![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ominf4 | Structured version Visualization version GIF version |
Description: ω is Dedekind infinite. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Proof shortened by Mario Carneiro, 16-May-2015.) |
Ref | Expression |
---|---|
ominf4 | ⊢ ¬ ω ∈ FinIV |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (ω ∈ FinIV → ω ∈ FinIV) | |
2 | peano1 7319 | . . . 4 ⊢ ∅ ∈ ω | |
3 | difsnpss 4526 | . . . 4 ⊢ (∅ ∈ ω ↔ (ω ∖ {∅}) ⊊ ω) | |
4 | 2, 3 | mpbi 222 | . . 3 ⊢ (ω ∖ {∅}) ⊊ ω |
5 | limom 7314 | . . . . 5 ⊢ Lim ω | |
6 | 5 | limenpsi 8377 | . . . 4 ⊢ (ω ∈ FinIV → ω ≈ (ω ∖ {∅})) |
7 | 6 | ensymd 8246 | . . 3 ⊢ (ω ∈ FinIV → (ω ∖ {∅}) ≈ ω) |
8 | fin4i 9408 | . . 3 ⊢ (((ω ∖ {∅}) ⊊ ω ∧ (ω ∖ {∅}) ≈ ω) → ¬ ω ∈ FinIV) | |
9 | 4, 7, 8 | sylancr 582 | . 2 ⊢ (ω ∈ FinIV → ¬ ω ∈ FinIV) |
10 | 1, 9 | pm2.65i 186 | 1 ⊢ ¬ ω ∈ FinIV |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2157 ∖ cdif 3766 ⊊ wpss 3770 ∅c0 4115 {csn 4368 class class class wbr 4843 ωcom 7299 ≈ cen 8192 FinIVcfin4 9390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-om 7300 df-er 7982 df-en 8196 df-dom 8197 df-fin4 9397 |
This theorem is referenced by: infpssALT 9423 |
Copyright terms: Public domain | W3C validator |