MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsnb Structured version   Visualization version   GIF version

Theorem difsnb 4831
Description: (𝐵 ∖ {𝐴}) equals 𝐵 if and only if 𝐴 is not a member of 𝐵. Generalization of difsn 4823. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
difsnb 𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) = 𝐵)

Proof of Theorem difsnb
StepHypRef Expression
1 difsn 4823 . 2 𝐴𝐵 → (𝐵 ∖ {𝐴}) = 𝐵)
2 neldifsnd 4818 . . . . 5 (𝐴𝐵 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}))
3 nelne1 3045 . . . . 5 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) → 𝐵 ≠ (𝐵 ∖ {𝐴}))
42, 3mpdan 686 . . . 4 (𝐴𝐵𝐵 ≠ (𝐵 ∖ {𝐴}))
54necomd 3002 . . 3 (𝐴𝐵 → (𝐵 ∖ {𝐴}) ≠ 𝐵)
65necon2bi 2977 . 2 ((𝐵 ∖ {𝐴}) = 𝐵 → ¬ 𝐴𝐵)
71, 6impbii 209 1 𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1537  wcel 2108  wne 2946  cdif 3973  {csn 4648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-v 3490  df-dif 3979  df-sn 4649
This theorem is referenced by:  difsnpss  4832  incexclem  15884  mrieqv2d  17697  mreexmrid  17701  mreexexlem2d  17703  mreexexlem4d  17705  acsfiindd  18623
  Copyright terms: Public domain W3C validator