![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infpss | Structured version Visualization version GIF version |
Description: Every infinite set has an equinumerous proper subset, proved without AC or Infinity. Exercise 7 of [TakeutiZaring] p. 91. See also infpssALT 10304. (Contributed by NM, 23-Oct-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
infpss | ⊢ (ω ≼ 𝐴 → ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infn0 9303 | . . 3 ⊢ (ω ≼ 𝐴 → 𝐴 ≠ ∅) | |
2 | n0 4345 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝐴) | |
3 | 1, 2 | sylib 217 | . 2 ⊢ (ω ≼ 𝐴 → ∃𝑦 𝑦 ∈ 𝐴) |
4 | reldom 8941 | . . . . . 6 ⊢ Rel ≼ | |
5 | 4 | brrelex2i 5731 | . . . . 5 ⊢ (ω ≼ 𝐴 → 𝐴 ∈ V) |
6 | 5 | difexd 5328 | . . . 4 ⊢ (ω ≼ 𝐴 → (𝐴 ∖ {𝑦}) ∈ V) |
7 | 6 | adantr 481 | . . 3 ⊢ ((ω ≼ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐴 ∖ {𝑦}) ∈ V) |
8 | simpr 485 | . . . . 5 ⊢ ((ω ≼ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) | |
9 | difsnpss 4809 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 ↔ (𝐴 ∖ {𝑦}) ⊊ 𝐴) | |
10 | 8, 9 | sylib 217 | . . . 4 ⊢ ((ω ≼ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐴 ∖ {𝑦}) ⊊ 𝐴) |
11 | infdifsn 9648 | . . . . 5 ⊢ (ω ≼ 𝐴 → (𝐴 ∖ {𝑦}) ≈ 𝐴) | |
12 | 11 | adantr 481 | . . . 4 ⊢ ((ω ≼ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐴 ∖ {𝑦}) ≈ 𝐴) |
13 | 10, 12 | jca 512 | . . 3 ⊢ ((ω ≼ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝐴 ∖ {𝑦}) ⊊ 𝐴 ∧ (𝐴 ∖ {𝑦}) ≈ 𝐴)) |
14 | psseq1 4086 | . . . 4 ⊢ (𝑥 = (𝐴 ∖ {𝑦}) → (𝑥 ⊊ 𝐴 ↔ (𝐴 ∖ {𝑦}) ⊊ 𝐴)) | |
15 | breq1 5150 | . . . 4 ⊢ (𝑥 = (𝐴 ∖ {𝑦}) → (𝑥 ≈ 𝐴 ↔ (𝐴 ∖ {𝑦}) ≈ 𝐴)) | |
16 | 14, 15 | anbi12d 631 | . . 3 ⊢ (𝑥 = (𝐴 ∖ {𝑦}) → ((𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴) ↔ ((𝐴 ∖ {𝑦}) ⊊ 𝐴 ∧ (𝐴 ∖ {𝑦}) ≈ 𝐴))) |
17 | 7, 13, 16 | spcedv 3588 | . 2 ⊢ ((ω ≼ 𝐴 ∧ 𝑦 ∈ 𝐴) → ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴)) |
18 | 3, 17 | exlimddv 1938 | 1 ⊢ (ω ≼ 𝐴 → ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ≠ wne 2940 Vcvv 3474 ∖ cdif 3944 ⊊ wpss 3948 ∅c0 4321 {csn 4627 class class class wbr 5147 ωcom 7851 ≈ cen 8932 ≼ cdom 8933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-om 7852 df-er 8699 df-en 8936 df-dom 8937 |
This theorem is referenced by: isfin4-2 10305 |
Copyright terms: Public domain | W3C validator |