Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difsnpss | Structured version Visualization version GIF version |
Description: (𝐵 ∖ {𝐴}) is a proper subclass of 𝐵 if and only if 𝐴 is a member of 𝐵. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
difsnpss | ⊢ (𝐴 ∈ 𝐵 ↔ (𝐵 ∖ {𝐴}) ⊊ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb 315 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ¬ ¬ 𝐴 ∈ 𝐵) | |
2 | difss 4066 | . . . 4 ⊢ (𝐵 ∖ {𝐴}) ⊆ 𝐵 | |
3 | 2 | biantrur 531 | . . 3 ⊢ ((𝐵 ∖ {𝐴}) ≠ 𝐵 ↔ ((𝐵 ∖ {𝐴}) ⊆ 𝐵 ∧ (𝐵 ∖ {𝐴}) ≠ 𝐵)) |
4 | difsnb 4739 | . . . 4 ⊢ (¬ 𝐴 ∈ 𝐵 ↔ (𝐵 ∖ {𝐴}) = 𝐵) | |
5 | 4 | necon3bbii 2991 | . . 3 ⊢ (¬ ¬ 𝐴 ∈ 𝐵 ↔ (𝐵 ∖ {𝐴}) ≠ 𝐵) |
6 | df-pss 3906 | . . 3 ⊢ ((𝐵 ∖ {𝐴}) ⊊ 𝐵 ↔ ((𝐵 ∖ {𝐴}) ⊆ 𝐵 ∧ (𝐵 ∖ {𝐴}) ≠ 𝐵)) | |
7 | 3, 5, 6 | 3bitr4i 303 | . 2 ⊢ (¬ ¬ 𝐴 ∈ 𝐵 ↔ (𝐵 ∖ {𝐴}) ⊊ 𝐵) |
8 | 1, 7 | bitri 274 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ (𝐵 ∖ {𝐴}) ⊊ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ≠ wne 2943 ∖ cdif 3884 ⊆ wss 3887 ⊊ wpss 3888 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-pss 3906 df-sn 4562 |
This theorem is referenced by: marypha1lem 9192 infpss 9973 ominf4 10068 mrieqv2d 17348 |
Copyright terms: Public domain | W3C validator |