Step | Hyp | Ref
| Expression |
1 | | simp1 1133 |
. . . 4
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ≠ ∅) |
2 | | psmetres2 23016 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐷 ↾ (𝐴 × 𝐴)) ∈ (PsMet‘𝐴)) |
3 | 2 | 3adant1 1127 |
. . . 4
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐷 ↾ (𝐴 × 𝐴)) ∈ (PsMet‘𝐴)) |
4 | | oveq2 7158 |
. . . . . . . 8
⊢ (𝑎 = 𝑏 → (0[,)𝑎) = (0[,)𝑏)) |
5 | 4 | imaeq2d 5901 |
. . . . . . 7
⊢ (𝑎 = 𝑏 → (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)) = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) |
6 | 5 | cbvmptv 5135 |
. . . . . 6
⊢ (𝑎 ∈ ℝ+
↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) = (𝑏 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) |
7 | 6 | rneqi 5778 |
. . . . 5
⊢ ran
(𝑎 ∈
ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) = ran (𝑏 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) |
8 | 7 | metustfbas 23259 |
. . . 4
⊢ ((𝐴 ≠ ∅ ∧ (𝐷 ↾ (𝐴 × 𝐴)) ∈ (PsMet‘𝐴)) → ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∈ (fBas‘(𝐴 × 𝐴))) |
9 | 1, 3, 8 | syl2anc 587 |
. . 3
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∈ (fBas‘(𝐴 × 𝐴))) |
10 | | fgval 22570 |
. . 3
⊢ (ran
(𝑎 ∈
ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∈ (fBas‘(𝐴 × 𝐴)) → ((𝐴 × 𝐴)filGenran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)))) = {𝑣 ∈ 𝒫 (𝐴 × 𝐴) ∣ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑣) ≠ ∅}) |
11 | 9, 10 | syl 17 |
. 2
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((𝐴 × 𝐴)filGenran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)))) = {𝑣 ∈ 𝒫 (𝐴 × 𝐴) ∣ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑣) ≠ ∅}) |
12 | | metuval 23251 |
. . 3
⊢ ((𝐷 ↾ (𝐴 × 𝐴)) ∈ (PsMet‘𝐴) → (metUnif‘(𝐷 ↾ (𝐴 × 𝐴))) = ((𝐴 × 𝐴)filGenran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))))) |
13 | 3, 12 | syl 17 |
. 2
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (metUnif‘(𝐷 ↾ (𝐴 × 𝐴))) = ((𝐴 × 𝐴)filGenran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))))) |
14 | | fvex 6671 |
. . . 4
⊢
(metUnif‘𝐷)
∈ V |
15 | 3 | elfvexd 6692 |
. . . . 5
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
16 | 15, 15 | xpexd 7472 |
. . . 4
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐴 × 𝐴) ∈ V) |
17 | | restval 16758 |
. . . 4
⊢
(((metUnif‘𝐷)
∈ V ∧ (𝐴 ×
𝐴) ∈ V) →
((metUnif‘𝐷)
↾t (𝐴
× 𝐴)) = ran (𝑣 ∈ (metUnif‘𝐷) ↦ (𝑣 ∩ (𝐴 × 𝐴)))) |
18 | 14, 16, 17 | sylancr 590 |
. . 3
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((metUnif‘𝐷) ↾t (𝐴 × 𝐴)) = ran (𝑣 ∈ (metUnif‘𝐷) ↦ (𝑣 ∩ (𝐴 × 𝐴)))) |
19 | | inss2 4134 |
. . . . . . . . . . 11
⊢ (𝑣 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) |
20 | | sseq1 3917 |
. . . . . . . . . . 11
⊢ (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → (𝑢 ⊆ (𝐴 × 𝐴) ↔ (𝑣 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴))) |
21 | 19, 20 | mpbiri 261 |
. . . . . . . . . 10
⊢ (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → 𝑢 ⊆ (𝐴 × 𝐴)) |
22 | | vex 3413 |
. . . . . . . . . . 11
⊢ 𝑢 ∈ V |
23 | 22 | elpw 4498 |
. . . . . . . . . 10
⊢ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ↔ 𝑢 ⊆ (𝐴 × 𝐴)) |
24 | 21, 23 | sylibr 237 |
. . . . . . . . 9
⊢ (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → 𝑢 ∈ 𝒫 (𝐴 × 𝐴)) |
25 | 24 | rexlimivw 3206 |
. . . . . . . 8
⊢
(∃𝑣 ∈
(metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → 𝑢 ∈ 𝒫 (𝐴 × 𝐴)) |
26 | 25 | adantl 485 |
. . . . . . 7
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ ∃𝑣 ∈ (metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) → 𝑢 ∈ 𝒫 (𝐴 × 𝐴)) |
27 | | nfv 1915 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑎(((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) |
28 | | nfmpt1 5130 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑎(𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) |
29 | 28 | nfrn 5793 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑎ran
(𝑎 ∈
ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) |
30 | 29 | nfcri 2906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑎 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) |
31 | 27, 30 | nfan 1900 |
. . . . . . . . . . 11
⊢
Ⅎ𝑎((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) |
32 | | nfv 1915 |
. . . . . . . . . . 11
⊢
Ⅎ𝑎 𝑤 ⊆ 𝑣 |
33 | 31, 32 | nfan 1900 |
. . . . . . . . . 10
⊢
Ⅎ𝑎(((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) |
34 | | nfmpt1 5130 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑎(𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) |
35 | 34 | nfrn 5793 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑎ran
(𝑎 ∈
ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) |
36 | | nfcv 2919 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑎𝒫 𝑢 |
37 | 35, 36 | nfin 4121 |
. . . . . . . . . . 11
⊢
Ⅎ𝑎(ran
(𝑎 ∈
ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) |
38 | | nfcv 2919 |
. . . . . . . . . . 11
⊢
Ⅎ𝑎∅ |
39 | 37, 38 | nfne 3051 |
. . . . . . . . . 10
⊢
Ⅎ𝑎(ran (𝑎 ∈ ℝ+
↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅ |
40 | | simplr 768 |
. . . . . . . . . . . . 13
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → 𝑎 ∈ ℝ+) |
41 | | ineq1 4109 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = (◡𝐷 “ (0[,)𝑎)) → (𝑤 ∩ (𝐴 × 𝐴)) = ((◡𝐷 “ (0[,)𝑎)) ∩ (𝐴 × 𝐴))) |
42 | 41 | adantl 485 |
. . . . . . . . . . . . . 14
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → (𝑤 ∩ (𝐴 × 𝐴)) = ((◡𝐷 “ (0[,)𝑎)) ∩ (𝐴 × 𝐴))) |
43 | | simp2 1134 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐷 ∈ (PsMet‘𝑋)) |
44 | | psmetf 23008 |
. . . . . . . . . . . . . . . 16
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
45 | | ffun 6501 |
. . . . . . . . . . . . . . . 16
⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → Fun
𝐷) |
46 | | respreima 6827 |
. . . . . . . . . . . . . . . 16
⊢ (Fun
𝐷 → (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)) = ((◡𝐷 “ (0[,)𝑎)) ∩ (𝐴 × 𝐴))) |
47 | 43, 44, 45, 46 | 4syl 19 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)) = ((◡𝐷 “ (0[,)𝑎)) ∩ (𝐴 × 𝐴))) |
48 | 47 | ad6antr 735 |
. . . . . . . . . . . . . 14
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)) = ((◡𝐷 “ (0[,)𝑎)) ∩ (𝐴 × 𝐴))) |
49 | 42, 48 | eqtr4d 2796 |
. . . . . . . . . . . . 13
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → (𝑤 ∩ (𝐴 × 𝐴)) = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) |
50 | | rspe 3228 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ ℝ+
∧ (𝑤 ∩ (𝐴 × 𝐴)) = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) → ∃𝑎 ∈ ℝ+ (𝑤 ∩ (𝐴 × 𝐴)) = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) |
51 | 40, 49, 50 | syl2anc 587 |
. . . . . . . . . . . 12
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → ∃𝑎 ∈ ℝ+ (𝑤 ∩ (𝐴 × 𝐴)) = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) |
52 | | vex 3413 |
. . . . . . . . . . . . . 14
⊢ 𝑤 ∈ V |
53 | 52 | inex1 5187 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∩ (𝐴 × 𝐴)) ∈ V |
54 | | eqid 2758 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ ℝ+
↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) |
55 | 54 | elrnmpt 5797 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ∩ (𝐴 × 𝐴)) ∈ V → ((𝑤 ∩ (𝐴 × 𝐴)) ∈ ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ (𝑤 ∩ (𝐴 × 𝐴)) = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)))) |
56 | 53, 55 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∩ (𝐴 × 𝐴)) ∈ ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ (𝑤 ∩ (𝐴 × 𝐴)) = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) |
57 | 51, 56 | sylibr 237 |
. . . . . . . . . . 11
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → (𝑤 ∩ (𝐴 × 𝐴)) ∈ ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)))) |
58 | | simpllr 775 |
. . . . . . . . . . . . 13
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → 𝑤 ⊆ 𝑣) |
59 | | ssinss1 4142 |
. . . . . . . . . . . . 13
⊢ (𝑤 ⊆ 𝑣 → (𝑤 ∩ (𝐴 × 𝐴)) ⊆ 𝑣) |
60 | 58, 59 | syl 17 |
. . . . . . . . . . . 12
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → (𝑤 ∩ (𝐴 × 𝐴)) ⊆ 𝑣) |
61 | | inss2 4134 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) |
62 | 61 | a1i 11 |
. . . . . . . . . . . 12
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → (𝑤 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)) |
63 | | pweq 4510 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → 𝒫 𝑢 = 𝒫 (𝑣 ∩ (𝐴 × 𝐴))) |
64 | 63 | eleq2d 2837 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → ((𝑤 ∩ (𝐴 × 𝐴)) ∈ 𝒫 𝑢 ↔ (𝑤 ∩ (𝐴 × 𝐴)) ∈ 𝒫 (𝑣 ∩ (𝐴 × 𝐴)))) |
65 | 53 | elpw 4498 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 ∩ (𝐴 × 𝐴)) ∈ 𝒫 (𝑣 ∩ (𝐴 × 𝐴)) ↔ (𝑤 ∩ (𝐴 × 𝐴)) ⊆ (𝑣 ∩ (𝐴 × 𝐴))) |
66 | 64, 65 | bitrdi 290 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → ((𝑤 ∩ (𝐴 × 𝐴)) ∈ 𝒫 𝑢 ↔ (𝑤 ∩ (𝐴 × 𝐴)) ⊆ (𝑣 ∩ (𝐴 × 𝐴)))) |
67 | | ssin 4135 |
. . . . . . . . . . . . . 14
⊢ (((𝑤 ∩ (𝐴 × 𝐴)) ⊆ 𝑣 ∧ (𝑤 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)) ↔ (𝑤 ∩ (𝐴 × 𝐴)) ⊆ (𝑣 ∩ (𝐴 × 𝐴))) |
68 | 66, 67 | bitr4di 292 |
. . . . . . . . . . . . 13
⊢ (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → ((𝑤 ∩ (𝐴 × 𝐴)) ∈ 𝒫 𝑢 ↔ ((𝑤 ∩ (𝐴 × 𝐴)) ⊆ 𝑣 ∧ (𝑤 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)))) |
69 | 68 | ad5antlr 734 |
. . . . . . . . . . . 12
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → ((𝑤 ∩ (𝐴 × 𝐴)) ∈ 𝒫 𝑢 ↔ ((𝑤 ∩ (𝐴 × 𝐴)) ⊆ 𝑣 ∧ (𝑤 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)))) |
70 | 60, 62, 69 | mpbir2and 712 |
. . . . . . . . . . 11
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → (𝑤 ∩ (𝐴 × 𝐴)) ∈ 𝒫 𝑢) |
71 | | inelcm 4361 |
. . . . . . . . . . 11
⊢ (((𝑤 ∩ (𝐴 × 𝐴)) ∈ ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∧ (𝑤 ∩ (𝐴 × 𝐴)) ∈ 𝒫 𝑢) → (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅) |
72 | 57, 70, 71 | syl2anc 587 |
. . . . . . . . . 10
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅) |
73 | | simplr 768 |
. . . . . . . . . . 11
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) → 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) |
74 | | eqid 2758 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ ℝ+
↦ (◡𝐷 “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) |
75 | 74 | elrnmpt 5797 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ V → (𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝑤 = (◡𝐷 “ (0[,)𝑎)))) |
76 | 75 | elv 3415 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝑤 = (◡𝐷 “ (0[,)𝑎))) |
77 | 73, 76 | sylib 221 |
. . . . . . . . . 10
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) → ∃𝑎 ∈ ℝ+ 𝑤 = (◡𝐷 “ (0[,)𝑎))) |
78 | 33, 39, 72, 77 | r19.29af2 3253 |
. . . . . . . . 9
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) → (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅) |
79 | | ssn0 4296 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐴 ≠ ∅) → 𝑋 ≠ ∅) |
80 | 79 | ancoms 462 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ 𝑋) → 𝑋 ≠ ∅) |
81 | 80 | 3adant2 1128 |
. . . . . . . . . . . 12
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝑋 ≠ ∅) |
82 | | metuel 23266 |
. . . . . . . . . . . 12
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑣 ∈ (metUnif‘𝐷) ↔ (𝑣 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ 𝑣))) |
83 | 81, 43, 82 | syl2anc 587 |
. . . . . . . . . . 11
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑣 ∈ (metUnif‘𝐷) ↔ (𝑣 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ 𝑣))) |
84 | 83 | simplbda 503 |
. . . . . . . . . 10
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) → ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ 𝑣) |
85 | 84 | adantr 484 |
. . . . . . . . 9
⊢ ((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) → ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ 𝑣) |
86 | 78, 85 | r19.29a 3213 |
. . . . . . . 8
⊢ ((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) → (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅) |
87 | 86 | r19.29an 3212 |
. . . . . . 7
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ ∃𝑣 ∈ (metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) → (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅) |
88 | 26, 87 | jca 515 |
. . . . . 6
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ ∃𝑣 ∈ (metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) → (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) |
89 | | simprl 770 |
. . . . . . . . . . 11
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → 𝑢 ∈ 𝒫 (𝐴 × 𝐴)) |
90 | 89 | elpwid 4505 |
. . . . . . . . . 10
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → 𝑢 ⊆ (𝐴 × 𝐴)) |
91 | | simpl3 1190 |
. . . . . . . . . . 11
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → 𝐴 ⊆ 𝑋) |
92 | | xpss12 5539 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝑋) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋)) |
93 | 91, 91, 92 | syl2anc 587 |
. . . . . . . . . 10
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋)) |
94 | 90, 93 | sstrd 3902 |
. . . . . . . . 9
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → 𝑢 ⊆ (𝑋 × 𝑋)) |
95 | | difssd 4038 |
. . . . . . . . 9
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)) ⊆ (𝑋 × 𝑋)) |
96 | 94, 95 | unssd 4091 |
. . . . . . . 8
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ⊆ (𝑋 × 𝑋)) |
97 | | simplr 768 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → 𝑏 ∈ ℝ+) |
98 | | eqidd 2759 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → (◡𝐷 “ (0[,)𝑏)) = (◡𝐷 “ (0[,)𝑏))) |
99 | 4 | imaeq2d 5901 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑏 → (◡𝐷 “ (0[,)𝑎)) = (◡𝐷 “ (0[,)𝑏))) |
100 | 99 | rspceeqv 3556 |
. . . . . . . . . . . 12
⊢ ((𝑏 ∈ ℝ+
∧ (◡𝐷 “ (0[,)𝑏)) = (◡𝐷 “ (0[,)𝑏))) → ∃𝑎 ∈ ℝ+ (◡𝐷 “ (0[,)𝑏)) = (◡𝐷 “ (0[,)𝑎))) |
101 | 97, 98, 100 | syl2anc 587 |
. . . . . . . . . . 11
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → ∃𝑎 ∈ ℝ+ (◡𝐷 “ (0[,)𝑏)) = (◡𝐷 “ (0[,)𝑎))) |
102 | 43 | ad4antr 731 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → 𝐷 ∈ (PsMet‘𝑋)) |
103 | | cnvexg 7634 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ (PsMet‘𝑋) → ◡𝐷 ∈ V) |
104 | | imaexg 7625 |
. . . . . . . . . . . 12
⊢ (◡𝐷 ∈ V → (◡𝐷 “ (0[,)𝑏)) ∈ V) |
105 | 74 | elrnmpt 5797 |
. . . . . . . . . . . 12
⊢ ((◡𝐷 “ (0[,)𝑏)) ∈ V → ((◡𝐷 “ (0[,)𝑏)) ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ (◡𝐷 “ (0[,)𝑏)) = (◡𝐷 “ (0[,)𝑎)))) |
106 | 102, 103,
104, 105 | 4syl 19 |
. . . . . . . . . . 11
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → ((◡𝐷 “ (0[,)𝑏)) ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ (◡𝐷 “ (0[,)𝑏)) = (◡𝐷 “ (0[,)𝑎)))) |
107 | 101, 106 | mpbird 260 |
. . . . . . . . . 10
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → (◡𝐷 “ (0[,)𝑏)) ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) |
108 | | cnvimass 5921 |
. . . . . . . . . . . . . . . 16
⊢ (◡𝐷 “ (0[,)𝑏)) ⊆ dom 𝐷 |
109 | 108, 44 | fssdm 6515 |
. . . . . . . . . . . . . . 15
⊢ (𝐷 ∈ (PsMet‘𝑋) → (◡𝐷 “ (0[,)𝑏)) ⊆ (𝑋 × 𝑋)) |
110 | 102, 109 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → (◡𝐷 “ (0[,)𝑏)) ⊆ (𝑋 × 𝑋)) |
111 | | ssdif0 4262 |
. . . . . . . . . . . . . 14
⊢ ((◡𝐷 “ (0[,)𝑏)) ⊆ (𝑋 × 𝑋) ↔ ((◡𝐷 “ (0[,)𝑏)) ∖ (𝑋 × 𝑋)) = ∅) |
112 | 110, 111 | sylib 221 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → ((◡𝐷 “ (0[,)𝑏)) ∖ (𝑋 × 𝑋)) = ∅) |
113 | | 0ss 4292 |
. . . . . . . . . . . . 13
⊢ ∅
⊆ 𝑢 |
114 | 112, 113 | eqsstrdi 3946 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → ((◡𝐷 “ (0[,)𝑏)) ∖ (𝑋 × 𝑋)) ⊆ 𝑢) |
115 | | respreima 6827 |
. . . . . . . . . . . . . 14
⊢ (Fun
𝐷 → (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)) = ((◡𝐷 “ (0[,)𝑏)) ∩ (𝐴 × 𝐴))) |
116 | 102, 44, 45, 115 | 4syl 19 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)) = ((◡𝐷 “ (0[,)𝑏)) ∩ (𝐴 × 𝐴))) |
117 | | simpr 488 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) |
118 | | simpllr 775 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → 𝑣 ∈ 𝒫 𝑢) |
119 | 118 | elpwid 4505 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → 𝑣 ⊆ 𝑢) |
120 | 117, 119 | eqsstrrd 3931 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)) ⊆ 𝑢) |
121 | 116, 120 | eqsstrrd 3931 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → ((◡𝐷 “ (0[,)𝑏)) ∩ (𝐴 × 𝐴)) ⊆ 𝑢) |
122 | 114, 121 | unssd 4091 |
. . . . . . . . . . 11
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → (((◡𝐷 “ (0[,)𝑏)) ∖ (𝑋 × 𝑋)) ∪ ((◡𝐷 “ (0[,)𝑏)) ∩ (𝐴 × 𝐴))) ⊆ 𝑢) |
123 | | ssundif 4381 |
. . . . . . . . . . . 12
⊢ ((◡𝐷 “ (0[,)𝑏)) ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ↔ ((◡𝐷 “ (0[,)𝑏)) ∖ 𝑢) ⊆ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) |
124 | | difcom 4382 |
. . . . . . . . . . . 12
⊢ (((◡𝐷 “ (0[,)𝑏)) ∖ 𝑢) ⊆ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)) ↔ ((◡𝐷 “ (0[,)𝑏)) ∖ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ⊆ 𝑢) |
125 | | difdif2 4191 |
. . . . . . . . . . . . 13
⊢ ((◡𝐷 “ (0[,)𝑏)) ∖ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) = (((◡𝐷 “ (0[,)𝑏)) ∖ (𝑋 × 𝑋)) ∪ ((◡𝐷 “ (0[,)𝑏)) ∩ (𝐴 × 𝐴))) |
126 | 125 | sseq1i 3920 |
. . . . . . . . . . . 12
⊢ (((◡𝐷 “ (0[,)𝑏)) ∖ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ⊆ 𝑢 ↔ (((◡𝐷 “ (0[,)𝑏)) ∖ (𝑋 × 𝑋)) ∪ ((◡𝐷 “ (0[,)𝑏)) ∩ (𝐴 × 𝐴))) ⊆ 𝑢) |
127 | 123, 124,
126 | 3bitri 300 |
. . . . . . . . . . 11
⊢ ((◡𝐷 “ (0[,)𝑏)) ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ↔ (((◡𝐷 “ (0[,)𝑏)) ∖ (𝑋 × 𝑋)) ∪ ((◡𝐷 “ (0[,)𝑏)) ∩ (𝐴 × 𝐴))) ⊆ 𝑢) |
128 | 122, 127 | sylibr 237 |
. . . . . . . . . 10
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → (◡𝐷 “ (0[,)𝑏)) ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)))) |
129 | | sseq1 3917 |
. . . . . . . . . . 11
⊢ (𝑤 = (◡𝐷 “ (0[,)𝑏)) → (𝑤 ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ↔ (◡𝐷 “ (0[,)𝑏)) ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))))) |
130 | 129 | rspcev 3541 |
. . . . . . . . . 10
⊢ (((◡𝐷 “ (0[,)𝑏)) ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ∧ (◡𝐷 “ (0[,)𝑏)) ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)))) → ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)))) |
131 | 107, 128,
130 | syl2anc 587 |
. . . . . . . . 9
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)))) |
132 | | elin 3874 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∈ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ↔ (𝑣 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∧ 𝑣 ∈ 𝒫 𝑢)) |
133 | 6 | elrnmpt 5797 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 ∈ V → (𝑣 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ↔ ∃𝑏 ∈ ℝ+ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)))) |
134 | 133 | elv 3415 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ↔ ∃𝑏 ∈ ℝ+ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) |
135 | 134 | anbi1i 626 |
. . . . . . . . . . . . . 14
⊢ ((𝑣 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∧ 𝑣 ∈ 𝒫 𝑢) ↔ (∃𝑏 ∈ ℝ+ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)) ∧ 𝑣 ∈ 𝒫 𝑢)) |
136 | | ancom 464 |
. . . . . . . . . . . . . 14
⊢
((∃𝑏 ∈
ℝ+ 𝑣 =
(◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)) ∧ 𝑣 ∈ 𝒫 𝑢) ↔ (𝑣 ∈ 𝒫 𝑢 ∧ ∃𝑏 ∈ ℝ+ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)))) |
137 | 132, 135,
136 | 3bitri 300 |
. . . . . . . . . . . . 13
⊢ (𝑣 ∈ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ↔ (𝑣 ∈ 𝒫 𝑢 ∧ ∃𝑏 ∈ ℝ+ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)))) |
138 | 137 | exbii 1849 |
. . . . . . . . . . . 12
⊢
(∃𝑣 𝑣 ∈ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ↔ ∃𝑣(𝑣 ∈ 𝒫 𝑢 ∧ ∃𝑏 ∈ ℝ+ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)))) |
139 | | n0 4245 |
. . . . . . . . . . . 12
⊢ ((ran
(𝑎 ∈
ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅ ↔ ∃𝑣 𝑣 ∈ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢)) |
140 | | df-rex 3076 |
. . . . . . . . . . . 12
⊢
(∃𝑣 ∈
𝒫 𝑢∃𝑏 ∈ ℝ+
𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)) ↔ ∃𝑣(𝑣 ∈ 𝒫 𝑢 ∧ ∃𝑏 ∈ ℝ+ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)))) |
141 | 138, 139,
140 | 3bitr4i 306 |
. . . . . . . . . . 11
⊢ ((ran
(𝑎 ∈
ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅ ↔ ∃𝑣 ∈ 𝒫 𝑢∃𝑏 ∈ ℝ+ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) |
142 | 141 | biimpi 219 |
. . . . . . . . . 10
⊢ ((ran
(𝑎 ∈
ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅ → ∃𝑣 ∈ 𝒫 𝑢∃𝑏 ∈ ℝ+ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) |
143 | 142 | ad2antll 728 |
. . . . . . . . 9
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → ∃𝑣 ∈ 𝒫 𝑢∃𝑏 ∈ ℝ+ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) |
144 | 131, 143 | r19.29vva 3257 |
. . . . . . . 8
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)))) |
145 | 81 | adantr 484 |
. . . . . . . . 9
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → 𝑋 ≠ ∅) |
146 | 43 | adantr 484 |
. . . . . . . . 9
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → 𝐷 ∈ (PsMet‘𝑋)) |
147 | | metuel 23266 |
. . . . . . . . 9
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∈ (metUnif‘𝐷) ↔ ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)))))) |
148 | 145, 146,
147 | syl2anc 587 |
. . . . . . . 8
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∈ (metUnif‘𝐷) ↔ ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)))))) |
149 | 96, 144, 148 | mpbir2and 712 |
. . . . . . 7
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∈ (metUnif‘𝐷)) |
150 | | indir 4180 |
. . . . . . . . 9
⊢ ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∩ (𝐴 × 𝐴)) = ((𝑢 ∩ (𝐴 × 𝐴)) ∪ (((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)) ∩ (𝐴 × 𝐴))) |
151 | | incom 4106 |
. . . . . . . . . . 11
⊢ ((𝐴 × 𝐴) ∩ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) = (((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)) ∩ (𝐴 × 𝐴)) |
152 | | disjdif 4368 |
. . . . . . . . . . 11
⊢ ((𝐴 × 𝐴) ∩ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) = ∅ |
153 | 151, 152 | eqtr3i 2783 |
. . . . . . . . . 10
⊢ (((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)) ∩ (𝐴 × 𝐴)) = ∅ |
154 | 153 | uneq2i 4065 |
. . . . . . . . 9
⊢ ((𝑢 ∩ (𝐴 × 𝐴)) ∪ (((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)) ∩ (𝐴 × 𝐴))) = ((𝑢 ∩ (𝐴 × 𝐴)) ∪ ∅) |
155 | | un0 4286 |
. . . . . . . . 9
⊢ ((𝑢 ∩ (𝐴 × 𝐴)) ∪ ∅) = (𝑢 ∩ (𝐴 × 𝐴)) |
156 | 150, 154,
155 | 3eqtri 2785 |
. . . . . . . 8
⊢ ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∩ (𝐴 × 𝐴)) = (𝑢 ∩ (𝐴 × 𝐴)) |
157 | | df-ss 3875 |
. . . . . . . . 9
⊢ (𝑢 ⊆ (𝐴 × 𝐴) ↔ (𝑢 ∩ (𝐴 × 𝐴)) = 𝑢) |
158 | 90, 157 | sylib 221 |
. . . . . . . 8
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → (𝑢 ∩ (𝐴 × 𝐴)) = 𝑢) |
159 | 156, 158 | syl5req 2806 |
. . . . . . 7
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → 𝑢 = ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∩ (𝐴 × 𝐴))) |
160 | | ineq1 4109 |
. . . . . . . 8
⊢ (𝑣 = (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) → (𝑣 ∩ (𝐴 × 𝐴)) = ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∩ (𝐴 × 𝐴))) |
161 | 160 | rspceeqv 3556 |
. . . . . . 7
⊢ (((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∈ (metUnif‘𝐷) ∧ 𝑢 = ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∩ (𝐴 × 𝐴))) → ∃𝑣 ∈ (metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) |
162 | 149, 159,
161 | syl2anc 587 |
. . . . . 6
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → ∃𝑣 ∈ (metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) |
163 | 88, 162 | impbida 800 |
. . . . 5
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (∃𝑣 ∈ (metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) ↔ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅))) |
164 | | eqid 2758 |
. . . . . . 7
⊢ (𝑣 ∈ (metUnif‘𝐷) ↦ (𝑣 ∩ (𝐴 × 𝐴))) = (𝑣 ∈ (metUnif‘𝐷) ↦ (𝑣 ∩ (𝐴 × 𝐴))) |
165 | 164 | elrnmpt 5797 |
. . . . . 6
⊢ (𝑢 ∈ V → (𝑢 ∈ ran (𝑣 ∈ (metUnif‘𝐷) ↦ (𝑣 ∩ (𝐴 × 𝐴))) ↔ ∃𝑣 ∈ (metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴)))) |
166 | 165 | elv 3415 |
. . . . 5
⊢ (𝑢 ∈ ran (𝑣 ∈ (metUnif‘𝐷) ↦ (𝑣 ∩ (𝐴 × 𝐴))) ↔ ∃𝑣 ∈ (metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) |
167 | | pweq 4510 |
. . . . . . . 8
⊢ (𝑣 = 𝑢 → 𝒫 𝑣 = 𝒫 𝑢) |
168 | 167 | ineq2d 4117 |
. . . . . . 7
⊢ (𝑣 = 𝑢 → (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑣) = (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢)) |
169 | 168 | neeq1d 3010 |
. . . . . 6
⊢ (𝑣 = 𝑢 → ((ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑣) ≠ ∅ ↔ (ran (𝑎 ∈ ℝ+
↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) |
170 | 169 | elrab 3602 |
. . . . 5
⊢ (𝑢 ∈ {𝑣 ∈ 𝒫 (𝐴 × 𝐴) ∣ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑣) ≠ ∅} ↔ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) |
171 | 163, 166,
170 | 3bitr4g 317 |
. . . 4
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑢 ∈ ran (𝑣 ∈ (metUnif‘𝐷) ↦ (𝑣 ∩ (𝐴 × 𝐴))) ↔ 𝑢 ∈ {𝑣 ∈ 𝒫 (𝐴 × 𝐴) ∣ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑣) ≠ ∅})) |
172 | 171 | eqrdv 2756 |
. . 3
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ran (𝑣 ∈ (metUnif‘𝐷) ↦ (𝑣 ∩ (𝐴 × 𝐴))) = {𝑣 ∈ 𝒫 (𝐴 × 𝐴) ∣ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑣) ≠ ∅}) |
173 | 18, 172 | eqtrd 2793 |
. 2
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((metUnif‘𝐷) ↾t (𝐴 × 𝐴)) = {𝑣 ∈ 𝒫 (𝐴 × 𝐴) ∣ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑣) ≠ ∅}) |
174 | 11, 13, 173 | 3eqtr4rd 2804 |
1
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((metUnif‘𝐷) ↾t (𝐴 × 𝐴)) = (metUnif‘(𝐷 ↾ (𝐴 × 𝐴)))) |