MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restmetu Structured version   Visualization version   GIF version

Theorem restmetu 23272
Description: The uniform structure generated by the restriction of a metric is its trace. (Contributed by Thierry Arnoux, 18-Dec-2017.)
Assertion
Ref Expression
restmetu ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) → ((metUnif‘𝐷) ↾t (𝐴 × 𝐴)) = (metUnif‘(𝐷 ↾ (𝐴 × 𝐴))))

Proof of Theorem restmetu
Dummy variables 𝑎 𝑏 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1133 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) → 𝐴 ≠ ∅)
2 psmetres2 23016 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) → (𝐷 ↾ (𝐴 × 𝐴)) ∈ (PsMet‘𝐴))
323adant1 1127 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) → (𝐷 ↾ (𝐴 × 𝐴)) ∈ (PsMet‘𝐴))
4 oveq2 7158 . . . . . . . 8 (𝑎 = 𝑏 → (0[,)𝑎) = (0[,)𝑏))
54imaeq2d 5901 . . . . . . 7 (𝑎 = 𝑏 → ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)) = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)))
65cbvmptv 5135 . . . . . 6 (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) = (𝑏 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)))
76rneqi 5778 . . . . 5 ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) = ran (𝑏 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)))
87metustfbas 23259 . . . 4 ((𝐴 ≠ ∅ ∧ (𝐷 ↾ (𝐴 × 𝐴)) ∈ (PsMet‘𝐴)) → ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∈ (fBas‘(𝐴 × 𝐴)))
91, 3, 8syl2anc 587 . . 3 ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) → ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∈ (fBas‘(𝐴 × 𝐴)))
10 fgval 22570 . . 3 (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∈ (fBas‘(𝐴 × 𝐴)) → ((𝐴 × 𝐴)filGenran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)))) = {𝑣 ∈ 𝒫 (𝐴 × 𝐴) ∣ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑣) ≠ ∅})
119, 10syl 17 . 2 ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) → ((𝐴 × 𝐴)filGenran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)))) = {𝑣 ∈ 𝒫 (𝐴 × 𝐴) ∣ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑣) ≠ ∅})
12 metuval 23251 . . 3 ((𝐷 ↾ (𝐴 × 𝐴)) ∈ (PsMet‘𝐴) → (metUnif‘(𝐷 ↾ (𝐴 × 𝐴))) = ((𝐴 × 𝐴)filGenran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)))))
133, 12syl 17 . 2 ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) → (metUnif‘(𝐷 ↾ (𝐴 × 𝐴))) = ((𝐴 × 𝐴)filGenran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)))))
14 fvex 6671 . . . 4 (metUnif‘𝐷) ∈ V
153elfvexd 6692 . . . . 5 ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ V)
1615, 15xpexd 7472 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) → (𝐴 × 𝐴) ∈ V)
17 restval 16758 . . . 4 (((metUnif‘𝐷) ∈ V ∧ (𝐴 × 𝐴) ∈ V) → ((metUnif‘𝐷) ↾t (𝐴 × 𝐴)) = ran (𝑣 ∈ (metUnif‘𝐷) ↦ (𝑣 ∩ (𝐴 × 𝐴))))
1814, 16, 17sylancr 590 . . 3 ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) → ((metUnif‘𝐷) ↾t (𝐴 × 𝐴)) = ran (𝑣 ∈ (metUnif‘𝐷) ↦ (𝑣 ∩ (𝐴 × 𝐴))))
19 inss2 4134 . . . . . . . . . . 11 (𝑣 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)
20 sseq1 3917 . . . . . . . . . . 11 (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → (𝑢 ⊆ (𝐴 × 𝐴) ↔ (𝑣 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)))
2119, 20mpbiri 261 . . . . . . . . . 10 (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → 𝑢 ⊆ (𝐴 × 𝐴))
22 vex 3413 . . . . . . . . . . 11 𝑢 ∈ V
2322elpw 4498 . . . . . . . . . 10 (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ↔ 𝑢 ⊆ (𝐴 × 𝐴))
2421, 23sylibr 237 . . . . . . . . 9 (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → 𝑢 ∈ 𝒫 (𝐴 × 𝐴))
2524rexlimivw 3206 . . . . . . . 8 (∃𝑣 ∈ (metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → 𝑢 ∈ 𝒫 (𝐴 × 𝐴))
2625adantl 485 . . . . . . 7 (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ ∃𝑣 ∈ (metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) → 𝑢 ∈ 𝒫 (𝐴 × 𝐴))
27 nfv 1915 . . . . . . . . . . . 12 𝑎(((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴)))
28 nfmpt1 5130 . . . . . . . . . . . . . 14 𝑎(𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
2928nfrn 5793 . . . . . . . . . . . . 13 𝑎ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
3029nfcri 2906 . . . . . . . . . . . 12 𝑎 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
3127, 30nfan 1900 . . . . . . . . . . 11 𝑎((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))))
32 nfv 1915 . . . . . . . . . . 11 𝑎 𝑤𝑣
3331, 32nfan 1900 . . . . . . . . . 10 𝑎(((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))) ∧ 𝑤𝑣)
34 nfmpt1 5130 . . . . . . . . . . . . 13 𝑎(𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)))
3534nfrn 5793 . . . . . . . . . . . 12 𝑎ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)))
36 nfcv 2919 . . . . . . . . . . . 12 𝑎𝒫 𝑢
3735, 36nfin 4121 . . . . . . . . . . 11 𝑎(ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢)
38 nfcv 2919 . . . . . . . . . . 11 𝑎
3937, 38nfne 3051 . . . . . . . . . 10 𝑎(ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅
40 simplr 768 . . . . . . . . . . . . 13 ((((((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))) ∧ 𝑤𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (𝐷 “ (0[,)𝑎))) → 𝑎 ∈ ℝ+)
41 ineq1 4109 . . . . . . . . . . . . . . 15 (𝑤 = (𝐷 “ (0[,)𝑎)) → (𝑤 ∩ (𝐴 × 𝐴)) = ((𝐷 “ (0[,)𝑎)) ∩ (𝐴 × 𝐴)))
4241adantl 485 . . . . . . . . . . . . . 14 ((((((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))) ∧ 𝑤𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (𝐷 “ (0[,)𝑎))) → (𝑤 ∩ (𝐴 × 𝐴)) = ((𝐷 “ (0[,)𝑎)) ∩ (𝐴 × 𝐴)))
43 simp2 1134 . . . . . . . . . . . . . . . 16 ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) → 𝐷 ∈ (PsMet‘𝑋))
44 psmetf 23008 . . . . . . . . . . . . . . . 16 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
45 ffun 6501 . . . . . . . . . . . . . . . 16 (𝐷:(𝑋 × 𝑋)⟶ℝ* → Fun 𝐷)
46 respreima 6827 . . . . . . . . . . . . . . . 16 (Fun 𝐷 → ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)) = ((𝐷 “ (0[,)𝑎)) ∩ (𝐴 × 𝐴)))
4743, 44, 45, 464syl 19 . . . . . . . . . . . . . . 15 ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) → ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)) = ((𝐷 “ (0[,)𝑎)) ∩ (𝐴 × 𝐴)))
4847ad6antr 735 . . . . . . . . . . . . . 14 ((((((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))) ∧ 𝑤𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (𝐷 “ (0[,)𝑎))) → ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)) = ((𝐷 “ (0[,)𝑎)) ∩ (𝐴 × 𝐴)))
4942, 48eqtr4d 2796 . . . . . . . . . . . . 13 ((((((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))) ∧ 𝑤𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (𝐷 “ (0[,)𝑎))) → (𝑤 ∩ (𝐴 × 𝐴)) = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)))
50 rspe 3228 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ+ ∧ (𝑤 ∩ (𝐴 × 𝐴)) = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) → ∃𝑎 ∈ ℝ+ (𝑤 ∩ (𝐴 × 𝐴)) = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)))
5140, 49, 50syl2anc 587 . . . . . . . . . . . 12 ((((((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))) ∧ 𝑤𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (𝐷 “ (0[,)𝑎))) → ∃𝑎 ∈ ℝ+ (𝑤 ∩ (𝐴 × 𝐴)) = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)))
52 vex 3413 . . . . . . . . . . . . . 14 𝑤 ∈ V
5352inex1 5187 . . . . . . . . . . . . 13 (𝑤 ∩ (𝐴 × 𝐴)) ∈ V
54 eqid 2758 . . . . . . . . . . . . . 14 (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)))
5554elrnmpt 5797 . . . . . . . . . . . . 13 ((𝑤 ∩ (𝐴 × 𝐴)) ∈ V → ((𝑤 ∩ (𝐴 × 𝐴)) ∈ ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ (𝑤 ∩ (𝐴 × 𝐴)) = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))))
5653, 55ax-mp 5 . . . . . . . . . . . 12 ((𝑤 ∩ (𝐴 × 𝐴)) ∈ ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ (𝑤 ∩ (𝐴 × 𝐴)) = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎)))
5751, 56sylibr 237 . . . . . . . . . . 11 ((((((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))) ∧ 𝑤𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (𝐷 “ (0[,)𝑎))) → (𝑤 ∩ (𝐴 × 𝐴)) ∈ ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))))
58 simpllr 775 . . . . . . . . . . . . 13 ((((((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))) ∧ 𝑤𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (𝐷 “ (0[,)𝑎))) → 𝑤𝑣)
59 ssinss1 4142 . . . . . . . . . . . . 13 (𝑤𝑣 → (𝑤 ∩ (𝐴 × 𝐴)) ⊆ 𝑣)
6058, 59syl 17 . . . . . . . . . . . 12 ((((((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))) ∧ 𝑤𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (𝐷 “ (0[,)𝑎))) → (𝑤 ∩ (𝐴 × 𝐴)) ⊆ 𝑣)
61 inss2 4134 . . . . . . . . . . . . 13 (𝑤 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)
6261a1i 11 . . . . . . . . . . . 12 ((((((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))) ∧ 𝑤𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (𝐷 “ (0[,)𝑎))) → (𝑤 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴))
63 pweq 4510 . . . . . . . . . . . . . . . 16 (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → 𝒫 𝑢 = 𝒫 (𝑣 ∩ (𝐴 × 𝐴)))
6463eleq2d 2837 . . . . . . . . . . . . . . 15 (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → ((𝑤 ∩ (𝐴 × 𝐴)) ∈ 𝒫 𝑢 ↔ (𝑤 ∩ (𝐴 × 𝐴)) ∈ 𝒫 (𝑣 ∩ (𝐴 × 𝐴))))
6553elpw 4498 . . . . . . . . . . . . . . 15 ((𝑤 ∩ (𝐴 × 𝐴)) ∈ 𝒫 (𝑣 ∩ (𝐴 × 𝐴)) ↔ (𝑤 ∩ (𝐴 × 𝐴)) ⊆ (𝑣 ∩ (𝐴 × 𝐴)))
6664, 65bitrdi 290 . . . . . . . . . . . . . 14 (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → ((𝑤 ∩ (𝐴 × 𝐴)) ∈ 𝒫 𝑢 ↔ (𝑤 ∩ (𝐴 × 𝐴)) ⊆ (𝑣 ∩ (𝐴 × 𝐴))))
67 ssin 4135 . . . . . . . . . . . . . 14 (((𝑤 ∩ (𝐴 × 𝐴)) ⊆ 𝑣 ∧ (𝑤 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)) ↔ (𝑤 ∩ (𝐴 × 𝐴)) ⊆ (𝑣 ∩ (𝐴 × 𝐴)))
6866, 67bitr4di 292 . . . . . . . . . . . . 13 (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → ((𝑤 ∩ (𝐴 × 𝐴)) ∈ 𝒫 𝑢 ↔ ((𝑤 ∩ (𝐴 × 𝐴)) ⊆ 𝑣 ∧ (𝑤 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴))))
6968ad5antlr 734 . . . . . . . . . . . 12 ((((((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))) ∧ 𝑤𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (𝐷 “ (0[,)𝑎))) → ((𝑤 ∩ (𝐴 × 𝐴)) ∈ 𝒫 𝑢 ↔ ((𝑤 ∩ (𝐴 × 𝐴)) ⊆ 𝑣 ∧ (𝑤 ∩ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴))))
7060, 62, 69mpbir2and 712 . . . . . . . . . . 11 ((((((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))) ∧ 𝑤𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (𝐷 “ (0[,)𝑎))) → (𝑤 ∩ (𝐴 × 𝐴)) ∈ 𝒫 𝑢)
71 inelcm 4361 . . . . . . . . . . 11 (((𝑤 ∩ (𝐴 × 𝐴)) ∈ ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∧ (𝑤 ∩ (𝐴 × 𝐴)) ∈ 𝒫 𝑢) → (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)
7257, 70, 71syl2anc 587 . . . . . . . . . 10 ((((((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))) ∧ 𝑤𝑣) ∧ 𝑎 ∈ ℝ+) ∧ 𝑤 = (𝐷 “ (0[,)𝑎))) → (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)
73 simplr 768 . . . . . . . . . . 11 ((((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))) ∧ 𝑤𝑣) → 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))))
74 eqid 2758 . . . . . . . . . . . . 13 (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
7574elrnmpt 5797 . . . . . . . . . . . 12 (𝑤 ∈ V → (𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑎))))
7675elv 3415 . . . . . . . . . . 11 (𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑎)))
7773, 76sylib 221 . . . . . . . . . 10 ((((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))) ∧ 𝑤𝑣) → ∃𝑎 ∈ ℝ+ 𝑤 = (𝐷 “ (0[,)𝑎)))
7833, 39, 72, 77r19.29af2 3253 . . . . . . . . 9 ((((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) ∧ 𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))) ∧ 𝑤𝑣) → (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)
79 ssn0 4296 . . . . . . . . . . . . . 14 ((𝐴𝑋𝐴 ≠ ∅) → 𝑋 ≠ ∅)
8079ancoms 462 . . . . . . . . . . . . 13 ((𝐴 ≠ ∅ ∧ 𝐴𝑋) → 𝑋 ≠ ∅)
81803adant2 1128 . . . . . . . . . . . 12 ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) → 𝑋 ≠ ∅)
82 metuel 23266 . . . . . . . . . . . 12 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑣 ∈ (metUnif‘𝐷) ↔ (𝑣 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑣)))
8381, 43, 82syl2anc 587 . . . . . . . . . . 11 ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) → (𝑣 ∈ (metUnif‘𝐷) ↔ (𝑣 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑣)))
8483simplbda 503 . . . . . . . . . 10 (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) → ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑣)
8584adantr 484 . . . . . . . . 9 ((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) → ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤𝑣)
8678, 85r19.29a 3213 . . . . . . . 8 ((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ 𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) → (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)
8786r19.29an 3212 . . . . . . 7 (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ ∃𝑣 ∈ (metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) → (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)
8826, 87jca 515 . . . . . 6 (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ ∃𝑣 ∈ (metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴))) → (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅))
89 simprl 770 . . . . . . . . . . 11 (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → 𝑢 ∈ 𝒫 (𝐴 × 𝐴))
9089elpwid 4505 . . . . . . . . . 10 (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → 𝑢 ⊆ (𝐴 × 𝐴))
91 simpl3 1190 . . . . . . . . . . 11 (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → 𝐴𝑋)
92 xpss12 5539 . . . . . . . . . . 11 ((𝐴𝑋𝐴𝑋) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋))
9391, 91, 92syl2anc 587 . . . . . . . . . 10 (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → (𝐴 × 𝐴) ⊆ (𝑋 × 𝑋))
9490, 93sstrd 3902 . . . . . . . . 9 (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → 𝑢 ⊆ (𝑋 × 𝑋))
95 difssd 4038 . . . . . . . . 9 (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)) ⊆ (𝑋 × 𝑋))
9694, 95unssd 4091 . . . . . . . 8 (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ⊆ (𝑋 × 𝑋))
97 simplr 768 . . . . . . . . . . . 12 ((((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → 𝑏 ∈ ℝ+)
98 eqidd 2759 . . . . . . . . . . . 12 ((((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → (𝐷 “ (0[,)𝑏)) = (𝐷 “ (0[,)𝑏)))
994imaeq2d 5901 . . . . . . . . . . . . 13 (𝑎 = 𝑏 → (𝐷 “ (0[,)𝑎)) = (𝐷 “ (0[,)𝑏)))
10099rspceeqv 3556 . . . . . . . . . . . 12 ((𝑏 ∈ ℝ+ ∧ (𝐷 “ (0[,)𝑏)) = (𝐷 “ (0[,)𝑏))) → ∃𝑎 ∈ ℝ+ (𝐷 “ (0[,)𝑏)) = (𝐷 “ (0[,)𝑎)))
10197, 98, 100syl2anc 587 . . . . . . . . . . 11 ((((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → ∃𝑎 ∈ ℝ+ (𝐷 “ (0[,)𝑏)) = (𝐷 “ (0[,)𝑎)))
10243ad4antr 731 . . . . . . . . . . . 12 ((((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → 𝐷 ∈ (PsMet‘𝑋))
103 cnvexg 7634 . . . . . . . . . . . 12 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ∈ V)
104 imaexg 7625 . . . . . . . . . . . 12 (𝐷 ∈ V → (𝐷 “ (0[,)𝑏)) ∈ V)
10574elrnmpt 5797 . . . . . . . . . . . 12 ((𝐷 “ (0[,)𝑏)) ∈ V → ((𝐷 “ (0[,)𝑏)) ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ (𝐷 “ (0[,)𝑏)) = (𝐷 “ (0[,)𝑎))))
106102, 103, 104, 1054syl 19 . . . . . . . . . . 11 ((((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → ((𝐷 “ (0[,)𝑏)) ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ (𝐷 “ (0[,)𝑏)) = (𝐷 “ (0[,)𝑎))))
107101, 106mpbird 260 . . . . . . . . . 10 ((((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → (𝐷 “ (0[,)𝑏)) ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))))
108 cnvimass 5921 . . . . . . . . . . . . . . . 16 (𝐷 “ (0[,)𝑏)) ⊆ dom 𝐷
109108, 44fssdm 6515 . . . . . . . . . . . . . . 15 (𝐷 ∈ (PsMet‘𝑋) → (𝐷 “ (0[,)𝑏)) ⊆ (𝑋 × 𝑋))
110102, 109syl 17 . . . . . . . . . . . . . 14 ((((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → (𝐷 “ (0[,)𝑏)) ⊆ (𝑋 × 𝑋))
111 ssdif0 4262 . . . . . . . . . . . . . 14 ((𝐷 “ (0[,)𝑏)) ⊆ (𝑋 × 𝑋) ↔ ((𝐷 “ (0[,)𝑏)) ∖ (𝑋 × 𝑋)) = ∅)
112110, 111sylib 221 . . . . . . . . . . . . 13 ((((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → ((𝐷 “ (0[,)𝑏)) ∖ (𝑋 × 𝑋)) = ∅)
113 0ss 4292 . . . . . . . . . . . . 13 ∅ ⊆ 𝑢
114112, 113eqsstrdi 3946 . . . . . . . . . . . 12 ((((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → ((𝐷 “ (0[,)𝑏)) ∖ (𝑋 × 𝑋)) ⊆ 𝑢)
115 respreima 6827 . . . . . . . . . . . . . 14 (Fun 𝐷 → ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)) = ((𝐷 “ (0[,)𝑏)) ∩ (𝐴 × 𝐴)))
116102, 44, 45, 1154syl 19 . . . . . . . . . . . . 13 ((((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)) = ((𝐷 “ (0[,)𝑏)) ∩ (𝐴 × 𝐴)))
117 simpr 488 . . . . . . . . . . . . . 14 ((((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → 𝑣 = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)))
118 simpllr 775 . . . . . . . . . . . . . . 15 ((((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → 𝑣 ∈ 𝒫 𝑢)
119118elpwid 4505 . . . . . . . . . . . . . 14 ((((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → 𝑣𝑢)
120117, 119eqsstrrd 3931 . . . . . . . . . . . . 13 ((((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)) ⊆ 𝑢)
121116, 120eqsstrrd 3931 . . . . . . . . . . . 12 ((((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → ((𝐷 “ (0[,)𝑏)) ∩ (𝐴 × 𝐴)) ⊆ 𝑢)
122114, 121unssd 4091 . . . . . . . . . . 11 ((((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → (((𝐷 “ (0[,)𝑏)) ∖ (𝑋 × 𝑋)) ∪ ((𝐷 “ (0[,)𝑏)) ∩ (𝐴 × 𝐴))) ⊆ 𝑢)
123 ssundif 4381 . . . . . . . . . . . 12 ((𝐷 “ (0[,)𝑏)) ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ↔ ((𝐷 “ (0[,)𝑏)) ∖ 𝑢) ⊆ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)))
124 difcom 4382 . . . . . . . . . . . 12 (((𝐷 “ (0[,)𝑏)) ∖ 𝑢) ⊆ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)) ↔ ((𝐷 “ (0[,)𝑏)) ∖ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ⊆ 𝑢)
125 difdif2 4191 . . . . . . . . . . . . 13 ((𝐷 “ (0[,)𝑏)) ∖ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) = (((𝐷 “ (0[,)𝑏)) ∖ (𝑋 × 𝑋)) ∪ ((𝐷 “ (0[,)𝑏)) ∩ (𝐴 × 𝐴)))
126125sseq1i 3920 . . . . . . . . . . . 12 (((𝐷 “ (0[,)𝑏)) ∖ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ⊆ 𝑢 ↔ (((𝐷 “ (0[,)𝑏)) ∖ (𝑋 × 𝑋)) ∪ ((𝐷 “ (0[,)𝑏)) ∩ (𝐴 × 𝐴))) ⊆ 𝑢)
127123, 124, 1263bitri 300 . . . . . . . . . . 11 ((𝐷 “ (0[,)𝑏)) ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ↔ (((𝐷 “ (0[,)𝑏)) ∖ (𝑋 × 𝑋)) ∪ ((𝐷 “ (0[,)𝑏)) ∩ (𝐴 × 𝐴))) ⊆ 𝑢)
128122, 127sylibr 237 . . . . . . . . . 10 ((((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → (𝐷 “ (0[,)𝑏)) ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))))
129 sseq1 3917 . . . . . . . . . . 11 (𝑤 = (𝐷 “ (0[,)𝑏)) → (𝑤 ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ↔ (𝐷 “ (0[,)𝑏)) ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)))))
130129rspcev 3541 . . . . . . . . . 10 (((𝐷 “ (0[,)𝑏)) ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ∧ (𝐷 “ (0[,)𝑏)) ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)))) → ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤 ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))))
131107, 128, 130syl2anc 587 . . . . . . . . 9 ((((((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) ∧ 𝑣 ∈ 𝒫 𝑢) ∧ 𝑏 ∈ ℝ+) ∧ 𝑣 = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))) → ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤 ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))))
132 elin 3874 . . . . . . . . . . . . . 14 (𝑣 ∈ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ↔ (𝑣 ∈ ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∧ 𝑣 ∈ 𝒫 𝑢))
1336elrnmpt 5797 . . . . . . . . . . . . . . . 16 (𝑣 ∈ V → (𝑣 ∈ ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ↔ ∃𝑏 ∈ ℝ+ 𝑣 = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))))
134133elv 3415 . . . . . . . . . . . . . . 15 (𝑣 ∈ ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ↔ ∃𝑏 ∈ ℝ+ 𝑣 = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)))
135134anbi1i 626 . . . . . . . . . . . . . 14 ((𝑣 ∈ ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∧ 𝑣 ∈ 𝒫 𝑢) ↔ (∃𝑏 ∈ ℝ+ 𝑣 = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)) ∧ 𝑣 ∈ 𝒫 𝑢))
136 ancom 464 . . . . . . . . . . . . . 14 ((∃𝑏 ∈ ℝ+ 𝑣 = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)) ∧ 𝑣 ∈ 𝒫 𝑢) ↔ (𝑣 ∈ 𝒫 𝑢 ∧ ∃𝑏 ∈ ℝ+ 𝑣 = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))))
137132, 135, 1363bitri 300 . . . . . . . . . . . . 13 (𝑣 ∈ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ↔ (𝑣 ∈ 𝒫 𝑢 ∧ ∃𝑏 ∈ ℝ+ 𝑣 = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))))
138137exbii 1849 . . . . . . . . . . . 12 (∃𝑣 𝑣 ∈ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ↔ ∃𝑣(𝑣 ∈ 𝒫 𝑢 ∧ ∃𝑏 ∈ ℝ+ 𝑣 = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))))
139 n0 4245 . . . . . . . . . . . 12 ((ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅ ↔ ∃𝑣 𝑣 ∈ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢))
140 df-rex 3076 . . . . . . . . . . . 12 (∃𝑣 ∈ 𝒫 𝑢𝑏 ∈ ℝ+ 𝑣 = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)) ↔ ∃𝑣(𝑣 ∈ 𝒫 𝑢 ∧ ∃𝑏 ∈ ℝ+ 𝑣 = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏))))
141138, 139, 1403bitr4i 306 . . . . . . . . . . 11 ((ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅ ↔ ∃𝑣 ∈ 𝒫 𝑢𝑏 ∈ ℝ+ 𝑣 = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)))
142141biimpi 219 . . . . . . . . . 10 ((ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅ → ∃𝑣 ∈ 𝒫 𝑢𝑏 ∈ ℝ+ 𝑣 = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)))
143142ad2antll 728 . . . . . . . . 9 (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → ∃𝑣 ∈ 𝒫 𝑢𝑏 ∈ ℝ+ 𝑣 = ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑏)))
144131, 143r19.29vva 3257 . . . . . . . 8 (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤 ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))))
14581adantr 484 . . . . . . . . 9 (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → 𝑋 ≠ ∅)
14643adantr 484 . . . . . . . . 9 (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → 𝐷 ∈ (PsMet‘𝑋))
147 metuel 23266 . . . . . . . . 9 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∈ (metUnif‘𝐷) ↔ ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤 ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))))))
148145, 146, 147syl2anc 587 . . . . . . . 8 (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∈ (metUnif‘𝐷) ↔ ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))𝑤 ⊆ (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))))))
14996, 144, 148mpbir2and 712 . . . . . . 7 (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∈ (metUnif‘𝐷))
150 indir 4180 . . . . . . . . 9 ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∩ (𝐴 × 𝐴)) = ((𝑢 ∩ (𝐴 × 𝐴)) ∪ (((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)) ∩ (𝐴 × 𝐴)))
151 incom 4106 . . . . . . . . . . 11 ((𝐴 × 𝐴) ∩ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) = (((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)) ∩ (𝐴 × 𝐴))
152 disjdif 4368 . . . . . . . . . . 11 ((𝐴 × 𝐴) ∩ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) = ∅
153151, 152eqtr3i 2783 . . . . . . . . . 10 (((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)) ∩ (𝐴 × 𝐴)) = ∅
154153uneq2i 4065 . . . . . . . . 9 ((𝑢 ∩ (𝐴 × 𝐴)) ∪ (((𝑋 × 𝑋) ∖ (𝐴 × 𝐴)) ∩ (𝐴 × 𝐴))) = ((𝑢 ∩ (𝐴 × 𝐴)) ∪ ∅)
155 un0 4286 . . . . . . . . 9 ((𝑢 ∩ (𝐴 × 𝐴)) ∪ ∅) = (𝑢 ∩ (𝐴 × 𝐴))
156150, 154, 1553eqtri 2785 . . . . . . . 8 ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∩ (𝐴 × 𝐴)) = (𝑢 ∩ (𝐴 × 𝐴))
157 df-ss 3875 . . . . . . . . 9 (𝑢 ⊆ (𝐴 × 𝐴) ↔ (𝑢 ∩ (𝐴 × 𝐴)) = 𝑢)
15890, 157sylib 221 . . . . . . . 8 (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → (𝑢 ∩ (𝐴 × 𝐴)) = 𝑢)
159156, 158syl5req 2806 . . . . . . 7 (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → 𝑢 = ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∩ (𝐴 × 𝐴)))
160 ineq1 4109 . . . . . . . 8 (𝑣 = (𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) → (𝑣 ∩ (𝐴 × 𝐴)) = ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∩ (𝐴 × 𝐴)))
161160rspceeqv 3556 . . . . . . 7 (((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∈ (metUnif‘𝐷) ∧ 𝑢 = ((𝑢 ∪ ((𝑋 × 𝑋) ∖ (𝐴 × 𝐴))) ∩ (𝐴 × 𝐴))) → ∃𝑣 ∈ (metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴)))
162149, 159, 161syl2anc 587 . . . . . 6 (((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) ∧ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)) → ∃𝑣 ∈ (metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴)))
16388, 162impbida 800 . . . . 5 ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) → (∃𝑣 ∈ (metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) ↔ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅)))
164 eqid 2758 . . . . . . 7 (𝑣 ∈ (metUnif‘𝐷) ↦ (𝑣 ∩ (𝐴 × 𝐴))) = (𝑣 ∈ (metUnif‘𝐷) ↦ (𝑣 ∩ (𝐴 × 𝐴)))
165164elrnmpt 5797 . . . . . 6 (𝑢 ∈ V → (𝑢 ∈ ran (𝑣 ∈ (metUnif‘𝐷) ↦ (𝑣 ∩ (𝐴 × 𝐴))) ↔ ∃𝑣 ∈ (metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴))))
166165elv 3415 . . . . 5 (𝑢 ∈ ran (𝑣 ∈ (metUnif‘𝐷) ↦ (𝑣 ∩ (𝐴 × 𝐴))) ↔ ∃𝑣 ∈ (metUnif‘𝐷)𝑢 = (𝑣 ∩ (𝐴 × 𝐴)))
167 pweq 4510 . . . . . . . 8 (𝑣 = 𝑢 → 𝒫 𝑣 = 𝒫 𝑢)
168167ineq2d 4117 . . . . . . 7 (𝑣 = 𝑢 → (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑣) = (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢))
169168neeq1d 3010 . . . . . 6 (𝑣 = 𝑢 → ((ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑣) ≠ ∅ ↔ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅))
170169elrab 3602 . . . . 5 (𝑢 ∈ {𝑣 ∈ 𝒫 (𝐴 × 𝐴) ∣ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑣) ≠ ∅} ↔ (𝑢 ∈ 𝒫 (𝐴 × 𝐴) ∧ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑢) ≠ ∅))
171163, 166, 1703bitr4g 317 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) → (𝑢 ∈ ran (𝑣 ∈ (metUnif‘𝐷) ↦ (𝑣 ∩ (𝐴 × 𝐴))) ↔ 𝑢 ∈ {𝑣 ∈ 𝒫 (𝐴 × 𝐴) ∣ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑣) ≠ ∅}))
172171eqrdv 2756 . . 3 ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) → ran (𝑣 ∈ (metUnif‘𝐷) ↦ (𝑣 ∩ (𝐴 × 𝐴))) = {𝑣 ∈ 𝒫 (𝐴 × 𝐴) ∣ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑣) ≠ ∅})
17318, 172eqtrd 2793 . 2 ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) → ((metUnif‘𝐷) ↾t (𝐴 × 𝐴)) = {𝑣 ∈ 𝒫 (𝐴 × 𝐴) ∣ (ran (𝑎 ∈ ℝ+ ↦ ((𝐷 ↾ (𝐴 × 𝐴)) “ (0[,)𝑎))) ∩ 𝒫 𝑣) ≠ ∅})
17411, 13, 1733eqtr4rd 2804 1 ((𝐴 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) → ((metUnif‘𝐷) ↾t (𝐴 × 𝐴)) = (metUnif‘(𝐷 ↾ (𝐴 × 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wne 2951  wrex 3071  {crab 3074  Vcvv 3409  cdif 3855  cun 3856  cin 3857  wss 3858  c0 4225  𝒫 cpw 4494  cmpt 5112   × cxp 5522  ccnv 5523  ran crn 5525  cres 5526  cima 5527  Fun wfun 6329  wf 6331  cfv 6335  (class class class)co 7150  0cc0 10575  *cxr 10712  +crp 12430  [,)cico 12781  t crest 16752  PsMetcpsmet 20150  fBascfbas 20154  filGencfg 20155  metUnifcmetu 20157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-po 5443  df-so 5444  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7693  df-2nd 7694  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-rp 12431  df-ico 12785  df-rest 16754  df-psmet 20158  df-fbas 20163  df-fg 20164  df-metu 20165
This theorem is referenced by:  reust  24081  qqhucn  31461
  Copyright terms: Public domain W3C validator