| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infpss | Structured version Visualization version GIF version | ||
| Description: Every infinite set has an equinumerous proper subset, proved without AC or Infinity. Exercise 7 of [TakeutiZaring] p. 91. See also infpssALT 10204. (Contributed by NM, 23-Oct-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| infpss | ⊢ (ω ≼ 𝐴 → ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infn0 9186 | . . 3 ⊢ (ω ≼ 𝐴 → 𝐴 ≠ ∅) | |
| 2 | n0 4300 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝐴) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (ω ≼ 𝐴 → ∃𝑦 𝑦 ∈ 𝐴) |
| 4 | reldom 8875 | . . . . . 6 ⊢ Rel ≼ | |
| 5 | 4 | brrelex2i 5671 | . . . . 5 ⊢ (ω ≼ 𝐴 → 𝐴 ∈ V) |
| 6 | 5 | difexd 5267 | . . . 4 ⊢ (ω ≼ 𝐴 → (𝐴 ∖ {𝑦}) ∈ V) |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((ω ≼ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐴 ∖ {𝑦}) ∈ V) |
| 8 | simpr 484 | . . . . 5 ⊢ ((ω ≼ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) | |
| 9 | difsnpss 4756 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 ↔ (𝐴 ∖ {𝑦}) ⊊ 𝐴) | |
| 10 | 8, 9 | sylib 218 | . . . 4 ⊢ ((ω ≼ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐴 ∖ {𝑦}) ⊊ 𝐴) |
| 11 | infdifsn 9547 | . . . . 5 ⊢ (ω ≼ 𝐴 → (𝐴 ∖ {𝑦}) ≈ 𝐴) | |
| 12 | 11 | adantr 480 | . . . 4 ⊢ ((ω ≼ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐴 ∖ {𝑦}) ≈ 𝐴) |
| 13 | 10, 12 | jca 511 | . . 3 ⊢ ((ω ≼ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝐴 ∖ {𝑦}) ⊊ 𝐴 ∧ (𝐴 ∖ {𝑦}) ≈ 𝐴)) |
| 14 | psseq1 4037 | . . . 4 ⊢ (𝑥 = (𝐴 ∖ {𝑦}) → (𝑥 ⊊ 𝐴 ↔ (𝐴 ∖ {𝑦}) ⊊ 𝐴)) | |
| 15 | breq1 5092 | . . . 4 ⊢ (𝑥 = (𝐴 ∖ {𝑦}) → (𝑥 ≈ 𝐴 ↔ (𝐴 ∖ {𝑦}) ≈ 𝐴)) | |
| 16 | 14, 15 | anbi12d 632 | . . 3 ⊢ (𝑥 = (𝐴 ∖ {𝑦}) → ((𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴) ↔ ((𝐴 ∖ {𝑦}) ⊊ 𝐴 ∧ (𝐴 ∖ {𝑦}) ≈ 𝐴))) |
| 17 | 7, 13, 16 | spcedv 3548 | . 2 ⊢ ((ω ≼ 𝐴 ∧ 𝑦 ∈ 𝐴) → ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴)) |
| 18 | 3, 17 | exlimddv 1936 | 1 ⊢ (ω ≼ 𝐴 → ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∖ cdif 3894 ⊊ wpss 3898 ∅c0 4280 {csn 4573 class class class wbr 5089 ωcom 7796 ≈ cen 8866 ≼ cdom 8867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-er 8622 df-en 8870 df-dom 8871 |
| This theorem is referenced by: isfin4-2 10205 |
| Copyright terms: Public domain | W3C validator |