MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsnpss Structured version   Visualization version   GIF version

Theorem difsnpss 4768
Description: (𝐵 ∖ {𝐴}) is a proper subclass of 𝐵 if and only if 𝐴 is a member of 𝐵. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
difsnpss (𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) ⊊ 𝐵)

Proof of Theorem difsnpss
StepHypRef Expression
1 notnotb 315 . 2 (𝐴𝐵 ↔ ¬ ¬ 𝐴𝐵)
2 difss 4092 . . . 4 (𝐵 ∖ {𝐴}) ⊆ 𝐵
32biantrur 532 . . 3 ((𝐵 ∖ {𝐴}) ≠ 𝐵 ↔ ((𝐵 ∖ {𝐴}) ⊆ 𝐵 ∧ (𝐵 ∖ {𝐴}) ≠ 𝐵))
4 difsnb 4767 . . . 4 𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) = 𝐵)
54necon3bbii 2988 . . 3 (¬ ¬ 𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) ≠ 𝐵)
6 df-pss 3930 . . 3 ((𝐵 ∖ {𝐴}) ⊊ 𝐵 ↔ ((𝐵 ∖ {𝐴}) ⊆ 𝐵 ∧ (𝐵 ∖ {𝐴}) ≠ 𝐵))
73, 5, 63bitr4i 303 . 2 (¬ ¬ 𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) ⊊ 𝐵)
81, 7bitri 275 1 (𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) ⊊ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 397  wcel 2107  wne 2940  cdif 3908  wss 3911  wpss 3912  {csn 4587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2941  df-v 3446  df-dif 3914  df-in 3918  df-ss 3928  df-pss 3930  df-sn 4588
This theorem is referenced by:  marypha1lem  9374  infpss  10158  ominf4  10253  mrieqv2d  17524
  Copyright terms: Public domain W3C validator