Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measvuni Structured version   Visualization version   GIF version

Theorem measvuni 34211
Description: The measure of a countable disjoint union is the sum of the measures. This theorem uses a collection rather than a set of subsets of 𝑆. (Contributed by Thierry Arnoux, 7-Mar-2017.)
Assertion
Ref Expression
measvuni ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = Σ*𝑥𝐴(𝑀𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀   𝑥,𝑆
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem measvuni
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑀 ∈ (measures‘𝑆))
2 rabid 3430 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} ↔ (𝑥𝐴𝐵 ∈ {∅}))
32simprbi 496 . . . . . . 7 (𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} → 𝐵 ∈ {∅})
43adantl 481 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}) → 𝐵 ∈ {∅})
54ralrimiva 3126 . . . . 5 (𝑀 ∈ (measures‘𝑆) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 ∈ {∅})
653ad2ant1 1133 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 ∈ {∅})
7 ssrab2 4046 . . . . . . 7 {𝑥𝐴𝐵 ∈ {∅}} ⊆ 𝐴
8 ssct 9025 . . . . . . 7 (({𝑥𝐴𝐵 ∈ {∅}} ⊆ 𝐴𝐴 ≼ ω) → {𝑥𝐴𝐵 ∈ {∅}} ≼ ω)
97, 8mpan 690 . . . . . 6 (𝐴 ≼ ω → {𝑥𝐴𝐵 ∈ {∅}} ≼ ω)
109adantr 480 . . . . 5 ((𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵) → {𝑥𝐴𝐵 ∈ {∅}} ≼ ω)
11103ad2ant3 1135 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑥𝐴𝐵 ∈ {∅}} ≼ ω)
12 simp3r 1203 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Disj 𝑥𝐴 𝐵)
13 nfrab1 3429 . . . . . 6 𝑥{𝑥𝐴𝐵 ∈ {∅}}
14 nfcv 2892 . . . . . 6 𝑥𝐴
1513, 14disjss1f 32508 . . . . 5 ({𝑥𝐴𝐵 ∈ {∅}} ⊆ 𝐴 → (Disj 𝑥𝐴 𝐵Disj 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵))
167, 12, 15mpsyl 68 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Disj 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵)
1713measvunilem0 34210 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 ∈ {∅} ∧ ({𝑥𝐴𝐵 ∈ {∅}} ≼ ω ∧ Disj 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵)) → (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵) = Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} (𝑀𝐵))
181, 6, 11, 16, 17syl112anc 1376 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵) = Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} (𝑀𝐵))
19 rabid 3430 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ↔ (𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})))
2019simprbi 496 . . . . . . 7 (𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} → 𝐵 ∈ (𝑆 ∖ {∅}))
2120adantl 481 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) → 𝐵 ∈ (𝑆 ∖ {∅}))
2221ralrimiva 3126 . . . . 5 (𝑀 ∈ (measures‘𝑆) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵 ∈ (𝑆 ∖ {∅}))
23223ad2ant1 1133 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵 ∈ (𝑆 ∖ {∅}))
24 ssrab2 4046 . . . . . . 7 {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ⊆ 𝐴
25 ssct 9025 . . . . . . 7 (({𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ⊆ 𝐴𝐴 ≼ ω) → {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω)
2624, 25mpan 690 . . . . . 6 (𝐴 ≼ ω → {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω)
2726adantr 480 . . . . 5 ((𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵) → {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω)
28273ad2ant3 1135 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω)
29 nfrab1 3429 . . . . . 6 𝑥{𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}
3029, 14disjss1f 32508 . . . . 5 ({𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ⊆ 𝐴 → (Disj 𝑥𝐴 𝐵Disj 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵))
3124, 12, 30mpsyl 68 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Disj 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)
3229measvunilem 34209 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵 ∈ (𝑆 ∖ {∅}) ∧ ({𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω ∧ Disj 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)) → (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} (𝑀𝐵))
331, 23, 28, 31, 32syl112anc 1376 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} (𝑀𝐵))
3418, 33oveq12d 7408 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ((𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵) +𝑒 (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)) = (Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} (𝑀𝐵) +𝑒 Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} (𝑀𝐵)))
35 nfv 1914 . . . . . . 7 𝑥 𝑀 ∈ (measures‘𝑆)
36 nfra1 3262 . . . . . . 7 𝑥𝑥𝐴 𝐵𝑆
37 nfv 1914 . . . . . . . 8 𝑥 𝐴 ≼ ω
38 nfdisj1 5091 . . . . . . . 8 𝑥Disj 𝑥𝐴 𝐵
3937, 38nfan 1899 . . . . . . 7 𝑥(𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)
4035, 36, 39nf3an 1901 . . . . . 6 𝑥(𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵))
4113, 29nfun 4136 . . . . . 6 𝑥({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})
42 simp2 1137 . . . . . . . . 9 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ∀𝑥𝐴 𝐵𝑆)
43 rabid2 3442 . . . . . . . . 9 (𝐴 = {𝑥𝐴𝐵𝑆} ↔ ∀𝑥𝐴 𝐵𝑆)
4442, 43sylibr 234 . . . . . . . 8 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐴 = {𝑥𝐴𝐵𝑆})
45 elun 4119 . . . . . . . . . . 11 (𝐵 ∈ ({∅} ∪ (𝑆 ∖ {∅})) ↔ (𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅})))
46 measbase 34194 . . . . . . . . . . . . . 14 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
47 0elsiga 34111 . . . . . . . . . . . . . 14 (𝑆 ran sigAlgebra → ∅ ∈ 𝑆)
48 snssi 4775 . . . . . . . . . . . . . 14 (∅ ∈ 𝑆 → {∅} ⊆ 𝑆)
4946, 47, 483syl 18 . . . . . . . . . . . . 13 (𝑀 ∈ (measures‘𝑆) → {∅} ⊆ 𝑆)
50 undif 4448 . . . . . . . . . . . . 13 ({∅} ⊆ 𝑆 ↔ ({∅} ∪ (𝑆 ∖ {∅})) = 𝑆)
5149, 50sylib 218 . . . . . . . . . . . 12 (𝑀 ∈ (measures‘𝑆) → ({∅} ∪ (𝑆 ∖ {∅})) = 𝑆)
5251eleq2d 2815 . . . . . . . . . . 11 (𝑀 ∈ (measures‘𝑆) → (𝐵 ∈ ({∅} ∪ (𝑆 ∖ {∅})) ↔ 𝐵𝑆))
5345, 52bitr3id 285 . . . . . . . . . 10 (𝑀 ∈ (measures‘𝑆) → ((𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅})) ↔ 𝐵𝑆))
5453rabbidv 3416 . . . . . . . . 9 (𝑀 ∈ (measures‘𝑆) → {𝑥𝐴 ∣ (𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅}))} = {𝑥𝐴𝐵𝑆})
55543ad2ant1 1133 . . . . . . . 8 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑥𝐴 ∣ (𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅}))} = {𝑥𝐴𝐵𝑆})
5644, 55eqtr4d 2768 . . . . . . 7 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐴 = {𝑥𝐴 ∣ (𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅}))})
57 unrab 4281 . . . . . . 7 ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) = {𝑥𝐴 ∣ (𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅}))}
5856, 57eqtr4di 2783 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐴 = ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}))
59 eqidd 2731 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐵 = 𝐵)
6040, 14, 41, 58, 59iuneq12df 4985 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑥𝐴 𝐵 = 𝑥 ∈ ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})𝐵)
6160fveq2d 6865 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = (𝑀 𝑥 ∈ ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})𝐵))
62 iunxun 5061 . . . . 5 𝑥 ∈ ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})𝐵 = ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)
6362fveq2i 6864 . . . 4 (𝑀 𝑥 ∈ ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})𝐵) = (𝑀‘( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵))
6461, 63eqtrdi 2781 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = (𝑀‘( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)))
65463ad2ant1 1133 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑆 ran sigAlgebra)
6647adantr 480 . . . . . . . . 9 ((𝑆 ran sigAlgebra ∧ 𝐵 ∈ {∅}) → ∅ ∈ 𝑆)
67 elsni 4609 . . . . . . . . . . 11 (𝐵 ∈ {∅} → 𝐵 = ∅)
6867eleq1d 2814 . . . . . . . . . 10 (𝐵 ∈ {∅} → (𝐵𝑆 ↔ ∅ ∈ 𝑆))
6968adantl 481 . . . . . . . . 9 ((𝑆 ran sigAlgebra ∧ 𝐵 ∈ {∅}) → (𝐵𝑆 ↔ ∅ ∈ 𝑆))
7066, 69mpbird 257 . . . . . . . 8 ((𝑆 ran sigAlgebra ∧ 𝐵 ∈ {∅}) → 𝐵𝑆)
7146, 3, 70syl2an 596 . . . . . . 7 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}) → 𝐵𝑆)
7271ralrimiva 3126 . . . . . 6 (𝑀 ∈ (measures‘𝑆) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵𝑆)
73723ad2ant1 1133 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵𝑆)
7413sigaclcuni 34115 . . . . 5 ((𝑆 ran sigAlgebra ∧ ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵𝑆 ∧ {𝑥𝐴𝐵 ∈ {∅}} ≼ ω) → 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵𝑆)
7565, 73, 11, 74syl3anc 1373 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵𝑆)
7621eldifad 3929 . . . . . . 7 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) → 𝐵𝑆)
7776ralrimiva 3126 . . . . . 6 (𝑀 ∈ (measures‘𝑆) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵𝑆)
78773ad2ant1 1133 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵𝑆)
7929sigaclcuni 34115 . . . . 5 ((𝑆 ran sigAlgebra ∧ ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵𝑆 ∧ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω) → 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵𝑆)
8065, 78, 28, 79syl3anc 1373 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵𝑆)
813, 67syl 17 . . . . . . 7 (𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} → 𝐵 = ∅)
8281iuneq2i 4980 . . . . . 6 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 = 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}∅
83 iun0 5029 . . . . . 6 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}∅ = ∅
8482, 83eqtri 2753 . . . . 5 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 = ∅
85 ineq1 4179 . . . . . 6 ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 = ∅ → ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = (∅ ∩ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵))
86 0in 4363 . . . . . 6 (∅ ∩ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = ∅
8785, 86eqtrdi 2781 . . . . 5 ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 = ∅ → ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = ∅)
8884, 87mp1i 13 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = ∅)
89 measun 34208 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵𝑆 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵𝑆) ∧ ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = ∅) → (𝑀‘( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)) = ((𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵) +𝑒 (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)))
901, 75, 80, 88, 89syl121anc 1377 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀‘( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)) = ((𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵) +𝑒 (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)))
9164, 90eqtrd 2765 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = ((𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵) +𝑒 (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)))
9240, 58esumeq1d 34032 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Σ*𝑥𝐴(𝑀𝐵) = Σ*𝑥 ∈ ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})(𝑀𝐵))
93 ctex 8938 . . . . 5 ({𝑥𝐴𝐵 ∈ {∅}} ≼ ω → {𝑥𝐴𝐵 ∈ {∅}} ∈ V)
9411, 93syl 17 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑥𝐴𝐵 ∈ {∅}} ∈ V)
95 ctex 8938 . . . . 5 ({𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω → {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ∈ V)
9628, 95syl 17 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ∈ V)
97 inrab 4282 . . . . . 6 ({𝑥𝐴𝐵 ∈ {∅}} ∩ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) = {𝑥𝐴 ∣ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅}))}
98 noel 4304 . . . . . . . . . 10 ¬ 𝐵 ∈ ∅
99 disjdif 4438 . . . . . . . . . . 11 ({∅} ∩ (𝑆 ∖ {∅})) = ∅
10099eleq2i 2821 . . . . . . . . . 10 (𝐵 ∈ ({∅} ∩ (𝑆 ∖ {∅})) ↔ 𝐵 ∈ ∅)
10198, 100mtbir 323 . . . . . . . . 9 ¬ 𝐵 ∈ ({∅} ∩ (𝑆 ∖ {∅}))
102 elin 3933 . . . . . . . . 9 (𝐵 ∈ ({∅} ∩ (𝑆 ∖ {∅})) ↔ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅})))
103101, 102mtbi 322 . . . . . . . 8 ¬ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅}))
104103rgenw 3049 . . . . . . 7 𝑥𝐴 ¬ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅}))
105 rabeq0 4354 . . . . . . 7 ({𝑥𝐴 ∣ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅}))} = ∅ ↔ ∀𝑥𝐴 ¬ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅})))
106104, 105mpbir 231 . . . . . 6 {𝑥𝐴 ∣ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅}))} = ∅
10797, 106eqtri 2753 . . . . 5 ({𝑥𝐴𝐵 ∈ {∅}} ∩ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) = ∅
108107a1i 11 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ({𝑥𝐴𝐵 ∈ {∅}} ∩ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) = ∅)
1091adantr 480 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}) → 𝑀 ∈ (measures‘𝑆))
1101, 71sylan 580 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}) → 𝐵𝑆)
111 measvxrge0 34202 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵𝑆) → (𝑀𝐵) ∈ (0[,]+∞))
112109, 110, 111syl2anc 584 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}) → (𝑀𝐵) ∈ (0[,]+∞))
1131adantr 480 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) → 𝑀 ∈ (measures‘𝑆))
11420adantl 481 . . . . . 6 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) → 𝐵 ∈ (𝑆 ∖ {∅}))
115114eldifad 3929 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) → 𝐵𝑆)
116113, 115, 111syl2anc 584 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) → (𝑀𝐵) ∈ (0[,]+∞))
11740, 13, 29, 94, 96, 108, 112, 116esumsplit 34050 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Σ*𝑥 ∈ ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})(𝑀𝐵) = (Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} (𝑀𝐵) +𝑒 Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} (𝑀𝐵)))
11892, 117eqtrd 2765 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Σ*𝑥𝐴(𝑀𝐵) = (Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} (𝑀𝐵) +𝑒 Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} (𝑀𝐵)))
11934, 91, 1183eqtr4d 2775 1 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = Σ*𝑥𝐴(𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3045  {crab 3408  Vcvv 3450  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299  {csn 4592   cuni 4874   ciun 4958  Disj wdisj 5077   class class class wbr 5110  ran crn 5642  cfv 6514  (class class class)co 7390  ωcom 7845  cdom 8919  0cc0 11075  +∞cpnf 11212   +𝑒 cxad 13077  [,]cicc 13316  Σ*cesum 34024  sigAlgebracsiga 34105  measurescmeas 34192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-ac2 10423  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-ac 10076  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-ordt 17471  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-ps 18532  df-tsr 18533  df-plusf 18573  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-subrng 20462  df-subrg 20486  df-abv 20725  df-lmod 20775  df-scaf 20776  df-sra 21087  df-rgmod 21088  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-tmd 23966  df-tgp 23967  df-tsms 24021  df-trg 24054  df-xms 24215  df-ms 24216  df-tms 24217  df-nm 24477  df-ngp 24478  df-nrg 24480  df-nlm 24481  df-ii 24777  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-esum 34025  df-siga 34106  df-meas 34193
This theorem is referenced by:  measiuns  34214  measinblem  34217  sibfof  34338  dstrvprob  34470
  Copyright terms: Public domain W3C validator