Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > disj4 | Structured version Visualization version GIF version |
Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 21-Mar-2004.) |
Ref | Expression |
---|---|
disj4 | ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ¬ (𝐴 ∖ 𝐵) ⊊ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj3 4384 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 = (𝐴 ∖ 𝐵)) | |
2 | eqcom 2745 | . 2 ⊢ (𝐴 = (𝐴 ∖ 𝐵) ↔ (𝐴 ∖ 𝐵) = 𝐴) | |
3 | difss 4062 | . . . 4 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
4 | dfpss2 4016 | . . . 4 ⊢ ((𝐴 ∖ 𝐵) ⊊ 𝐴 ↔ ((𝐴 ∖ 𝐵) ⊆ 𝐴 ∧ ¬ (𝐴 ∖ 𝐵) = 𝐴)) | |
5 | 3, 4 | mpbiran 705 | . . 3 ⊢ ((𝐴 ∖ 𝐵) ⊊ 𝐴 ↔ ¬ (𝐴 ∖ 𝐵) = 𝐴) |
6 | 5 | con2bii 357 | . 2 ⊢ ((𝐴 ∖ 𝐵) = 𝐴 ↔ ¬ (𝐴 ∖ 𝐵) ⊊ 𝐴) |
7 | 1, 2, 6 | 3bitri 296 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ¬ (𝐴 ∖ 𝐵) ⊊ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ∖ cdif 3880 ∩ cin 3882 ⊆ wss 3883 ⊊ wpss 3884 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 |
This theorem is referenced by: marypha1lem 9122 infeq5i 9324 wilthlem2 26123 topdifinffinlem 35445 |
Copyright terms: Public domain | W3C validator |