| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ominf4 | Structured version Visualization version GIF version | ||
| Description: ω is Dedekind infinite. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Proof shortened by Mario Carneiro, 16-May-2015.) |
| Ref | Expression |
|---|---|
| ominf4 | ⊢ ¬ ω ∈ FinIV |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (ω ∈ FinIV → ω ∈ FinIV) | |
| 2 | peano1 7884 | . . . 4 ⊢ ∅ ∈ ω | |
| 3 | difsnpss 4783 | . . . 4 ⊢ (∅ ∈ ω ↔ (ω ∖ {∅}) ⊊ ω) | |
| 4 | 2, 3 | mpbi 230 | . . 3 ⊢ (ω ∖ {∅}) ⊊ ω |
| 5 | limom 7877 | . . . . 5 ⊢ Lim ω | |
| 6 | 5 | limenpsi 9166 | . . . 4 ⊢ (ω ∈ FinIV → ω ≈ (ω ∖ {∅})) |
| 7 | 6 | ensymd 9019 | . . 3 ⊢ (ω ∈ FinIV → (ω ∖ {∅}) ≈ ω) |
| 8 | fin4i 10312 | . . 3 ⊢ (((ω ∖ {∅}) ⊊ ω ∧ (ω ∖ {∅}) ≈ ω) → ¬ ω ∈ FinIV) | |
| 9 | 4, 7, 8 | sylancr 587 | . 2 ⊢ (ω ∈ FinIV → ¬ ω ∈ FinIV) |
| 10 | 1, 9 | pm2.65i 194 | 1 ⊢ ¬ ω ∈ FinIV |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2108 ∖ cdif 3923 ⊊ wpss 3927 ∅c0 4308 {csn 4601 class class class wbr 5119 ωcom 7861 ≈ cen 8956 FinIVcfin4 10294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-om 7862 df-er 8719 df-en 8960 df-dom 8961 df-fin4 10301 |
| This theorem is referenced by: infpssALT 10327 |
| Copyright terms: Public domain | W3C validator |