MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disj4 Structured version   Visualization version   GIF version

Theorem disj4 4389
Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 21-Mar-2004.)
Assertion
Ref Expression
disj4 ((𝐴𝐵) = ∅ ↔ ¬ (𝐴𝐵) ⊊ 𝐴)

Proof of Theorem disj4
StepHypRef Expression
1 disj3 4384 . 2 ((𝐴𝐵) = ∅ ↔ 𝐴 = (𝐴𝐵))
2 eqcom 2745 . 2 (𝐴 = (𝐴𝐵) ↔ (𝐴𝐵) = 𝐴)
3 difss 4062 . . . 4 (𝐴𝐵) ⊆ 𝐴
4 dfpss2 4016 . . . 4 ((𝐴𝐵) ⊊ 𝐴 ↔ ((𝐴𝐵) ⊆ 𝐴 ∧ ¬ (𝐴𝐵) = 𝐴))
53, 4mpbiran 705 . . 3 ((𝐴𝐵) ⊊ 𝐴 ↔ ¬ (𝐴𝐵) = 𝐴)
65con2bii 357 . 2 ((𝐴𝐵) = 𝐴 ↔ ¬ (𝐴𝐵) ⊊ 𝐴)
71, 2, 63bitri 296 1 ((𝐴𝐵) = ∅ ↔ ¬ (𝐴𝐵) ⊊ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1539  cdif 3880  cin 3882  wss 3883  wpss 3884  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254
This theorem is referenced by:  marypha1lem  9122  infeq5i  9324  wilthlem2  26123  topdifinffinlem  35445
  Copyright terms: Public domain W3C validator