MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ominf4 Structured version   Visualization version   GIF version

Theorem ominf4 10241
Description: ω is Dedekind infinite. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Proof shortened by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
ominf4 ¬ ω ∈ FinIV

Proof of Theorem ominf4
StepHypRef Expression
1 id 22 . 2 (ω ∈ FinIV → ω ∈ FinIV)
2 peano1 7845 . . . 4 ∅ ∈ ω
3 difsnpss 4767 . . . 4 (∅ ∈ ω ↔ (ω ∖ {∅}) ⊊ ω)
42, 3mpbi 230 . . 3 (ω ∖ {∅}) ⊊ ω
5 limom 7838 . . . . 5 Lim ω
65limenpsi 9093 . . . 4 (ω ∈ FinIV → ω ≈ (ω ∖ {∅}))
76ensymd 8953 . . 3 (ω ∈ FinIV → (ω ∖ {∅}) ≈ ω)
8 fin4i 10227 . . 3 (((ω ∖ {∅}) ⊊ ω ∧ (ω ∖ {∅}) ≈ ω) → ¬ ω ∈ FinIV)
94, 7, 8sylancr 587 . 2 (ω ∈ FinIV → ¬ ω ∈ FinIV)
101, 9pm2.65i 194 1 ¬ ω ∈ FinIV
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2109  cdif 3908  wpss 3912  c0 4292  {csn 4585   class class class wbr 5102  ωcom 7822  cen 8892  FinIVcfin4 10209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-om 7823  df-er 8648  df-en 8896  df-dom 8897  df-fin4 10216
This theorem is referenced by:  infpssALT  10242
  Copyright terms: Public domain W3C validator