MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpss Structured version   Visualization version   GIF version

Theorem infpss 10285
Description: Every infinite set has an equinumerous proper subset, proved without AC or Infinity. Exercise 7 of [TakeutiZaring] p. 91. See also infpssALT 10382. (Contributed by NM, 23-Oct-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
infpss (ω ≼ 𝐴 → ∃𝑥(𝑥𝐴𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem infpss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 infn0 9368 . . 3 (ω ≼ 𝐴𝐴 ≠ ∅)
2 n0 4376 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦𝐴)
31, 2sylib 218 . 2 (ω ≼ 𝐴 → ∃𝑦 𝑦𝐴)
4 reldom 9009 . . . . . 6 Rel ≼
54brrelex2i 5757 . . . . 5 (ω ≼ 𝐴𝐴 ∈ V)
65difexd 5349 . . . 4 (ω ≼ 𝐴 → (𝐴 ∖ {𝑦}) ∈ V)
76adantr 480 . . 3 ((ω ≼ 𝐴𝑦𝐴) → (𝐴 ∖ {𝑦}) ∈ V)
8 simpr 484 . . . . 5 ((ω ≼ 𝐴𝑦𝐴) → 𝑦𝐴)
9 difsnpss 4832 . . . . 5 (𝑦𝐴 ↔ (𝐴 ∖ {𝑦}) ⊊ 𝐴)
108, 9sylib 218 . . . 4 ((ω ≼ 𝐴𝑦𝐴) → (𝐴 ∖ {𝑦}) ⊊ 𝐴)
11 infdifsn 9726 . . . . 5 (ω ≼ 𝐴 → (𝐴 ∖ {𝑦}) ≈ 𝐴)
1211adantr 480 . . . 4 ((ω ≼ 𝐴𝑦𝐴) → (𝐴 ∖ {𝑦}) ≈ 𝐴)
1310, 12jca 511 . . 3 ((ω ≼ 𝐴𝑦𝐴) → ((𝐴 ∖ {𝑦}) ⊊ 𝐴 ∧ (𝐴 ∖ {𝑦}) ≈ 𝐴))
14 psseq1 4113 . . . 4 (𝑥 = (𝐴 ∖ {𝑦}) → (𝑥𝐴 ↔ (𝐴 ∖ {𝑦}) ⊊ 𝐴))
15 breq1 5169 . . . 4 (𝑥 = (𝐴 ∖ {𝑦}) → (𝑥𝐴 ↔ (𝐴 ∖ {𝑦}) ≈ 𝐴))
1614, 15anbi12d 631 . . 3 (𝑥 = (𝐴 ∖ {𝑦}) → ((𝑥𝐴𝑥𝐴) ↔ ((𝐴 ∖ {𝑦}) ⊊ 𝐴 ∧ (𝐴 ∖ {𝑦}) ≈ 𝐴)))
177, 13, 16spcedv 3611 . 2 ((ω ≼ 𝐴𝑦𝐴) → ∃𝑥(𝑥𝐴𝑥𝐴))
183, 17exlimddv 1934 1 (ω ≼ 𝐴 → ∃𝑥(𝑥𝐴𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  Vcvv 3488  cdif 3973  wpss 3977  c0 4352  {csn 4648   class class class wbr 5166  ωcom 7903  cen 9000  cdom 9001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-er 8763  df-en 9004  df-dom 9005
This theorem is referenced by:  isfin4-2  10383
  Copyright terms: Public domain W3C validator