| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1136 |
. . . 4
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ≠ ∅) |
| 2 | | psmetres2 24209 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐷 ↾ (𝐴 × 𝐴)) ∈ (PsMet‘𝐴)) |
| 3 | 2 | 3adant1 1130 |
. . . 4
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐷 ↾ (𝐴 × 𝐴)) ∈ (PsMet‘𝐴)) |
| 4 | | oveq2 7398 |
. . . . . . . 8
⊢ (𝑎 = 𝑏 → (0[,)𝑎) = (0[,)𝑏)) |
| 5 | 4 | imaeq2d 6034 |
. . . . . . 7
⊢ (𝑎 = 𝑏 → (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)) = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) |
| 6 | 5 | cbvmptv 5214 |
. . . . . 6
⊢ (𝑎 ∈ ℝ+
↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) = (𝑏 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) |
| 7 | 6 | rneqi 5904 |
. . . . 5
⊢ ran
(𝑎 ∈
ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) = ran (𝑏 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) |
| 8 | 7 | metustfbas 24452 |
. . . 4
⊢ ((𝐴 ≠ ∅ ∧ (𝐷 ↾ (𝐴 × 𝐴)) ∈ (PsMet‘𝐴)) → ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∈ (fBas‘(𝐴 × 𝐴))) |
| 9 | 1, 3, 8 | syl2anc 584 |
. . 3
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∈ (fBas‘(𝐴 × 𝐴))) |
| 10 | | fgval 23764 |
. . 3
⊢ (ran
(𝑎 ∈
ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∈ (fBas‘(𝐴 × 𝐴)) → ((𝐴 × 𝐴)filGenran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)))) = {𝑣 ∈ 𝒫 (𝐴 × 𝐴) ∣ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑣) ≠ ∅}) |
| 11 | 9, 10 | syl 17 |
. 2
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((𝐴 × 𝐴)filGenran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)))) = {𝑣 ∈ 𝒫 (𝐴 × 𝐴) ∣ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑣) ≠ ∅}) |
| 12 | | metuval 24444 |
. . 3
⊢ ((𝐷 ↾ (𝐴 × 𝐴)) ∈ (PsMet‘𝐴) → (metUnif‘(𝐷 ↾ (𝐴 × 𝐴))) = ((𝐴 × 𝐴)filGenran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))))) |
| 13 | 3, 12 | syl 17 |
. 2
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (metUnif‘(𝐷 ↾ (𝐴 × 𝐴))) = ((𝐴 × 𝐴)filGenran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))))) |
| 14 | | fvex 6874 |
. . . 4
⊢
(metUnif‘𝐷)
∈ V |
| 15 | 3 | elfvexd 6900 |
. . . . 5
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
| 16 | 15, 15 | xpexd 7730 |
. . . 4
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐴 × 𝐴) ∈ V) |
| 17 | | restval 17396 |
. . . 4
⊢
(((metUnif‘𝐷)
∈ V ∧ (𝐴 ×
𝐴) ∈ V) →
((metUnif‘𝐷)
↾t (𝐴
× 𝐴)) = ran (𝑣 ∈ (metUnif‘𝐷) ↦ (𝑣 ∩ (𝐴 × 𝐴)))) |
| 18 | 14, 16, 17 | sylancr 587 |
. . 3
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((metUnif‘𝐷) ↾t (𝐴 × 𝐴)) = ran (𝑣 ∈ (metUnif‘𝐷) ↦ (𝑣 ∩ (𝐴 × 𝐴)))) |
| 19 | | inss2 4204 |
. . . . . . . . . . 11
⊢ (𝑣 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) |
| 20 | | sseq1 3975 |
. . . . . . . . . . 11
⊢ (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → (𝑢 ⊆ (𝐴 × 𝐴) ↔ (𝑣 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴))) |
| 21 | 19, 20 | mpbiri 258 |
. . . . . . . . . 10
⊢ (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → 𝑢 ⊆ (𝐴 × 𝐴)) |
| 22 | | vex 3454 |
. . . . . . . . . . 11
⊢ 𝑢 ∈ V |
| 23 | 22 | elpw 4570 |
. . . . . . . . . 10
⊢ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ↔ 𝑢 ⊆ (𝐴 × 𝐴)) |
| 24 | 21, 23 | sylibr 234 |
. . . . . . . . 9
⊢ (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → 𝑢 ∈ 𝒫 (𝐴 × 𝐴)) |
| 25 | 24 | rexlimivw 3131 |
. . . . . . . 8
⊢
(∃𝑣 ∈
(metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → 𝑢 ∈ 𝒫 (𝐴 × 𝐴)) |
| 26 | 25 | adantl 481 |
. . . . . . 7
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ ∃𝑣 ∈ (metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) → 𝑢 ∈ 𝒫 (𝐴 × 𝐴)) |
| 27 | | nfv 1914 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑎(((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) |
| 28 | | nfmpt1 5209 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑎(𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) |
| 29 | 28 | nfrn 5919 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑎ran
(𝑎 ∈
ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) |
| 30 | 29 | nfcri 2884 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑎 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) |
| 31 | 27, 30 | nfan 1899 |
. . . . . . . . . . 11
⊢
Ⅎ𝑎((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) |
| 32 | | nfv 1914 |
. . . . . . . . . . 11
⊢
Ⅎ𝑎 𝑤 ⊆ 𝑣 |
| 33 | 31, 32 | nfan 1899 |
. . . . . . . . . 10
⊢
Ⅎ𝑎(((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) |
| 34 | | nfmpt1 5209 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑎(𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) |
| 35 | 34 | nfrn 5919 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑎ran
(𝑎 ∈
ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) |
| 36 | | nfcv 2892 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑎𝒫 𝑢 |
| 37 | 35, 36 | nfin 4190 |
. . . . . . . . . . 11
⊢
Ⅎ𝑎(ran
(𝑎 ∈
ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) |
| 38 | | nfcv 2892 |
. . . . . . . . . . 11
⊢
Ⅎ𝑎∅ |
| 39 | 37, 38 | nfne 3027 |
. . . . . . . . . 10
⊢
Ⅎ𝑎(ran (𝑎 ∈ ℝ+
↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅ |
| 40 | | simplr 768 |
. . . . . . . . . . . . 13
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → 𝑎 ∈ ℝ+) |
| 41 | | ineq1 4179 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = (◡𝐷 “ (0[,)𝑎)) → (𝑤 ∩ (𝐴 × 𝐴)) = ((◡𝐷 “ (0[,)𝑎)) ∩ (𝐴 × 𝐴))) |
| 42 | 41 | adantl 481 |
. . . . . . . . . . . . . 14
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → (𝑤 ∩ (𝐴 × 𝐴)) = ((◡𝐷 “ (0[,)𝑎)) ∩ (𝐴 × 𝐴))) |
| 43 | | simp2 1137 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐷 ∈ (PsMet‘𝑋)) |
| 44 | | psmetf 24201 |
. . . . . . . . . . . . . . . 16
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
| 45 | | ffun 6694 |
. . . . . . . . . . . . . . . 16
⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → Fun
𝐷) |
| 46 | | respreima 7041 |
. . . . . . . . . . . . . . . 16
⊢ (Fun
𝐷 → (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)) = ((◡𝐷 “ (0[,)𝑎)) ∩ (𝐴 × 𝐴))) |
| 47 | 43, 44, 45, 46 | 4syl 19 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)) = ((◡𝐷 “ (0[,)𝑎)) ∩ (𝐴 × 𝐴))) |
| 48 | 47 | ad6antr 736 |
. . . . . . . . . . . . . 14
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)) = ((◡𝐷 “ (0[,)𝑎)) ∩ (𝐴 × 𝐴))) |
| 49 | 42, 48 | eqtr4d 2768 |
. . . . . . . . . . . . 13
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → (𝑤 ∩ (𝐴 × 𝐴)) = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) |
| 50 | | rspe 3228 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ ℝ+
∧ (𝑤 ∩ (𝐴 × 𝐴)) = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) → ∃𝑎 ∈ ℝ+ (𝑤 ∩ (𝐴 × 𝐴)) = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) |
| 51 | 40, 49, 50 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → ∃𝑎 ∈ ℝ+ (𝑤 ∩ (𝐴 × 𝐴)) = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) |
| 52 | | vex 3454 |
. . . . . . . . . . . . . 14
⊢ 𝑤 ∈ V |
| 53 | 52 | inex1 5275 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∩ (𝐴 × 𝐴)) ∈ V |
| 54 | | eqid 2730 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ ℝ+
↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) |
| 55 | 54 | elrnmpt 5925 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ∩ (𝐴 × 𝐴)) ∈ V → ((𝑤 ∩ (𝐴 × 𝐴)) ∈ ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ (𝑤 ∩ (𝐴 × 𝐴)) = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)))) |
| 56 | 53, 55 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∩ (𝐴 × 𝐴)) ∈ ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ (𝑤 ∩ (𝐴 × 𝐴)) = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) |
| 57 | 51, 56 | sylibr 234 |
. . . . . . . . . . 11
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → (𝑤 ∩ (𝐴 × 𝐴)) ∈ ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)))) |
| 58 | | simpllr 775 |
. . . . . . . . . . . . 13
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → 𝑤 ⊆ 𝑣) |
| 59 | | ssinss1 4212 |
. . . . . . . . . . . . 13
⊢ (𝑤 ⊆ 𝑣 → (𝑤 ∩ (𝐴 × 𝐴)) ⊆ 𝑣) |
| 60 | 58, 59 | syl 17 |
. . . . . . . . . . . 12
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → (𝑤 ∩ (𝐴 × 𝐴)) ⊆ 𝑣) |
| 61 | | inss2 4204 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) |
| 62 | 61 | a1i 11 |
. . . . . . . . . . . 12
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → (𝑤 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)) |
| 63 | | pweq 4580 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → 𝒫 𝑢 = 𝒫 (𝑣 ∩ (𝐴 × 𝐴))) |
| 64 | 63 | eleq2d 2815 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → ((𝑤 ∩ (𝐴 × 𝐴)) ∈ 𝒫 𝑢 ↔ (𝑤 ∩ (𝐴 × 𝐴)) ∈ 𝒫 (𝑣 ∩ (𝐴 × 𝐴)))) |
| 65 | 53 | elpw 4570 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 ∩ (𝐴 × 𝐴)) ∈ 𝒫 (𝑣 ∩ (𝐴 × 𝐴)) ↔ (𝑤 ∩ (𝐴 × 𝐴)) ⊆ (𝑣 ∩ (𝐴 × 𝐴))) |
| 66 | 64, 65 | bitrdi 287 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → ((𝑤 ∩ (𝐴 × 𝐴)) ∈ 𝒫 𝑢 ↔ (𝑤 ∩ (𝐴 × 𝐴)) ⊆ (𝑣 ∩ (𝐴 × 𝐴)))) |
| 67 | | ssin 4205 |
. . . . . . . . . . . . . 14
⊢ (((𝑤 ∩ (𝐴 × 𝐴)) ⊆ 𝑣 ∧ (𝑤 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)) ↔ (𝑤 ∩ (𝐴 × 𝐴)) ⊆ (𝑣 ∩ (𝐴 × 𝐴))) |
| 68 | 66, 67 | bitr4di 289 |
. . . . . . . . . . . . 13
⊢ (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → ((𝑤 ∩ (𝐴 × 𝐴)) ∈ 𝒫 𝑢 ↔ ((𝑤 ∩ (𝐴 × 𝐴)) ⊆ 𝑣 ∧ (𝑤 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)))) |
| 69 | 68 | ad5antlr 735 |
. . . . . . . . . . . 12
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → ((𝑤 ∩ (𝐴 × 𝐴)) ∈ 𝒫 𝑢 ↔ ((𝑤 ∩ (𝐴 × 𝐴)) ⊆ 𝑣 ∧ (𝑤 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)))) |
| 70 | 60, 62, 69 | mpbir2and 713 |
. . . . . . . . . . 11
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → (𝑤 ∩ (𝐴 × 𝐴)) ∈ 𝒫 𝑢) |
| 71 | | inelcm 4431 |
. . . . . . . . . . 11
⊢ (((𝑤 ∩ (𝐴 × 𝐴)) ∈ ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∧ (𝑤 ∩ (𝐴 × 𝐴)) ∈ 𝒫 𝑢) → (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅) |
| 72 | 57, 70, 71 | syl2anc 584 |
. . . . . . . . . 10
⊢
((((((((𝐴 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (◡𝐷 “ (0[,)𝑎))) → (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅) |
| 73 | | simplr 768 |
. . . . . . . . . . 11
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) → 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) |
| 74 | | eqid 2730 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ ℝ+
↦ (◡𝐷 “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) |
| 75 | 74 | elrnmpt 5925 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ V → (𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝑤 = (◡𝐷 “ (0[,)𝑎)))) |
| 76 | 75 | elv 3455 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝑤 = (◡𝐷 “ (0[,)𝑎))) |
| 77 | 73, 76 | sylib 218 |
. . . . . . . . . 10
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) → ∃𝑎 ∈ ℝ+ 𝑤 = (◡𝐷 “ (0[,)𝑎))) |
| 78 | 33, 39, 72, 77 | r19.29af2 3246 |
. . . . . . . . 9
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) ∧ 𝑤 ⊆ 𝑣) → (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅) |
| 79 | | ssn0 4370 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐴 ≠ ∅) → 𝑋 ≠ ∅) |
| 80 | 79 | ancoms 458 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ 𝑋) → 𝑋 ≠ ∅) |
| 81 | 80 | 3adant2 1131 |
. . . . . . . . . . . 12
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝑋 ≠ ∅) |
| 82 | | metuel 24459 |
. . . . . . . . . . . 12
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑣 ∈ (metUnif‘𝐷) ↔ (𝑣 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ 𝑣))) |
| 83 | 81, 43, 82 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑣 ∈ (metUnif‘𝐷) ↔ (𝑣 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ 𝑣))) |
| 84 | 83 | simplbda 499 |
. . . . . . . . . 10
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) → ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ 𝑣) |
| 85 | 84 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) → ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ 𝑣) |
| 86 | 78, 85 | r19.29a 3142 |
. . . . . . . 8
⊢ ((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) → (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅) |
| 87 | 86 | r19.29an 3138 |
. . . . . . 7
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ ∃𝑣 ∈ (metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) → (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅) |
| 88 | 26, 87 | jca 511 |
. . . . . 6
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ ∃𝑣 ∈ (metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) → (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) |
| 89 | | simprl 770 |
. . . . . . . . . . 11
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → 𝑢 ∈ 𝒫 (𝐴 × 𝐴)) |
| 90 | 89 | elpwid 4575 |
. . . . . . . . . 10
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → 𝑢 ⊆ (𝐴 × 𝐴)) |
| 91 | | simpl3 1194 |
. . . . . . . . . . 11
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → 𝐴 ⊆ 𝑋) |
| 92 | | xpss12 5656 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐴 ⊆ 𝑋) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋)) |
| 93 | 91, 91, 92 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋)) |
| 94 | 90, 93 | sstrd 3960 |
. . . . . . . . 9
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → 𝑢 ⊆ (𝑋 × 𝑋)) |
| 95 | | difssd 4103 |
. . . . . . . . 9
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)) ⊆ (𝑋 × 𝑋)) |
| 96 | 94, 95 | unssd 4158 |
. . . . . . . 8
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ⊆ (𝑋 × 𝑋)) |
| 97 | | simplr 768 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → 𝑏 ∈ ℝ+) |
| 98 | | eqidd 2731 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → (◡𝐷 “ (0[,)𝑏)) = (◡𝐷 “ (0[,)𝑏))) |
| 99 | 4 | imaeq2d 6034 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑏 → (◡𝐷 “ (0[,)𝑎)) = (◡𝐷 “ (0[,)𝑏))) |
| 100 | 99 | rspceeqv 3614 |
. . . . . . . . . . . 12
⊢ ((𝑏 ∈ ℝ+
∧ (◡𝐷 “ (0[,)𝑏)) = (◡𝐷 “ (0[,)𝑏))) → ∃𝑎 ∈ ℝ+ (◡𝐷 “ (0[,)𝑏)) = (◡𝐷 “ (0[,)𝑎))) |
| 101 | 97, 98, 100 | syl2anc 584 |
. . . . . . . . . . 11
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → ∃𝑎 ∈ ℝ+ (◡𝐷 “ (0[,)𝑏)) = (◡𝐷 “ (0[,)𝑎))) |
| 102 | 43 | ad4antr 732 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → 𝐷 ∈ (PsMet‘𝑋)) |
| 103 | | cnvexg 7903 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ (PsMet‘𝑋) → ◡𝐷 ∈ V) |
| 104 | | imaexg 7892 |
. . . . . . . . . . . 12
⊢ (◡𝐷 ∈ V → (◡𝐷 “ (0[,)𝑏)) ∈ V) |
| 105 | 74 | elrnmpt 5925 |
. . . . . . . . . . . 12
⊢ ((◡𝐷 “ (0[,)𝑏)) ∈ V → ((◡𝐷 “ (0[,)𝑏)) ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ (◡𝐷 “ (0[,)𝑏)) = (◡𝐷 “ (0[,)𝑎)))) |
| 106 | 102, 103,
104, 105 | 4syl 19 |
. . . . . . . . . . 11
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → ((◡𝐷 “ (0[,)𝑏)) ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ (◡𝐷 “ (0[,)𝑏)) = (◡𝐷 “ (0[,)𝑎)))) |
| 107 | 101, 106 | mpbird 257 |
. . . . . . . . . 10
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → (◡𝐷 “ (0[,)𝑏)) ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) |
| 108 | | cnvimass 6056 |
. . . . . . . . . . . . . . . 16
⊢ (◡𝐷 “ (0[,)𝑏)) ⊆ dom 𝐷 |
| 109 | 108, 44 | fssdm 6710 |
. . . . . . . . . . . . . . 15
⊢ (𝐷 ∈ (PsMet‘𝑋) → (◡𝐷 “ (0[,)𝑏)) ⊆ (𝑋 × 𝑋)) |
| 110 | 102, 109 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → (◡𝐷 “ (0[,)𝑏)) ⊆ (𝑋 × 𝑋)) |
| 111 | | ssdif0 4332 |
. . . . . . . . . . . . . 14
⊢ ((◡𝐷 “ (0[,)𝑏)) ⊆ (𝑋 × 𝑋) ↔ ((◡𝐷 “ (0[,)𝑏)) ∖ (𝑋 × 𝑋)) = ∅) |
| 112 | 110, 111 | sylib 218 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → ((◡𝐷 “ (0[,)𝑏)) ∖ (𝑋 × 𝑋)) = ∅) |
| 113 | | 0ss 4366 |
. . . . . . . . . . . . 13
⊢ ∅
⊆ 𝑢 |
| 114 | 112, 113 | eqsstrdi 3994 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → ((◡𝐷 “ (0[,)𝑏)) ∖ (𝑋 × 𝑋)) ⊆ 𝑢) |
| 115 | | respreima 7041 |
. . . . . . . . . . . . . 14
⊢ (Fun
𝐷 → (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)) = ((◡𝐷 “ (0[,)𝑏)) ∩ (𝐴 × 𝐴))) |
| 116 | 102, 44, 45, 115 | 4syl 19 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)) = ((◡𝐷 “ (0[,)𝑏)) ∩ (𝐴 × 𝐴))) |
| 117 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) |
| 118 | | simpllr 775 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → 𝑣 ∈ 𝒫 𝑢) |
| 119 | 118 | elpwid 4575 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → 𝑣 ⊆ 𝑢) |
| 120 | 117, 119 | eqsstrrd 3985 |
. . . . . . . . . . . . 13
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)) ⊆ 𝑢) |
| 121 | 116, 120 | eqsstrrd 3985 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → ((◡𝐷 “ (0[,)𝑏)) ∩ (𝐴 × 𝐴)) ⊆ 𝑢) |
| 122 | 114, 121 | unssd 4158 |
. . . . . . . . . . 11
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → (((◡𝐷 “ (0[,)𝑏)) ∖ (𝑋 × 𝑋)) ∪ ((◡𝐷 “ (0[,)𝑏)) ∩ (𝐴 × 𝐴))) ⊆ 𝑢) |
| 123 | | ssundif 4454 |
. . . . . . . . . . . 12
⊢ ((◡𝐷 “ (0[,)𝑏)) ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ↔ ((◡𝐷 “ (0[,)𝑏)) ∖ 𝑢) ⊆ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) |
| 124 | | difcom 4455 |
. . . . . . . . . . . 12
⊢ (((◡𝐷 “ (0[,)𝑏)) ∖ 𝑢) ⊆ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)) ↔ ((◡𝐷 “ (0[,)𝑏)) ∖ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ⊆ 𝑢) |
| 125 | | difdif2 4262 |
. . . . . . . . . . . . 13
⊢ ((◡𝐷 “ (0[,)𝑏)) ∖ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) = (((◡𝐷 “ (0[,)𝑏)) ∖ (𝑋 × 𝑋)) ∪ ((◡𝐷 “ (0[,)𝑏)) ∩ (𝐴 × 𝐴))) |
| 126 | 125 | sseq1i 3978 |
. . . . . . . . . . . 12
⊢ (((◡𝐷 “ (0[,)𝑏)) ∖ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ⊆ 𝑢 ↔ (((◡𝐷 “ (0[,)𝑏)) ∖ (𝑋 × 𝑋)) ∪ ((◡𝐷 “ (0[,)𝑏)) ∩ (𝐴 × 𝐴))) ⊆ 𝑢) |
| 127 | 123, 124,
126 | 3bitri 297 |
. . . . . . . . . . 11
⊢ ((◡𝐷 “ (0[,)𝑏)) ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ↔ (((◡𝐷 “ (0[,)𝑏)) ∖ (𝑋 × 𝑋)) ∪ ((◡𝐷 “ (0[,)𝑏)) ∩ (𝐴 × 𝐴))) ⊆ 𝑢) |
| 128 | 122, 127 | sylibr 234 |
. . . . . . . . . 10
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → (◡𝐷 “ (0[,)𝑏)) ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)))) |
| 129 | | sseq1 3975 |
. . . . . . . . . . 11
⊢ (𝑤 = (◡𝐷 “ (0[,)𝑏)) → (𝑤 ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ↔ (◡𝐷 “ (0[,)𝑏)) ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))))) |
| 130 | 129 | rspcev 3591 |
. . . . . . . . . 10
⊢ (((◡𝐷 “ (0[,)𝑏)) ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ∧ (◡𝐷 “ (0[,)𝑏)) ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)))) → ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)))) |
| 131 | 107, 128,
130 | syl2anc 584 |
. . . . . . . . 9
⊢
((((((𝐴 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)))) |
| 132 | | elin 3933 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∈ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ↔ (𝑣 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∧ 𝑣 ∈ 𝒫 𝑢)) |
| 133 | 6 | elrnmpt 5925 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 ∈ V → (𝑣 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ↔ ∃𝑏 ∈ ℝ+ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)))) |
| 134 | 133 | elv 3455 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ↔ ∃𝑏 ∈ ℝ+ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) |
| 135 | 134 | anbi1i 624 |
. . . . . . . . . . . . . 14
⊢ ((𝑣 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∧ 𝑣 ∈ 𝒫 𝑢) ↔ (∃𝑏 ∈ ℝ+ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)) ∧ 𝑣 ∈ 𝒫 𝑢)) |
| 136 | | ancom 460 |
. . . . . . . . . . . . . 14
⊢
((∃𝑏 ∈
ℝ+ 𝑣 =
(◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)) ∧ 𝑣 ∈ 𝒫 𝑢) ↔ (𝑣 ∈ 𝒫 𝑢 ∧ ∃𝑏 ∈ ℝ+ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)))) |
| 137 | 132, 135,
136 | 3bitri 297 |
. . . . . . . . . . . . 13
⊢ (𝑣 ∈ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ↔ (𝑣 ∈ 𝒫 𝑢 ∧ ∃𝑏 ∈ ℝ+ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)))) |
| 138 | 137 | exbii 1848 |
. . . . . . . . . . . 12
⊢
(∃𝑣 𝑣 ∈ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ↔ ∃𝑣(𝑣 ∈ 𝒫 𝑢 ∧ ∃𝑏 ∈ ℝ+ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)))) |
| 139 | | n0 4319 |
. . . . . . . . . . . 12
⊢ ((ran
(𝑎 ∈
ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅ ↔ ∃𝑣 𝑣 ∈ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢)) |
| 140 | | df-rex 3055 |
. . . . . . . . . . . 12
⊢
(∃𝑣 ∈
𝒫 𝑢∃𝑏 ∈ ℝ+
𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)) ↔ ∃𝑣(𝑣 ∈ 𝒫 𝑢 ∧ ∃𝑏 ∈ ℝ+ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)))) |
| 141 | 138, 139,
140 | 3bitr4i 303 |
. . . . . . . . . . 11
⊢ ((ran
(𝑎 ∈
ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅ ↔ ∃𝑣 ∈ 𝒫 𝑢∃𝑏 ∈ ℝ+ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) |
| 142 | 141 | biimpi 216 |
. . . . . . . . . 10
⊢ ((ran
(𝑎 ∈
ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅ → ∃𝑣 ∈ 𝒫 𝑢∃𝑏 ∈ ℝ+ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) |
| 143 | 142 | ad2antll 729 |
. . . . . . . . 9
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → ∃𝑣 ∈ 𝒫 𝑢∃𝑏 ∈ ℝ+ 𝑣 = (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) |
| 144 | 131, 143 | r19.29vva 3198 |
. . . . . . . 8
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)))) |
| 145 | 81 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → 𝑋 ≠ ∅) |
| 146 | 43 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → 𝐷 ∈ (PsMet‘𝑋)) |
| 147 | | metuel 24459 |
. . . . . . . . 9
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∈ (metUnif‘𝐷) ↔ ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)))))) |
| 148 | 145, 146,
147 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∈ (metUnif‘𝐷) ↔ ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))𝑤 ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)))))) |
| 149 | 96, 144, 148 | mpbir2and 713 |
. . . . . . 7
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∈ (metUnif‘𝐷)) |
| 150 | | indir 4252 |
. . . . . . . . 9
⊢ ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∩ (𝐴 × 𝐴)) = ((𝑢 ∩ (𝐴 × 𝐴)) ∪ (((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)) ∩ (𝐴 × 𝐴))) |
| 151 | | disjdifr 4439 |
. . . . . . . . . 10
⊢ (((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)) ∩ (𝐴 × 𝐴)) = ∅ |
| 152 | 151 | uneq2i 4131 |
. . . . . . . . 9
⊢ ((𝑢 ∩ (𝐴 × 𝐴)) ∪ (((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)) ∩ (𝐴 × 𝐴))) = ((𝑢 ∩ (𝐴 × 𝐴)) ∪ ∅) |
| 153 | | un0 4360 |
. . . . . . . . 9
⊢ ((𝑢 ∩ (𝐴 × 𝐴)) ∪ ∅) = (𝑢 ∩ (𝐴 × 𝐴)) |
| 154 | 150, 152,
153 | 3eqtri 2757 |
. . . . . . . 8
⊢ ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∩ (𝐴 × 𝐴)) = (𝑢 ∩ (𝐴 × 𝐴)) |
| 155 | | dfss2 3935 |
. . . . . . . . 9
⊢ (𝑢 ⊆ (𝐴 × 𝐴) ↔ (𝑢 ∩ (𝐴 × 𝐴)) = 𝑢) |
| 156 | 90, 155 | sylib 218 |
. . . . . . . 8
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → (𝑢 ∩ (𝐴 × 𝐴)) = 𝑢) |
| 157 | 154, 156 | eqtr2id 2778 |
. . . . . . 7
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → 𝑢 = ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∩ (𝐴 × 𝐴))) |
| 158 | | ineq1 4179 |
. . . . . . . 8
⊢ (𝑣 = (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) → (𝑣 ∩ (𝐴 × 𝐴)) = ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∩ (𝐴 × 𝐴))) |
| 159 | 158 | rspceeqv 3614 |
. . . . . . 7
⊢ (((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∈ (metUnif‘𝐷) ∧ 𝑢 = ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∩ (𝐴 × 𝐴))) → ∃𝑣 ∈ (metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) |
| 160 | 149, 157,
159 | syl2anc 584 |
. . . . . 6
⊢ (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → ∃𝑣 ∈ (metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) |
| 161 | 88, 160 | impbida 800 |
. . . . 5
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (∃𝑣 ∈ (metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) ↔ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅))) |
| 162 | | eqid 2730 |
. . . . . . 7
⊢ (𝑣 ∈ (metUnif‘𝐷) ↦ (𝑣 ∩ (𝐴 × 𝐴))) = (𝑣 ∈ (metUnif‘𝐷) ↦ (𝑣 ∩ (𝐴 × 𝐴))) |
| 163 | 162 | elrnmpt 5925 |
. . . . . 6
⊢ (𝑢 ∈ V → (𝑢 ∈ ran (𝑣 ∈ (metUnif‘𝐷) ↦ (𝑣 ∩ (𝐴 × 𝐴))) ↔ ∃𝑣 ∈ (metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴)))) |
| 164 | 163 | elv 3455 |
. . . . 5
⊢ (𝑢 ∈ ran (𝑣 ∈ (metUnif‘𝐷) ↦ (𝑣 ∩ (𝐴 × 𝐴))) ↔ ∃𝑣 ∈ (metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) |
| 165 | | pweq 4580 |
. . . . . . . 8
⊢ (𝑣 = 𝑢 → 𝒫 𝑣 = 𝒫 𝑢) |
| 166 | 165 | ineq2d 4186 |
. . . . . . 7
⊢ (𝑣 = 𝑢 → (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑣) = (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢)) |
| 167 | 166 | neeq1d 2985 |
. . . . . 6
⊢ (𝑣 = 𝑢 → ((ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑣) ≠ ∅ ↔ (ran (𝑎 ∈ ℝ+
↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) |
| 168 | 167 | elrab 3662 |
. . . . 5
⊢ (𝑢 ∈ {𝑣 ∈ 𝒫 (𝐴 × 𝐴) ∣ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑣) ≠ ∅} ↔ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) |
| 169 | 161, 164,
168 | 3bitr4g 314 |
. . . 4
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑢 ∈ ran (𝑣 ∈ (metUnif‘𝐷) ↦ (𝑣 ∩ (𝐴 × 𝐴))) ↔ 𝑢 ∈ {𝑣 ∈ 𝒫 (𝐴 × 𝐴) ∣ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑣) ≠ ∅})) |
| 170 | 169 | eqrdv 2728 |
. . 3
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ran (𝑣 ∈ (metUnif‘𝐷) ↦ (𝑣 ∩ (𝐴 × 𝐴))) = {𝑣 ∈ 𝒫 (𝐴 × 𝐴) ∣ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑣) ≠ ∅}) |
| 171 | 18, 170 | eqtrd 2765 |
. 2
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((metUnif‘𝐷) ↾t (𝐴 × 𝐴)) = {𝑣 ∈ 𝒫 (𝐴 × 𝐴) ∣ (ran (𝑎 ∈ ℝ+ ↦ (◡(𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑣) ≠ ∅}) |
| 172 | 11, 13, 171 | 3eqtr4rd 2776 |
1
⊢ ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((metUnif‘𝐷) ↾t (𝐴 × 𝐴)) = (metUnif‘(𝐷 ↾ (𝐴 × 𝐴)))) |