MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disj4 Structured version   Visualization version   GIF version

Theorem disj4 4373
Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 21-Mar-2004.)
Assertion
Ref Expression
disj4 ((𝐴𝐵) = ∅ ↔ ¬ (𝐴𝐵) ⊊ 𝐴)

Proof of Theorem disj4
StepHypRef Expression
1 disj3 4368 . 2 ((𝐴𝐵) = ∅ ↔ 𝐴 = (𝐴𝐵))
2 eqcom 2744 . 2 (𝐴 = (𝐴𝐵) ↔ (𝐴𝐵) = 𝐴)
3 difss 4046 . . . 4 (𝐴𝐵) ⊆ 𝐴
4 dfpss2 4000 . . . 4 ((𝐴𝐵) ⊊ 𝐴 ↔ ((𝐴𝐵) ⊆ 𝐴 ∧ ¬ (𝐴𝐵) = 𝐴))
53, 4mpbiran 709 . . 3 ((𝐴𝐵) ⊊ 𝐴 ↔ ¬ (𝐴𝐵) = 𝐴)
65con2bii 361 . 2 ((𝐴𝐵) = 𝐴 ↔ ¬ (𝐴𝐵) ⊊ 𝐴)
71, 2, 63bitri 300 1 ((𝐴𝐵) = ∅ ↔ ¬ (𝐴𝐵) ⊊ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209   = wceq 1543  cdif 3863  cin 3865  wss 3866  wpss 3867  c0 4237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3066  df-v 3410  df-dif 3869  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238
This theorem is referenced by:  marypha1lem  9049  infeq5i  9251  wilthlem2  25951  topdifinffinlem  35255
  Copyright terms: Public domain W3C validator