| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disj4 | Structured version Visualization version GIF version | ||
| Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 21-Mar-2004.) |
| Ref | Expression |
|---|---|
| disj4 | ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ¬ (𝐴 ∖ 𝐵) ⊊ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disj3 4454 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 = (𝐴 ∖ 𝐵)) | |
| 2 | eqcom 2744 | . 2 ⊢ (𝐴 = (𝐴 ∖ 𝐵) ↔ (𝐴 ∖ 𝐵) = 𝐴) | |
| 3 | difss 4136 | . . . 4 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
| 4 | dfpss2 4088 | . . . 4 ⊢ ((𝐴 ∖ 𝐵) ⊊ 𝐴 ↔ ((𝐴 ∖ 𝐵) ⊆ 𝐴 ∧ ¬ (𝐴 ∖ 𝐵) = 𝐴)) | |
| 5 | 3, 4 | mpbiran 709 | . . 3 ⊢ ((𝐴 ∖ 𝐵) ⊊ 𝐴 ↔ ¬ (𝐴 ∖ 𝐵) = 𝐴) |
| 6 | 5 | con2bii 357 | . 2 ⊢ ((𝐴 ∖ 𝐵) = 𝐴 ↔ ¬ (𝐴 ∖ 𝐵) ⊊ 𝐴) |
| 7 | 1, 2, 6 | 3bitri 297 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ¬ (𝐴 ∖ 𝐵) ⊊ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∖ cdif 3948 ∩ cin 3950 ⊆ wss 3951 ⊊ wpss 3952 ∅c0 4333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-v 3482 df-dif 3954 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 |
| This theorem is referenced by: marypha1lem 9473 infeq5i 9676 wilthlem2 27112 topdifinffinlem 37348 |
| Copyright terms: Public domain | W3C validator |