![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infpss | Structured version Visualization version GIF version |
Description: Every infinite set has an equinumerous proper subset, proved without AC or Infinity. Exercise 7 of [TakeutiZaring] p. 91. See also infpssALT 10344. (Contributed by NM, 23-Oct-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
infpss | ⊢ (ω ≼ 𝐴 → ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infn0 9338 | . . 3 ⊢ (ω ≼ 𝐴 → 𝐴 ≠ ∅) | |
2 | n0 4350 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝐴) | |
3 | 1, 2 | sylib 217 | . 2 ⊢ (ω ≼ 𝐴 → ∃𝑦 𝑦 ∈ 𝐴) |
4 | reldom 8976 | . . . . . 6 ⊢ Rel ≼ | |
5 | 4 | brrelex2i 5739 | . . . . 5 ⊢ (ω ≼ 𝐴 → 𝐴 ∈ V) |
6 | 5 | difexd 5335 | . . . 4 ⊢ (ω ≼ 𝐴 → (𝐴 ∖ {𝑦}) ∈ V) |
7 | 6 | adantr 479 | . . 3 ⊢ ((ω ≼ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐴 ∖ {𝑦}) ∈ V) |
8 | simpr 483 | . . . . 5 ⊢ ((ω ≼ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) | |
9 | difsnpss 4815 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 ↔ (𝐴 ∖ {𝑦}) ⊊ 𝐴) | |
10 | 8, 9 | sylib 217 | . . . 4 ⊢ ((ω ≼ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐴 ∖ {𝑦}) ⊊ 𝐴) |
11 | infdifsn 9688 | . . . . 5 ⊢ (ω ≼ 𝐴 → (𝐴 ∖ {𝑦}) ≈ 𝐴) | |
12 | 11 | adantr 479 | . . . 4 ⊢ ((ω ≼ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐴 ∖ {𝑦}) ≈ 𝐴) |
13 | 10, 12 | jca 510 | . . 3 ⊢ ((ω ≼ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝐴 ∖ {𝑦}) ⊊ 𝐴 ∧ (𝐴 ∖ {𝑦}) ≈ 𝐴)) |
14 | psseq1 4087 | . . . 4 ⊢ (𝑥 = (𝐴 ∖ {𝑦}) → (𝑥 ⊊ 𝐴 ↔ (𝐴 ∖ {𝑦}) ⊊ 𝐴)) | |
15 | breq1 5155 | . . . 4 ⊢ (𝑥 = (𝐴 ∖ {𝑦}) → (𝑥 ≈ 𝐴 ↔ (𝐴 ∖ {𝑦}) ≈ 𝐴)) | |
16 | 14, 15 | anbi12d 630 | . . 3 ⊢ (𝑥 = (𝐴 ∖ {𝑦}) → ((𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴) ↔ ((𝐴 ∖ {𝑦}) ⊊ 𝐴 ∧ (𝐴 ∖ {𝑦}) ≈ 𝐴))) |
17 | 7, 13, 16 | spcedv 3587 | . 2 ⊢ ((ω ≼ 𝐴 ∧ 𝑦 ∈ 𝐴) → ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴)) |
18 | 3, 17 | exlimddv 1930 | 1 ⊢ (ω ≼ 𝐴 → ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ≠ wne 2937 Vcvv 3473 ∖ cdif 3946 ⊊ wpss 3950 ∅c0 4326 {csn 4632 class class class wbr 5152 ωcom 7876 ≈ cen 8967 ≼ cdom 8968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-om 7877 df-er 8731 df-en 8971 df-dom 8972 |
This theorem is referenced by: isfin4-2 10345 |
Copyright terms: Public domain | W3C validator |