MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpss Structured version   Visualization version   GIF version

Theorem infpss 10256
Description: Every infinite set has an equinumerous proper subset, proved without AC or Infinity. Exercise 7 of [TakeutiZaring] p. 91. See also infpssALT 10353. (Contributed by NM, 23-Oct-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
infpss (ω ≼ 𝐴 → ∃𝑥(𝑥𝐴𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem infpss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 infn0 9340 . . 3 (ω ≼ 𝐴𝐴 ≠ ∅)
2 n0 4353 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦𝐴)
31, 2sylib 218 . 2 (ω ≼ 𝐴 → ∃𝑦 𝑦𝐴)
4 reldom 8991 . . . . . 6 Rel ≼
54brrelex2i 5742 . . . . 5 (ω ≼ 𝐴𝐴 ∈ V)
65difexd 5331 . . . 4 (ω ≼ 𝐴 → (𝐴 ∖ {𝑦}) ∈ V)
76adantr 480 . . 3 ((ω ≼ 𝐴𝑦𝐴) → (𝐴 ∖ {𝑦}) ∈ V)
8 simpr 484 . . . . 5 ((ω ≼ 𝐴𝑦𝐴) → 𝑦𝐴)
9 difsnpss 4807 . . . . 5 (𝑦𝐴 ↔ (𝐴 ∖ {𝑦}) ⊊ 𝐴)
108, 9sylib 218 . . . 4 ((ω ≼ 𝐴𝑦𝐴) → (𝐴 ∖ {𝑦}) ⊊ 𝐴)
11 infdifsn 9697 . . . . 5 (ω ≼ 𝐴 → (𝐴 ∖ {𝑦}) ≈ 𝐴)
1211adantr 480 . . . 4 ((ω ≼ 𝐴𝑦𝐴) → (𝐴 ∖ {𝑦}) ≈ 𝐴)
1310, 12jca 511 . . 3 ((ω ≼ 𝐴𝑦𝐴) → ((𝐴 ∖ {𝑦}) ⊊ 𝐴 ∧ (𝐴 ∖ {𝑦}) ≈ 𝐴))
14 psseq1 4090 . . . 4 (𝑥 = (𝐴 ∖ {𝑦}) → (𝑥𝐴 ↔ (𝐴 ∖ {𝑦}) ⊊ 𝐴))
15 breq1 5146 . . . 4 (𝑥 = (𝐴 ∖ {𝑦}) → (𝑥𝐴 ↔ (𝐴 ∖ {𝑦}) ≈ 𝐴))
1614, 15anbi12d 632 . . 3 (𝑥 = (𝐴 ∖ {𝑦}) → ((𝑥𝐴𝑥𝐴) ↔ ((𝐴 ∖ {𝑦}) ⊊ 𝐴 ∧ (𝐴 ∖ {𝑦}) ≈ 𝐴)))
177, 13, 16spcedv 3598 . 2 ((ω ≼ 𝐴𝑦𝐴) → ∃𝑥(𝑥𝐴𝑥𝐴))
183, 17exlimddv 1935 1 (ω ≼ 𝐴 → ∃𝑥(𝑥𝐴𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2940  Vcvv 3480  cdif 3948  wpss 3952  c0 4333  {csn 4626   class class class wbr 5143  ωcom 7887  cen 8982  cdom 8983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-om 7888  df-er 8745  df-en 8986  df-dom 8987
This theorem is referenced by:  isfin4-2  10354
  Copyright terms: Public domain W3C validator