MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ominf4 Structured version   Visualization version   GIF version

Theorem ominf4 9772
Description: ω is Dedekind infinite. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Proof shortened by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
ominf4 ¬ ω ∈ FinIV

Proof of Theorem ominf4
StepHypRef Expression
1 id 22 . 2 (ω ∈ FinIV → ω ∈ FinIV)
2 peano1 7600 . . . 4 ∅ ∈ ω
3 difsnpss 4697 . . . 4 (∅ ∈ ω ↔ (ω ∖ {∅}) ⊊ ω)
42, 3mpbi 233 . . 3 (ω ∖ {∅}) ⊊ ω
5 limom 7594 . . . . 5 Lim ω
65limenpsi 8714 . . . 4 (ω ∈ FinIV → ω ≈ (ω ∖ {∅}))
76ensymd 8578 . . 3 (ω ∈ FinIV → (ω ∖ {∅}) ≈ ω)
8 fin4i 9758 . . 3 (((ω ∖ {∅}) ⊊ ω ∧ (ω ∖ {∅}) ≈ ω) → ¬ ω ∈ FinIV)
94, 7, 8sylancr 590 . 2 (ω ∈ FinIV → ¬ ω ∈ FinIV)
101, 9pm2.65i 197 1 ¬ ω ∈ FinIV
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2111  cdif 3855  wpss 3859  c0 4225  {csn 4522   class class class wbr 5032  ωcom 7579  cen 8524  FinIVcfin4 9740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-om 7580  df-er 8299  df-en 8528  df-dom 8529  df-fin4 9747
This theorem is referenced by:  infpssALT  9773
  Copyright terms: Public domain W3C validator