Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difsnb | Structured version Visualization version GIF version |
Description: (𝐵 ∖ {𝐴}) equals 𝐵 if and only if 𝐴 is not a member of 𝐵. Generalization of difsn 4731. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
difsnb | ⊢ (¬ 𝐴 ∈ 𝐵 ↔ (𝐵 ∖ {𝐴}) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difsn 4731 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐵 ∖ {𝐴}) = 𝐵) | |
2 | neldifsnd 4726 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) | |
3 | nelne1 3041 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) → 𝐵 ≠ (𝐵 ∖ {𝐴})) | |
4 | 2, 3 | mpdan 684 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → 𝐵 ≠ (𝐵 ∖ {𝐴})) |
5 | 4 | necomd 2999 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐵 ∖ {𝐴}) ≠ 𝐵) |
6 | 5 | necon2bi 2974 | . 2 ⊢ ((𝐵 ∖ {𝐴}) = 𝐵 → ¬ 𝐴 ∈ 𝐵) |
7 | 1, 6 | impbii 208 | 1 ⊢ (¬ 𝐴 ∈ 𝐵 ↔ (𝐵 ∖ {𝐴}) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∖ cdif 3884 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-v 3434 df-dif 3890 df-sn 4562 |
This theorem is referenced by: difsnpss 4740 incexclem 15548 mrieqv2d 17348 mreexmrid 17352 mreexexlem2d 17354 mreexexlem4d 17356 acsfiindd 18271 |
Copyright terms: Public domain | W3C validator |