Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ominf4 | Structured version Visualization version GIF version |
Description: ω is Dedekind infinite. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Proof shortened by Mario Carneiro, 16-May-2015.) |
Ref | Expression |
---|---|
ominf4 | ⊢ ¬ ω ∈ FinIV |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (ω ∈ FinIV → ω ∈ FinIV) | |
2 | peano1 7735 | . . . 4 ⊢ ∅ ∈ ω | |
3 | difsnpss 4740 | . . . 4 ⊢ (∅ ∈ ω ↔ (ω ∖ {∅}) ⊊ ω) | |
4 | 2, 3 | mpbi 229 | . . 3 ⊢ (ω ∖ {∅}) ⊊ ω |
5 | limom 7728 | . . . . 5 ⊢ Lim ω | |
6 | 5 | limenpsi 8939 | . . . 4 ⊢ (ω ∈ FinIV → ω ≈ (ω ∖ {∅})) |
7 | 6 | ensymd 8791 | . . 3 ⊢ (ω ∈ FinIV → (ω ∖ {∅}) ≈ ω) |
8 | fin4i 10054 | . . 3 ⊢ (((ω ∖ {∅}) ⊊ ω ∧ (ω ∖ {∅}) ≈ ω) → ¬ ω ∈ FinIV) | |
9 | 4, 7, 8 | sylancr 587 | . 2 ⊢ (ω ∈ FinIV → ¬ ω ∈ FinIV) |
10 | 1, 9 | pm2.65i 193 | 1 ⊢ ¬ ω ∈ FinIV |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2106 ∖ cdif 3884 ⊊ wpss 3888 ∅c0 4256 {csn 4561 class class class wbr 5074 ωcom 7712 ≈ cen 8730 FinIVcfin4 10036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-er 8498 df-en 8734 df-dom 8735 df-fin4 10043 |
This theorem is referenced by: infpssALT 10069 |
Copyright terms: Public domain | W3C validator |