![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disj4 | Structured version Visualization version GIF version |
Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 21-Mar-2004.) |
Ref | Expression |
---|---|
disj4 | ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ¬ (𝐴 ∖ 𝐵) ⊊ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj3 4281 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 = (𝐴 ∖ 𝐵)) | |
2 | eqcom 2780 | . 2 ⊢ (𝐴 = (𝐴 ∖ 𝐵) ↔ (𝐴 ∖ 𝐵) = 𝐴) | |
3 | difss 3993 | . . . 4 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
4 | dfpss2 3947 | . . . 4 ⊢ ((𝐴 ∖ 𝐵) ⊊ 𝐴 ↔ ((𝐴 ∖ 𝐵) ⊆ 𝐴 ∧ ¬ (𝐴 ∖ 𝐵) = 𝐴)) | |
5 | 3, 4 | mpbiran 697 | . . 3 ⊢ ((𝐴 ∖ 𝐵) ⊊ 𝐴 ↔ ¬ (𝐴 ∖ 𝐵) = 𝐴) |
6 | 5 | con2bii 350 | . 2 ⊢ ((𝐴 ∖ 𝐵) = 𝐴 ↔ ¬ (𝐴 ∖ 𝐵) ⊊ 𝐴) |
7 | 1, 2, 6 | 3bitri 289 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ¬ (𝐴 ∖ 𝐵) ⊊ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 = wceq 1508 ∖ cdif 3821 ∩ cin 3823 ⊆ wss 3824 ⊊ wpss 3825 ∅c0 4173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2745 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-ral 3088 df-v 3412 df-dif 3827 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 |
This theorem is referenced by: marypha1lem 8691 infeq5i 8892 wilthlem2 25364 topdifinffinlem 34103 |
Copyright terms: Public domain | W3C validator |