| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ominf4 | Structured version Visualization version GIF version | ||
| Description: ω is Dedekind infinite. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Proof shortened by Mario Carneiro, 16-May-2015.) |
| Ref | Expression |
|---|---|
| ominf4 | ⊢ ¬ ω ∈ FinIV |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (ω ∈ FinIV → ω ∈ FinIV) | |
| 2 | peano1 7865 | . . . 4 ⊢ ∅ ∈ ω | |
| 3 | difsnpss 4771 | . . . 4 ⊢ (∅ ∈ ω ↔ (ω ∖ {∅}) ⊊ ω) | |
| 4 | 2, 3 | mpbi 230 | . . 3 ⊢ (ω ∖ {∅}) ⊊ ω |
| 5 | limom 7858 | . . . . 5 ⊢ Lim ω | |
| 6 | 5 | limenpsi 9116 | . . . 4 ⊢ (ω ∈ FinIV → ω ≈ (ω ∖ {∅})) |
| 7 | 6 | ensymd 8976 | . . 3 ⊢ (ω ∈ FinIV → (ω ∖ {∅}) ≈ ω) |
| 8 | fin4i 10251 | . . 3 ⊢ (((ω ∖ {∅}) ⊊ ω ∧ (ω ∖ {∅}) ≈ ω) → ¬ ω ∈ FinIV) | |
| 9 | 4, 7, 8 | sylancr 587 | . 2 ⊢ (ω ∈ FinIV → ¬ ω ∈ FinIV) |
| 10 | 1, 9 | pm2.65i 194 | 1 ⊢ ¬ ω ∈ FinIV |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ∖ cdif 3911 ⊊ wpss 3915 ∅c0 4296 {csn 4589 class class class wbr 5107 ωcom 7842 ≈ cen 8915 FinIVcfin4 10233 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-om 7843 df-er 8671 df-en 8919 df-dom 8920 df-fin4 10240 |
| This theorem is referenced by: infpssALT 10266 |
| Copyright terms: Public domain | W3C validator |