MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disj4 Structured version   Visualization version   GIF version

Theorem disj4 4465
Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 21-Mar-2004.)
Assertion
Ref Expression
disj4 ((𝐴𝐵) = ∅ ↔ ¬ (𝐴𝐵) ⊊ 𝐴)

Proof of Theorem disj4
StepHypRef Expression
1 disj3 4460 . 2 ((𝐴𝐵) = ∅ ↔ 𝐴 = (𝐴𝐵))
2 eqcom 2742 . 2 (𝐴 = (𝐴𝐵) ↔ (𝐴𝐵) = 𝐴)
3 difss 4146 . . . 4 (𝐴𝐵) ⊆ 𝐴
4 dfpss2 4098 . . . 4 ((𝐴𝐵) ⊊ 𝐴 ↔ ((𝐴𝐵) ⊆ 𝐴 ∧ ¬ (𝐴𝐵) = 𝐴))
53, 4mpbiran 709 . . 3 ((𝐴𝐵) ⊊ 𝐴 ↔ ¬ (𝐴𝐵) = 𝐴)
65con2bii 357 . 2 ((𝐴𝐵) = 𝐴 ↔ ¬ (𝐴𝐵) ⊊ 𝐴)
71, 2, 63bitri 297 1 ((𝐴𝐵) = ∅ ↔ ¬ (𝐴𝐵) ⊊ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1537  cdif 3960  cin 3962  wss 3963  wpss 3964  c0 4339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-v 3480  df-dif 3966  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340
This theorem is referenced by:  marypha1lem  9471  infeq5i  9674  wilthlem2  27127  topdifinffinlem  37330
  Copyright terms: Public domain W3C validator