![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disj4 | Structured version Visualization version GIF version |
Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 21-Mar-2004.) |
Ref | Expression |
---|---|
disj4 | ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ¬ (𝐴 ∖ 𝐵) ⊊ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj3 4460 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 = (𝐴 ∖ 𝐵)) | |
2 | eqcom 2742 | . 2 ⊢ (𝐴 = (𝐴 ∖ 𝐵) ↔ (𝐴 ∖ 𝐵) = 𝐴) | |
3 | difss 4146 | . . . 4 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
4 | dfpss2 4098 | . . . 4 ⊢ ((𝐴 ∖ 𝐵) ⊊ 𝐴 ↔ ((𝐴 ∖ 𝐵) ⊆ 𝐴 ∧ ¬ (𝐴 ∖ 𝐵) = 𝐴)) | |
5 | 3, 4 | mpbiran 709 | . . 3 ⊢ ((𝐴 ∖ 𝐵) ⊊ 𝐴 ↔ ¬ (𝐴 ∖ 𝐵) = 𝐴) |
6 | 5 | con2bii 357 | . 2 ⊢ ((𝐴 ∖ 𝐵) = 𝐴 ↔ ¬ (𝐴 ∖ 𝐵) ⊊ 𝐴) |
7 | 1, 2, 6 | 3bitri 297 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ¬ (𝐴 ∖ 𝐵) ⊊ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1537 ∖ cdif 3960 ∩ cin 3962 ⊆ wss 3963 ⊊ wpss 3964 ∅c0 4339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-v 3480 df-dif 3966 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 |
This theorem is referenced by: marypha1lem 9471 infeq5i 9674 wilthlem2 27127 topdifinffinlem 37330 |
Copyright terms: Public domain | W3C validator |