![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difsnpss | Structured version Visualization version GIF version |
Description: (𝐵 ∖ {𝐴}) is a proper subclass of 𝐵 if and only if 𝐴 is a member of 𝐵. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
difsnpss | ⊢ (𝐴 ∈ 𝐵 ↔ (𝐵 ∖ {𝐴}) ⊊ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb 314 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ¬ ¬ 𝐴 ∈ 𝐵) | |
2 | difss 4132 | . . . 4 ⊢ (𝐵 ∖ {𝐴}) ⊆ 𝐵 | |
3 | 2 | biantrur 529 | . . 3 ⊢ ((𝐵 ∖ {𝐴}) ≠ 𝐵 ↔ ((𝐵 ∖ {𝐴}) ⊆ 𝐵 ∧ (𝐵 ∖ {𝐴}) ≠ 𝐵)) |
4 | difsnb 4814 | . . . 4 ⊢ (¬ 𝐴 ∈ 𝐵 ↔ (𝐵 ∖ {𝐴}) = 𝐵) | |
5 | 4 | necon3bbii 2985 | . . 3 ⊢ (¬ ¬ 𝐴 ∈ 𝐵 ↔ (𝐵 ∖ {𝐴}) ≠ 𝐵) |
6 | df-pss 3968 | . . 3 ⊢ ((𝐵 ∖ {𝐴}) ⊊ 𝐵 ↔ ((𝐵 ∖ {𝐴}) ⊆ 𝐵 ∧ (𝐵 ∖ {𝐴}) ≠ 𝐵)) | |
7 | 3, 5, 6 | 3bitr4i 302 | . 2 ⊢ (¬ ¬ 𝐴 ∈ 𝐵 ↔ (𝐵 ∖ {𝐴}) ⊊ 𝐵) |
8 | 1, 7 | bitri 274 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ (𝐵 ∖ {𝐴}) ⊊ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 ≠ wne 2937 ∖ cdif 3946 ⊆ wss 3949 ⊊ wpss 3950 {csn 4632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-v 3475 df-dif 3952 df-in 3956 df-ss 3966 df-pss 3968 df-sn 4633 |
This theorem is referenced by: marypha1lem 9466 infpss 10250 ominf4 10345 mrieqv2d 17628 |
Copyright terms: Public domain | W3C validator |