𝑅1‘suc 𝑏)) → ((𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)))‘𝑐) = ((𝐺‘(rec(𝐺, ∅)‘suc 𝑏))‘𝑐)) | 
| 116 | 115 | adantlr 715 | . . . . . . 7
⊢ (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏))) ∧ 𝑐 ∈ (𝑅1‘suc
𝑏)) → ((𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)))‘𝑐) = ((𝐺‘(rec(𝐺, ∅)‘suc 𝑏))‘𝑐)) | 
| 117 |  | fveq2 6905 | . . . . . . . . 9
⊢
((rec(𝐺,
∅)‘𝑏) =
((rec(𝐺, ∅)‘suc
𝑏) ↾
(𝑅1‘𝑏)) → (𝐺‘(rec(𝐺, ∅)‘𝑏)) = (𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)))) | 
| 118 | 117 | fveq1d 6907 | . . . . . . . 8
⊢
((rec(𝐺,
∅)‘𝑏) =
((rec(𝐺, ∅)‘suc
𝑏) ↾
(𝑅1‘𝑏)) → ((𝐺‘(rec(𝐺, ∅)‘𝑏))‘𝑐) = ((𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)))‘𝑐)) | 
| 119 | 118 | ad2antlr 727 | . . . . . . 7
⊢ (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏))) ∧ 𝑐 ∈ (𝑅1‘suc
𝑏)) → ((𝐺‘(rec(𝐺, ∅)‘𝑏))‘𝑐) = ((𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)))‘𝑐)) | 
| 120 |  | rdgsuc 8465 | . . . . . . . . . 10
⊢ (suc
𝑏 ∈ On →
(rec(𝐺, ∅)‘suc
suc 𝑏) = (𝐺‘(rec(𝐺, ∅)‘suc 𝑏))) | 
| 121 | 44, 120 | syl 17 | . . . . . . . . 9
⊢ (𝑏 ∈ ω →
(rec(𝐺, ∅)‘suc
suc 𝑏) = (𝐺‘(rec(𝐺, ∅)‘suc 𝑏))) | 
| 122 | 121 | fveq1d 6907 | . . . . . . . 8
⊢ (𝑏 ∈ ω →
((rec(𝐺, ∅)‘suc
suc 𝑏)‘𝑐) = ((𝐺‘(rec(𝐺, ∅)‘suc 𝑏))‘𝑐)) | 
| 123 | 122 | ad2antrr 726 | . . . . . . 7
⊢ (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏))) ∧ 𝑐 ∈ (𝑅1‘suc
𝑏)) → ((rec(𝐺, ∅)‘suc suc 𝑏)‘𝑐) = ((𝐺‘(rec(𝐺, ∅)‘suc 𝑏))‘𝑐)) | 
| 124 | 116, 119,
123 | 3eqtr4rd 2787 | . . . . . 6
⊢ (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏))) ∧ 𝑐 ∈ (𝑅1‘suc
𝑏)) → ((rec(𝐺, ∅)‘suc suc 𝑏)‘𝑐) = ((𝐺‘(rec(𝐺, ∅)‘𝑏))‘𝑐)) | 
| 125 |  | fvres 6924 | . . . . . . 7
⊢ (𝑐 ∈
(𝑅1‘suc 𝑏) → (((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc
𝑏))‘𝑐) = ((rec(𝐺, ∅)‘suc suc 𝑏)‘𝑐)) | 
| 126 | 125 | adantl 481 | . . . . . 6
⊢ (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏))) ∧ 𝑐 ∈ (𝑅1‘suc
𝑏)) → (((rec(𝐺, ∅)‘suc suc 𝑏) ↾
(𝑅1‘suc 𝑏))‘𝑐) = ((rec(𝐺, ∅)‘suc suc 𝑏)‘𝑐)) | 
| 127 |  | rdgsuc 8465 | . . . . . . . . 9
⊢ (𝑏 ∈ On → (rec(𝐺, ∅)‘suc 𝑏) = (𝐺‘(rec(𝐺, ∅)‘𝑏))) | 
| 128 | 50, 127 | syl 17 | . . . . . . . 8
⊢ (𝑏 ∈ ω →
(rec(𝐺, ∅)‘suc
𝑏) = (𝐺‘(rec(𝐺, ∅)‘𝑏))) | 
| 129 | 128 | fveq1d 6907 | . . . . . . 7
⊢ (𝑏 ∈ ω →
((rec(𝐺, ∅)‘suc
𝑏)‘𝑐) = ((𝐺‘(rec(𝐺, ∅)‘𝑏))‘𝑐)) | 
| 130 | 129 | ad2antrr 726 | . . . . . 6
⊢ (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏))) ∧ 𝑐 ∈ (𝑅1‘suc
𝑏)) → ((rec(𝐺, ∅)‘suc 𝑏)‘𝑐) = ((𝐺‘(rec(𝐺, ∅)‘𝑏))‘𝑐)) | 
| 131 | 124, 126,
130 | 3eqtr4rd 2787 | . . . . 5
⊢ (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏))) ∧ 𝑐 ∈ (𝑅1‘suc
𝑏)) → ((rec(𝐺, ∅)‘suc 𝑏)‘𝑐) = (((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc
𝑏))‘𝑐)) | 
| 132 | 38, 49, 131 | eqfnfvd 7053 | . . . 4
⊢ ((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏))) → (rec(𝐺, ∅)‘suc 𝑏) = ((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc
𝑏))) | 
| 133 | 132 | ex 412 | . . 3
⊢ (𝑏 ∈ ω →
((rec(𝐺,
∅)‘𝑏) =
((rec(𝐺, ∅)‘suc
𝑏) ↾
(𝑅1‘𝑏)) → (rec(𝐺, ∅)‘suc 𝑏) = ((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc
𝑏)))) | 
| 134 | 6, 12, 18, 24, 30, 133 | finds 7919 | . 2
⊢ (𝐴 ∈ ω →
(rec(𝐺,
∅)‘𝐴) =
((rec(𝐺, ∅)‘suc
𝐴) ↾
(𝑅1‘𝐴))) | 
| 135 |  | resss 6018 | . 2
⊢
((rec(𝐺,
∅)‘suc 𝐴)
↾ (𝑅1‘𝐴)) ⊆ (rec(𝐺, ∅)‘suc 𝐴) | 
| 136 | 134, 135 | eqsstrdi 4027 | 1
⊢ (𝐴 ∈ ω →
(rec(𝐺,
∅)‘𝐴) ⊆
(rec(𝐺, ∅)‘suc
𝐴)) |