![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difsnb | Structured version Visualization version GIF version |
Description: (𝐵 ∖ {𝐴}) equals 𝐵 if and only if 𝐴 is not a member of 𝐵. Generalization of difsn 4517. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
difsnb | ⊢ (¬ 𝐴 ∈ 𝐵 ↔ (𝐵 ∖ {𝐴}) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difsn 4517 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐵 ∖ {𝐴}) = 𝐵) | |
2 | neldifsnd 4512 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) | |
3 | nelne1 3067 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) → 𝐵 ≠ (𝐵 ∖ {𝐴})) | |
4 | 2, 3 | mpdan 679 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → 𝐵 ≠ (𝐵 ∖ {𝐴})) |
5 | 4 | necomd 3026 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐵 ∖ {𝐴}) ≠ 𝐵) |
6 | 5 | necon2bi 3001 | . 2 ⊢ ((𝐵 ∖ {𝐴}) = 𝐵 → ¬ 𝐴 ∈ 𝐵) |
7 | 1, 6 | impbii 201 | 1 ⊢ (¬ 𝐴 ∈ 𝐵 ↔ (𝐵 ∖ {𝐴}) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 ∖ cdif 3766 {csn 4368 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-v 3387 df-dif 3772 df-sn 4369 |
This theorem is referenced by: difsnpss 4526 incexclem 14906 mrieqv2d 16614 mreexmrid 16618 mreexexlem2d 16620 mreexexlem4d 16622 acsfiindd 17492 |
Copyright terms: Public domain | W3C validator |