MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsnpss Structured version   Visualization version   GIF version

Theorem difsnpss 4700
Description: (𝐵 ∖ {𝐴}) is a proper subclass of 𝐵 if and only if 𝐴 is a member of 𝐵. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
difsnpss (𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) ⊊ 𝐵)

Proof of Theorem difsnpss
StepHypRef Expression
1 notnotb 318 . 2 (𝐴𝐵 ↔ ¬ ¬ 𝐴𝐵)
2 difss 4059 . . . 4 (𝐵 ∖ {𝐴}) ⊆ 𝐵
32biantrur 534 . . 3 ((𝐵 ∖ {𝐴}) ≠ 𝐵 ↔ ((𝐵 ∖ {𝐴}) ⊆ 𝐵 ∧ (𝐵 ∖ {𝐴}) ≠ 𝐵))
4 difsnb 4699 . . . 4 𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) = 𝐵)
54necon3bbii 3034 . . 3 (¬ ¬ 𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) ≠ 𝐵)
6 df-pss 3900 . . 3 ((𝐵 ∖ {𝐴}) ⊊ 𝐵 ↔ ((𝐵 ∖ {𝐴}) ⊆ 𝐵 ∧ (𝐵 ∖ {𝐴}) ≠ 𝐵))
73, 5, 63bitr4i 306 . 2 (¬ ¬ 𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) ⊊ 𝐵)
81, 7bitri 278 1 (𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) ⊊ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399  wcel 2111  wne 2987  cdif 3878  wss 3881  wpss 3882  {csn 4525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-ne 2988  df-v 3443  df-dif 3884  df-in 3888  df-ss 3898  df-pss 3900  df-sn 4526
This theorem is referenced by:  marypha1lem  8881  infpss  9628  ominf4  9723  mrieqv2d  16902
  Copyright terms: Public domain W3C validator