MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disj4 Structured version   Visualization version   GIF version

Theorem disj4 4422
Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 21-Mar-2004.)
Assertion
Ref Expression
disj4 ((𝐴𝐵) = ∅ ↔ ¬ (𝐴𝐵) ⊊ 𝐴)

Proof of Theorem disj4
StepHypRef Expression
1 disj3 4417 . 2 ((𝐴𝐵) = ∅ ↔ 𝐴 = (𝐴𝐵))
2 eqcom 2736 . 2 (𝐴 = (𝐴𝐵) ↔ (𝐴𝐵) = 𝐴)
3 difss 4099 . . . 4 (𝐴𝐵) ⊆ 𝐴
4 dfpss2 4051 . . . 4 ((𝐴𝐵) ⊊ 𝐴 ↔ ((𝐴𝐵) ⊆ 𝐴 ∧ ¬ (𝐴𝐵) = 𝐴))
53, 4mpbiran 709 . . 3 ((𝐴𝐵) ⊊ 𝐴 ↔ ¬ (𝐴𝐵) = 𝐴)
65con2bii 357 . 2 ((𝐴𝐵) = 𝐴 ↔ ¬ (𝐴𝐵) ⊊ 𝐴)
71, 2, 63bitri 297 1 ((𝐴𝐵) = ∅ ↔ ¬ (𝐴𝐵) ⊊ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  cdif 3911  cin 3913  wss 3914  wpss 3915  c0 4296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-v 3449  df-dif 3917  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297
This theorem is referenced by:  marypha1lem  9384  infeq5i  9589  wilthlem2  26979  topdifinffinlem  37335
  Copyright terms: Public domain W3C validator