MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpss Structured version   Visualization version   GIF version

Theorem infpss 10211
Description: Every infinite set has an equinumerous proper subset, proved without AC or Infinity. Exercise 7 of [TakeutiZaring] p. 91. See also infpssALT 10307. (Contributed by NM, 23-Oct-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
infpss (ω ≼ 𝐴 → ∃𝑥(𝑥𝐴𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem infpss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 infn0 9306 . . 3 (ω ≼ 𝐴𝐴 ≠ ∅)
2 n0 4341 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦𝐴)
31, 2sylib 217 . 2 (ω ≼ 𝐴 → ∃𝑦 𝑦𝐴)
4 reldom 8944 . . . . . 6 Rel ≼
54brrelex2i 5726 . . . . 5 (ω ≼ 𝐴𝐴 ∈ V)
65difexd 5322 . . . 4 (ω ≼ 𝐴 → (𝐴 ∖ {𝑦}) ∈ V)
76adantr 480 . . 3 ((ω ≼ 𝐴𝑦𝐴) → (𝐴 ∖ {𝑦}) ∈ V)
8 simpr 484 . . . . 5 ((ω ≼ 𝐴𝑦𝐴) → 𝑦𝐴)
9 difsnpss 4805 . . . . 5 (𝑦𝐴 ↔ (𝐴 ∖ {𝑦}) ⊊ 𝐴)
108, 9sylib 217 . . . 4 ((ω ≼ 𝐴𝑦𝐴) → (𝐴 ∖ {𝑦}) ⊊ 𝐴)
11 infdifsn 9651 . . . . 5 (ω ≼ 𝐴 → (𝐴 ∖ {𝑦}) ≈ 𝐴)
1211adantr 480 . . . 4 ((ω ≼ 𝐴𝑦𝐴) → (𝐴 ∖ {𝑦}) ≈ 𝐴)
1310, 12jca 511 . . 3 ((ω ≼ 𝐴𝑦𝐴) → ((𝐴 ∖ {𝑦}) ⊊ 𝐴 ∧ (𝐴 ∖ {𝑦}) ≈ 𝐴))
14 psseq1 4082 . . . 4 (𝑥 = (𝐴 ∖ {𝑦}) → (𝑥𝐴 ↔ (𝐴 ∖ {𝑦}) ⊊ 𝐴))
15 breq1 5144 . . . 4 (𝑥 = (𝐴 ∖ {𝑦}) → (𝑥𝐴 ↔ (𝐴 ∖ {𝑦}) ≈ 𝐴))
1614, 15anbi12d 630 . . 3 (𝑥 = (𝐴 ∖ {𝑦}) → ((𝑥𝐴𝑥𝐴) ↔ ((𝐴 ∖ {𝑦}) ⊊ 𝐴 ∧ (𝐴 ∖ {𝑦}) ≈ 𝐴)))
177, 13, 16spcedv 3582 . 2 ((ω ≼ 𝐴𝑦𝐴) → ∃𝑥(𝑥𝐴𝑥𝐴))
183, 17exlimddv 1930 1 (ω ≼ 𝐴 → ∃𝑥(𝑥𝐴𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wex 1773  wcel 2098  wne 2934  Vcvv 3468  cdif 3940  wpss 3944  c0 4317  {csn 4623   class class class wbr 5141  ωcom 7851  cen 8935  cdom 8936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-om 7852  df-er 8702  df-en 8939  df-dom 8940
This theorem is referenced by:  isfin4-2  10308
  Copyright terms: Public domain W3C validator