MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij2lem3 Structured version   Visualization version   GIF version

Theorem ackbij2lem3 10193
Description: Lemma for ackbij2 10195. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypotheses
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
ackbij.g 𝐺 = (𝑥 ∈ V ↦ (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥𝑦))))
Assertion
Ref Expression
ackbij2lem3 (𝐴 ∈ ω → (rec(𝐺, ∅)‘𝐴) ⊆ (rec(𝐺, ∅)‘suc 𝐴))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐴,𝑦

Proof of Theorem ackbij2lem3
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6858 . . . 4 (𝑎 = ∅ → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘∅))
2 suceq 6400 . . . . . 6 (𝑎 = ∅ → suc 𝑎 = suc ∅)
32fveq2d 6862 . . . . 5 (𝑎 = ∅ → (rec(𝐺, ∅)‘suc 𝑎) = (rec(𝐺, ∅)‘suc ∅))
4 fveq2 6858 . . . . 5 (𝑎 = ∅ → (𝑅1𝑎) = (𝑅1‘∅))
53, 4reseq12d 5951 . . . 4 (𝑎 = ∅ → ((rec(𝐺, ∅)‘suc 𝑎) ↾ (𝑅1𝑎)) = ((rec(𝐺, ∅)‘suc ∅) ↾ (𝑅1‘∅)))
61, 5eqeq12d 2745 . . 3 (𝑎 = ∅ → ((rec(𝐺, ∅)‘𝑎) = ((rec(𝐺, ∅)‘suc 𝑎) ↾ (𝑅1𝑎)) ↔ (rec(𝐺, ∅)‘∅) = ((rec(𝐺, ∅)‘suc ∅) ↾ (𝑅1‘∅))))
7 fveq2 6858 . . . 4 (𝑎 = 𝑏 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘𝑏))
8 suceq 6400 . . . . . 6 (𝑎 = 𝑏 → suc 𝑎 = suc 𝑏)
98fveq2d 6862 . . . . 5 (𝑎 = 𝑏 → (rec(𝐺, ∅)‘suc 𝑎) = (rec(𝐺, ∅)‘suc 𝑏))
10 fveq2 6858 . . . . 5 (𝑎 = 𝑏 → (𝑅1𝑎) = (𝑅1𝑏))
119, 10reseq12d 5951 . . . 4 (𝑎 = 𝑏 → ((rec(𝐺, ∅)‘suc 𝑎) ↾ (𝑅1𝑎)) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)))
127, 11eqeq12d 2745 . . 3 (𝑎 = 𝑏 → ((rec(𝐺, ∅)‘𝑎) = ((rec(𝐺, ∅)‘suc 𝑎) ↾ (𝑅1𝑎)) ↔ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏))))
13 fveq2 6858 . . . 4 (𝑎 = suc 𝑏 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘suc 𝑏))
14 suceq 6400 . . . . . 6 (𝑎 = suc 𝑏 → suc 𝑎 = suc suc 𝑏)
1514fveq2d 6862 . . . . 5 (𝑎 = suc 𝑏 → (rec(𝐺, ∅)‘suc 𝑎) = (rec(𝐺, ∅)‘suc suc 𝑏))
16 fveq2 6858 . . . . 5 (𝑎 = suc 𝑏 → (𝑅1𝑎) = (𝑅1‘suc 𝑏))
1715, 16reseq12d 5951 . . . 4 (𝑎 = suc 𝑏 → ((rec(𝐺, ∅)‘suc 𝑎) ↾ (𝑅1𝑎)) = ((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc 𝑏)))
1813, 17eqeq12d 2745 . . 3 (𝑎 = suc 𝑏 → ((rec(𝐺, ∅)‘𝑎) = ((rec(𝐺, ∅)‘suc 𝑎) ↾ (𝑅1𝑎)) ↔ (rec(𝐺, ∅)‘suc 𝑏) = ((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc 𝑏))))
19 fveq2 6858 . . . 4 (𝑎 = 𝐴 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘𝐴))
20 suceq 6400 . . . . . 6 (𝑎 = 𝐴 → suc 𝑎 = suc 𝐴)
2120fveq2d 6862 . . . . 5 (𝑎 = 𝐴 → (rec(𝐺, ∅)‘suc 𝑎) = (rec(𝐺, ∅)‘suc 𝐴))
22 fveq2 6858 . . . . 5 (𝑎 = 𝐴 → (𝑅1𝑎) = (𝑅1𝐴))
2321, 22reseq12d 5951 . . . 4 (𝑎 = 𝐴 → ((rec(𝐺, ∅)‘suc 𝑎) ↾ (𝑅1𝑎)) = ((rec(𝐺, ∅)‘suc 𝐴) ↾ (𝑅1𝐴)))
2419, 23eqeq12d 2745 . . 3 (𝑎 = 𝐴 → ((rec(𝐺, ∅)‘𝑎) = ((rec(𝐺, ∅)‘suc 𝑎) ↾ (𝑅1𝑎)) ↔ (rec(𝐺, ∅)‘𝐴) = ((rec(𝐺, ∅)‘suc 𝐴) ↾ (𝑅1𝐴))))
25 res0 5954 . . . 4 ((rec(𝐺, ∅)‘suc ∅) ↾ ∅) = ∅
26 r10 9721 . . . . 5 (𝑅1‘∅) = ∅
2726reseq2i 5947 . . . 4 ((rec(𝐺, ∅)‘suc ∅) ↾ (𝑅1‘∅)) = ((rec(𝐺, ∅)‘suc ∅) ↾ ∅)
28 0ex 5262 . . . . 5 ∅ ∈ V
2928rdg0 8389 . . . 4 (rec(𝐺, ∅)‘∅) = ∅
3025, 27, 293eqtr4ri 2763 . . 3 (rec(𝐺, ∅)‘∅) = ((rec(𝐺, ∅)‘suc ∅) ↾ (𝑅1‘∅))
31 peano2 7866 . . . . . . . 8 (𝑏 ∈ ω → suc 𝑏 ∈ ω)
32 ackbij.f . . . . . . . . 9 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
33 ackbij.g . . . . . . . . 9 𝐺 = (𝑥 ∈ V ↦ (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥𝑦))))
3432, 33ackbij2lem2 10192 . . . . . . . 8 (suc 𝑏 ∈ ω → (rec(𝐺, ∅)‘suc 𝑏):(𝑅1‘suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc 𝑏)))
3531, 34syl 17 . . . . . . 7 (𝑏 ∈ ω → (rec(𝐺, ∅)‘suc 𝑏):(𝑅1‘suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc 𝑏)))
36 f1ofn 6801 . . . . . . 7 ((rec(𝐺, ∅)‘suc 𝑏):(𝑅1‘suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc 𝑏)) → (rec(𝐺, ∅)‘suc 𝑏) Fn (𝑅1‘suc 𝑏))
3735, 36syl 17 . . . . . 6 (𝑏 ∈ ω → (rec(𝐺, ∅)‘suc 𝑏) Fn (𝑅1‘suc 𝑏))
3837adantr 480 . . . . 5 ((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏))) → (rec(𝐺, ∅)‘suc 𝑏) Fn (𝑅1‘suc 𝑏))
39 peano2 7866 . . . . . . . 8 (suc 𝑏 ∈ ω → suc suc 𝑏 ∈ ω)
4032, 33ackbij2lem2 10192 . . . . . . . 8 (suc suc 𝑏 ∈ ω → (rec(𝐺, ∅)‘suc suc 𝑏):(𝑅1‘suc suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc suc 𝑏)))
41 f1ofn 6801 . . . . . . . 8 ((rec(𝐺, ∅)‘suc suc 𝑏):(𝑅1‘suc suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc suc 𝑏)) → (rec(𝐺, ∅)‘suc suc 𝑏) Fn (𝑅1‘suc suc 𝑏))
4231, 39, 40, 414syl 19 . . . . . . 7 (𝑏 ∈ ω → (rec(𝐺, ∅)‘suc suc 𝑏) Fn (𝑅1‘suc suc 𝑏))
43 nnon 7848 . . . . . . . . 9 (suc 𝑏 ∈ ω → suc 𝑏 ∈ On)
4431, 43syl 17 . . . . . . . 8 (𝑏 ∈ ω → suc 𝑏 ∈ On)
45 r1sssuc 9736 . . . . . . . 8 (suc 𝑏 ∈ On → (𝑅1‘suc 𝑏) ⊆ (𝑅1‘suc suc 𝑏))
4644, 45syl 17 . . . . . . 7 (𝑏 ∈ ω → (𝑅1‘suc 𝑏) ⊆ (𝑅1‘suc suc 𝑏))
47 fnssres 6641 . . . . . . 7 (((rec(𝐺, ∅)‘suc suc 𝑏) Fn (𝑅1‘suc suc 𝑏) ∧ (𝑅1‘suc 𝑏) ⊆ (𝑅1‘suc suc 𝑏)) → ((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc 𝑏)) Fn (𝑅1‘suc 𝑏))
4842, 46, 47syl2anc 584 . . . . . 6 (𝑏 ∈ ω → ((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc 𝑏)) Fn (𝑅1‘suc 𝑏))
4948adantr 480 . . . . 5 ((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏))) → ((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc 𝑏)) Fn (𝑅1‘suc 𝑏))
50 nnon 7848 . . . . . . . . . . . . . . 15 (𝑏 ∈ ω → 𝑏 ∈ On)
51 r1suc 9723 . . . . . . . . . . . . . . 15 (𝑏 ∈ On → (𝑅1‘suc 𝑏) = 𝒫 (𝑅1𝑏))
5250, 51syl 17 . . . . . . . . . . . . . 14 (𝑏 ∈ ω → (𝑅1‘suc 𝑏) = 𝒫 (𝑅1𝑏))
5352eleq2d 2814 . . . . . . . . . . . . 13 (𝑏 ∈ ω → (𝑐 ∈ (𝑅1‘suc 𝑏) ↔ 𝑐 ∈ 𝒫 (𝑅1𝑏)))
5453biimpa 476 . . . . . . . . . . . 12 ((𝑏 ∈ ω ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → 𝑐 ∈ 𝒫 (𝑅1𝑏))
5554elpwid 4572 . . . . . . . . . . 11 ((𝑏 ∈ ω ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → 𝑐 ⊆ (𝑅1𝑏))
56 resima2 5987 . . . . . . . . . . 11 (𝑐 ⊆ (𝑅1𝑏) → (((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑐) = ((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐))
5755, 56syl 17 . . . . . . . . . 10 ((𝑏 ∈ ω ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → (((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑐) = ((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐))
5857fveq2d 6862 . . . . . . . . 9 ((𝑏 ∈ ω ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑐)) = (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐)))
59 fvex 6871 . . . . . . . . . . . . 13 (rec(𝐺, ∅)‘suc 𝑏) ∈ V
6059resex 6000 . . . . . . . . . . . 12 ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) ∈ V
61 dmeq 5867 . . . . . . . . . . . . . . 15 (𝑥 = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) → dom 𝑥 = dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)))
6261pweqd 4580 . . . . . . . . . . . . . 14 (𝑥 = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) → 𝒫 dom 𝑥 = 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)))
63 imaeq1 6026 . . . . . . . . . . . . . . 15 (𝑥 = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) → (𝑥𝑦) = (((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑦))
6463fveq2d 6862 . . . . . . . . . . . . . 14 (𝑥 = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) → (𝐹‘(𝑥𝑦)) = (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑦)))
6562, 64mpteq12dv 5194 . . . . . . . . . . . . 13 (𝑥 = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) → (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥𝑦))) = (𝑦 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑦))))
6660dmex 7885 . . . . . . . . . . . . . . 15 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) ∈ V
6766pwex 5335 . . . . . . . . . . . . . 14 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) ∈ V
6867mptex 7197 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑦))) ∈ V
6965, 33, 68fvmpt 6968 . . . . . . . . . . . 12 (((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) ∈ V → (𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏))) = (𝑦 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑦))))
7060, 69ax-mp 5 . . . . . . . . . . 11 (𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏))) = (𝑦 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑦)))
7170fveq1i 6859 . . . . . . . . . 10 ((𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)))‘𝑐) = ((𝑦 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑦)))‘𝑐)
72 r1sssuc 9736 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ On → (𝑅1𝑏) ⊆ (𝑅1‘suc 𝑏))
7350, 72syl 17 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ω → (𝑅1𝑏) ⊆ (𝑅1‘suc 𝑏))
74 fnssres 6641 . . . . . . . . . . . . . . . 16 (((rec(𝐺, ∅)‘suc 𝑏) Fn (𝑅1‘suc 𝑏) ∧ (𝑅1𝑏) ⊆ (𝑅1‘suc 𝑏)) → ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) Fn (𝑅1𝑏))
7537, 73, 74syl2anc 584 . . . . . . . . . . . . . . 15 (𝑏 ∈ ω → ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) Fn (𝑅1𝑏))
7675fndmd 6623 . . . . . . . . . . . . . 14 (𝑏 ∈ ω → dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) = (𝑅1𝑏))
7776pweqd 4580 . . . . . . . . . . . . 13 (𝑏 ∈ ω → 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) = 𝒫 (𝑅1𝑏))
7877adantr 480 . . . . . . . . . . . 12 ((𝑏 ∈ ω ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) = 𝒫 (𝑅1𝑏))
7954, 78eleqtrrd 2831 . . . . . . . . . . 11 ((𝑏 ∈ ω ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → 𝑐 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)))
80 imaeq2 6027 . . . . . . . . . . . . 13 (𝑦 = 𝑐 → (((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑦) = (((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑐))
8180fveq2d 6862 . . . . . . . . . . . 12 (𝑦 = 𝑐 → (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑦)) = (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑐)))
82 eqid 2729 . . . . . . . . . . . 12 (𝑦 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑦))) = (𝑦 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑦)))
83 fvex 6871 . . . . . . . . . . . 12 (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑐)) ∈ V
8481, 82, 83fvmpt 6968 . . . . . . . . . . 11 (𝑐 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) → ((𝑦 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑦)))‘𝑐) = (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑐)))
8579, 84syl 17 . . . . . . . . . 10 ((𝑏 ∈ ω ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → ((𝑦 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑦)))‘𝑐) = (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑐)))
8671, 85eqtrid 2776 . . . . . . . . 9 ((𝑏 ∈ ω ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → ((𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)))‘𝑐) = (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑐)))
87 dmeq 5867 . . . . . . . . . . . . . . 15 (𝑥 = (rec(𝐺, ∅)‘suc 𝑏) → dom 𝑥 = dom (rec(𝐺, ∅)‘suc 𝑏))
8887pweqd 4580 . . . . . . . . . . . . . 14 (𝑥 = (rec(𝐺, ∅)‘suc 𝑏) → 𝒫 dom 𝑥 = 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏))
89 imaeq1 6026 . . . . . . . . . . . . . . 15 (𝑥 = (rec(𝐺, ∅)‘suc 𝑏) → (𝑥𝑦) = ((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦))
9089fveq2d 6862 . . . . . . . . . . . . . 14 (𝑥 = (rec(𝐺, ∅)‘suc 𝑏) → (𝐹‘(𝑥𝑦)) = (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦)))
9188, 90mpteq12dv 5194 . . . . . . . . . . . . 13 (𝑥 = (rec(𝐺, ∅)‘suc 𝑏) → (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥𝑦))) = (𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦))))
9259dmex 7885 . . . . . . . . . . . . . . 15 dom (rec(𝐺, ∅)‘suc 𝑏) ∈ V
9392pwex 5335 . . . . . . . . . . . . . 14 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ∈ V
9493mptex 7197 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦))) ∈ V
9591, 33, 94fvmpt 6968 . . . . . . . . . . . 12 ((rec(𝐺, ∅)‘suc 𝑏) ∈ V → (𝐺‘(rec(𝐺, ∅)‘suc 𝑏)) = (𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦))))
9659, 95ax-mp 5 . . . . . . . . . . 11 (𝐺‘(rec(𝐺, ∅)‘suc 𝑏)) = (𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦)))
9796fveq1i 6859 . . . . . . . . . 10 ((𝐺‘(rec(𝐺, ∅)‘suc 𝑏))‘𝑐) = ((𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦)))‘𝑐)
98 r1tr 9729 . . . . . . . . . . . . . . 15 Tr (𝑅1‘suc 𝑏)
9998a1i 11 . . . . . . . . . . . . . 14 (𝑏 ∈ ω → Tr (𝑅1‘suc 𝑏))
100 dftr4 5221 . . . . . . . . . . . . . 14 (Tr (𝑅1‘suc 𝑏) ↔ (𝑅1‘suc 𝑏) ⊆ 𝒫 (𝑅1‘suc 𝑏))
10199, 100sylib 218 . . . . . . . . . . . . 13 (𝑏 ∈ ω → (𝑅1‘suc 𝑏) ⊆ 𝒫 (𝑅1‘suc 𝑏))
102101sselda 3946 . . . . . . . . . . . 12 ((𝑏 ∈ ω ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → 𝑐 ∈ 𝒫 (𝑅1‘suc 𝑏))
103 f1odm 6804 . . . . . . . . . . . . . . 15 ((rec(𝐺, ∅)‘suc 𝑏):(𝑅1‘suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc 𝑏)) → dom (rec(𝐺, ∅)‘suc 𝑏) = (𝑅1‘suc 𝑏))
10435, 103syl 17 . . . . . . . . . . . . . 14 (𝑏 ∈ ω → dom (rec(𝐺, ∅)‘suc 𝑏) = (𝑅1‘suc 𝑏))
105104pweqd 4580 . . . . . . . . . . . . 13 (𝑏 ∈ ω → 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) = 𝒫 (𝑅1‘suc 𝑏))
106105adantr 480 . . . . . . . . . . . 12 ((𝑏 ∈ ω ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) = 𝒫 (𝑅1‘suc 𝑏))
107102, 106eleqtrrd 2831 . . . . . . . . . . 11 ((𝑏 ∈ ω ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → 𝑐 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏))
108 imaeq2 6027 . . . . . . . . . . . . 13 (𝑦 = 𝑐 → ((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦) = ((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐))
109108fveq2d 6862 . . . . . . . . . . . 12 (𝑦 = 𝑐 → (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦)) = (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐)))
110 eqid 2729 . . . . . . . . . . . 12 (𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦))) = (𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦)))
111 fvex 6871 . . . . . . . . . . . 12 (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐)) ∈ V
112109, 110, 111fvmpt 6968 . . . . . . . . . . 11 (𝑐 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) → ((𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦)))‘𝑐) = (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐)))
113107, 112syl 17 . . . . . . . . . 10 ((𝑏 ∈ ω ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → ((𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦)))‘𝑐) = (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐)))
11497, 113eqtrid 2776 . . . . . . . . 9 ((𝑏 ∈ ω ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → ((𝐺‘(rec(𝐺, ∅)‘suc 𝑏))‘𝑐) = (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐)))
11558, 86, 1143eqtr4d 2774 . . . . . . . 8 ((𝑏 ∈ ω ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → ((𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)))‘𝑐) = ((𝐺‘(rec(𝐺, ∅)‘suc 𝑏))‘𝑐))
116115adantlr 715 . . . . . . 7 (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏))) ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → ((𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)))‘𝑐) = ((𝐺‘(rec(𝐺, ∅)‘suc 𝑏))‘𝑐))
117 fveq2 6858 . . . . . . . . 9 ((rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) → (𝐺‘(rec(𝐺, ∅)‘𝑏)) = (𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏))))
118117fveq1d 6860 . . . . . . . 8 ((rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) → ((𝐺‘(rec(𝐺, ∅)‘𝑏))‘𝑐) = ((𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)))‘𝑐))
119118ad2antlr 727 . . . . . . 7 (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏))) ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → ((𝐺‘(rec(𝐺, ∅)‘𝑏))‘𝑐) = ((𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)))‘𝑐))
120 rdgsuc 8392 . . . . . . . . . 10 (suc 𝑏 ∈ On → (rec(𝐺, ∅)‘suc suc 𝑏) = (𝐺‘(rec(𝐺, ∅)‘suc 𝑏)))
12144, 120syl 17 . . . . . . . . 9 (𝑏 ∈ ω → (rec(𝐺, ∅)‘suc suc 𝑏) = (𝐺‘(rec(𝐺, ∅)‘suc 𝑏)))
122121fveq1d 6860 . . . . . . . 8 (𝑏 ∈ ω → ((rec(𝐺, ∅)‘suc suc 𝑏)‘𝑐) = ((𝐺‘(rec(𝐺, ∅)‘suc 𝑏))‘𝑐))
123122ad2antrr 726 . . . . . . 7 (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏))) ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → ((rec(𝐺, ∅)‘suc suc 𝑏)‘𝑐) = ((𝐺‘(rec(𝐺, ∅)‘suc 𝑏))‘𝑐))
124116, 119, 1233eqtr4rd 2775 . . . . . 6 (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏))) ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → ((rec(𝐺, ∅)‘suc suc 𝑏)‘𝑐) = ((𝐺‘(rec(𝐺, ∅)‘𝑏))‘𝑐))
125 fvres 6877 . . . . . . 7 (𝑐 ∈ (𝑅1‘suc 𝑏) → (((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc 𝑏))‘𝑐) = ((rec(𝐺, ∅)‘suc suc 𝑏)‘𝑐))
126125adantl 481 . . . . . 6 (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏))) ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → (((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc 𝑏))‘𝑐) = ((rec(𝐺, ∅)‘suc suc 𝑏)‘𝑐))
127 rdgsuc 8392 . . . . . . . . 9 (𝑏 ∈ On → (rec(𝐺, ∅)‘suc 𝑏) = (𝐺‘(rec(𝐺, ∅)‘𝑏)))
12850, 127syl 17 . . . . . . . 8 (𝑏 ∈ ω → (rec(𝐺, ∅)‘suc 𝑏) = (𝐺‘(rec(𝐺, ∅)‘𝑏)))
129128fveq1d 6860 . . . . . . 7 (𝑏 ∈ ω → ((rec(𝐺, ∅)‘suc 𝑏)‘𝑐) = ((𝐺‘(rec(𝐺, ∅)‘𝑏))‘𝑐))
130129ad2antrr 726 . . . . . 6 (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏))) ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → ((rec(𝐺, ∅)‘suc 𝑏)‘𝑐) = ((𝐺‘(rec(𝐺, ∅)‘𝑏))‘𝑐))
131124, 126, 1303eqtr4rd 2775 . . . . 5 (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏))) ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → ((rec(𝐺, ∅)‘suc 𝑏)‘𝑐) = (((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc 𝑏))‘𝑐))
13238, 49, 131eqfnfvd 7006 . . . 4 ((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏))) → (rec(𝐺, ∅)‘suc 𝑏) = ((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc 𝑏)))
133132ex 412 . . 3 (𝑏 ∈ ω → ((rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) → (rec(𝐺, ∅)‘suc 𝑏) = ((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc 𝑏))))
1346, 12, 18, 24, 30, 133finds 7872 . 2 (𝐴 ∈ ω → (rec(𝐺, ∅)‘𝐴) = ((rec(𝐺, ∅)‘suc 𝐴) ↾ (𝑅1𝐴)))
135 resss 5972 . 2 ((rec(𝐺, ∅)‘suc 𝐴) ↾ (𝑅1𝐴)) ⊆ (rec(𝐺, ∅)‘suc 𝐴)
136134, 135eqsstrdi 3991 1 (𝐴 ∈ ω → (rec(𝐺, ∅)‘𝐴) ⊆ (rec(𝐺, ∅)‘suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589   ciun 4955  cmpt 5188  Tr wtr 5214   × cxp 5636  dom cdm 5638  cres 5640  cima 5641  Oncon0 6332  suc csuc 6334   Fn wfn 6506  1-1-ontowf1o 6510  cfv 6511  ωcom 7842  reccrdg 8377  Fincfn 8918  𝑅1cr1 9715  cardccrd 9888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-r1 9717  df-dju 9854  df-card 9892
This theorem is referenced by:  ackbij2lem4  10194
  Copyright terms: Public domain W3C validator