| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ominf4 | Structured version Visualization version GIF version | ||
| Description: ω is Dedekind infinite. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Proof shortened by Mario Carneiro, 16-May-2015.) |
| Ref | Expression |
|---|---|
| ominf4 | ⊢ ¬ ω ∈ FinIV |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (ω ∈ FinIV → ω ∈ FinIV) | |
| 2 | peano1 7819 | . . . 4 ⊢ ∅ ∈ ω | |
| 3 | difsnpss 4756 | . . . 4 ⊢ (∅ ∈ ω ↔ (ω ∖ {∅}) ⊊ ω) | |
| 4 | 2, 3 | mpbi 230 | . . 3 ⊢ (ω ∖ {∅}) ⊊ ω |
| 5 | limom 7812 | . . . . 5 ⊢ Lim ω | |
| 6 | 5 | limenpsi 9065 | . . . 4 ⊢ (ω ∈ FinIV → ω ≈ (ω ∖ {∅})) |
| 7 | 6 | ensymd 8927 | . . 3 ⊢ (ω ∈ FinIV → (ω ∖ {∅}) ≈ ω) |
| 8 | fin4i 10189 | . . 3 ⊢ (((ω ∖ {∅}) ⊊ ω ∧ (ω ∖ {∅}) ≈ ω) → ¬ ω ∈ FinIV) | |
| 9 | 4, 7, 8 | sylancr 587 | . 2 ⊢ (ω ∈ FinIV → ¬ ω ∈ FinIV) |
| 10 | 1, 9 | pm2.65i 194 | 1 ⊢ ¬ ω ∈ FinIV |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2111 ∖ cdif 3894 ⊊ wpss 3898 ∅c0 4280 {csn 4573 class class class wbr 5089 ωcom 7796 ≈ cen 8866 FinIVcfin4 10171 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-er 8622 df-en 8870 df-dom 8871 df-fin4 10178 |
| This theorem is referenced by: infpssALT 10204 |
| Copyright terms: Public domain | W3C validator |