Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measvuni Structured version   Visualization version   GIF version

Theorem measvuni 30875
Description: The measure of a countable disjoint union is the sum of the measures. This theorem uses a collection rather than a set of subsets of 𝑆. (Contributed by Thierry Arnoux, 7-Mar-2017.)
Assertion
Ref Expression
measvuni ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = Σ*𝑥𝐴(𝑀𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀   𝑥,𝑆
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem measvuni
StepHypRef Expression
1 simp1 1127 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑀 ∈ (measures‘𝑆))
2 rabid 3301 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} ↔ (𝑥𝐴𝐵 ∈ {∅}))
32simprbi 492 . . . . . . 7 (𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} → 𝐵 ∈ {∅})
43adantl 475 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}) → 𝐵 ∈ {∅})
54ralrimiva 3147 . . . . 5 (𝑀 ∈ (measures‘𝑆) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 ∈ {∅})
653ad2ant1 1124 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 ∈ {∅})
7 ssrab2 3907 . . . . . . 7 {𝑥𝐴𝐵 ∈ {∅}} ⊆ 𝐴
8 ssct 8329 . . . . . . 7 (({𝑥𝐴𝐵 ∈ {∅}} ⊆ 𝐴𝐴 ≼ ω) → {𝑥𝐴𝐵 ∈ {∅}} ≼ ω)
97, 8mpan 680 . . . . . 6 (𝐴 ≼ ω → {𝑥𝐴𝐵 ∈ {∅}} ≼ ω)
109adantr 474 . . . . 5 ((𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵) → {𝑥𝐴𝐵 ∈ {∅}} ≼ ω)
11103ad2ant3 1126 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑥𝐴𝐵 ∈ {∅}} ≼ ω)
12 simp3r 1216 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Disj 𝑥𝐴 𝐵)
13 nfrab1 3308 . . . . . 6 𝑥{𝑥𝐴𝐵 ∈ {∅}}
14 nfcv 2933 . . . . . 6 𝑥𝐴
1513, 14disjss1f 29949 . . . . 5 ({𝑥𝐴𝐵 ∈ {∅}} ⊆ 𝐴 → (Disj 𝑥𝐴 𝐵Disj 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵))
167, 12, 15mpsyl 68 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Disj 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵)
1713measvunilem0 30874 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 ∈ {∅} ∧ ({𝑥𝐴𝐵 ∈ {∅}} ≼ ω ∧ Disj 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵)) → (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵) = Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} (𝑀𝐵))
181, 6, 11, 16, 17syl112anc 1442 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵) = Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} (𝑀𝐵))
19 rabid 3301 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ↔ (𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})))
2019simprbi 492 . . . . . . 7 (𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} → 𝐵 ∈ (𝑆 ∖ {∅}))
2120adantl 475 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) → 𝐵 ∈ (𝑆 ∖ {∅}))
2221ralrimiva 3147 . . . . 5 (𝑀 ∈ (measures‘𝑆) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵 ∈ (𝑆 ∖ {∅}))
23223ad2ant1 1124 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵 ∈ (𝑆 ∖ {∅}))
24 ssrab2 3907 . . . . . . 7 {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ⊆ 𝐴
25 ssct 8329 . . . . . . 7 (({𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ⊆ 𝐴𝐴 ≼ ω) → {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω)
2624, 25mpan 680 . . . . . 6 (𝐴 ≼ ω → {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω)
2726adantr 474 . . . . 5 ((𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵) → {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω)
28273ad2ant3 1126 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω)
29 nfrab1 3308 . . . . . 6 𝑥{𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}
3029, 14disjss1f 29949 . . . . 5 ({𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ⊆ 𝐴 → (Disj 𝑥𝐴 𝐵Disj 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵))
3124, 12, 30mpsyl 68 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Disj 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)
3229measvunilem 30873 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵 ∈ (𝑆 ∖ {∅}) ∧ ({𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω ∧ Disj 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)) → (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} (𝑀𝐵))
331, 23, 28, 31, 32syl112anc 1442 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} (𝑀𝐵))
3418, 33oveq12d 6940 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ((𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵) +𝑒 (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)) = (Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} (𝑀𝐵) +𝑒 Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} (𝑀𝐵)))
35 nfv 1957 . . . . . . 7 𝑥 𝑀 ∈ (measures‘𝑆)
36 nfra1 3122 . . . . . . 7 𝑥𝑥𝐴 𝐵𝑆
37 nfv 1957 . . . . . . . 8 𝑥 𝐴 ≼ ω
38 nfdisj1 4867 . . . . . . . 8 𝑥Disj 𝑥𝐴 𝐵
3937, 38nfan 1946 . . . . . . 7 𝑥(𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)
4035, 36, 39nf3an 1948 . . . . . 6 𝑥(𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵))
4113, 29nfun 3991 . . . . . 6 𝑥({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})
42 simp2 1128 . . . . . . . . 9 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ∀𝑥𝐴 𝐵𝑆)
43 rabid2 3304 . . . . . . . . 9 (𝐴 = {𝑥𝐴𝐵𝑆} ↔ ∀𝑥𝐴 𝐵𝑆)
4442, 43sylibr 226 . . . . . . . 8 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐴 = {𝑥𝐴𝐵𝑆})
45 elun 3975 . . . . . . . . . . 11 (𝐵 ∈ ({∅} ∪ (𝑆 ∖ {∅})) ↔ (𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅})))
46 measbase 30858 . . . . . . . . . . . . . 14 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
47 0elsiga 30775 . . . . . . . . . . . . . 14 (𝑆 ran sigAlgebra → ∅ ∈ 𝑆)
48 snssi 4570 . . . . . . . . . . . . . 14 (∅ ∈ 𝑆 → {∅} ⊆ 𝑆)
4946, 47, 483syl 18 . . . . . . . . . . . . 13 (𝑀 ∈ (measures‘𝑆) → {∅} ⊆ 𝑆)
50 undif 4272 . . . . . . . . . . . . 13 ({∅} ⊆ 𝑆 ↔ ({∅} ∪ (𝑆 ∖ {∅})) = 𝑆)
5149, 50sylib 210 . . . . . . . . . . . 12 (𝑀 ∈ (measures‘𝑆) → ({∅} ∪ (𝑆 ∖ {∅})) = 𝑆)
5251eleq2d 2844 . . . . . . . . . . 11 (𝑀 ∈ (measures‘𝑆) → (𝐵 ∈ ({∅} ∪ (𝑆 ∖ {∅})) ↔ 𝐵𝑆))
5345, 52syl5bbr 277 . . . . . . . . . 10 (𝑀 ∈ (measures‘𝑆) → ((𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅})) ↔ 𝐵𝑆))
5453rabbidv 3385 . . . . . . . . 9 (𝑀 ∈ (measures‘𝑆) → {𝑥𝐴 ∣ (𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅}))} = {𝑥𝐴𝐵𝑆})
55543ad2ant1 1124 . . . . . . . 8 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑥𝐴 ∣ (𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅}))} = {𝑥𝐴𝐵𝑆})
5644, 55eqtr4d 2816 . . . . . . 7 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐴 = {𝑥𝐴 ∣ (𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅}))})
57 unrab 4123 . . . . . . 7 ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) = {𝑥𝐴 ∣ (𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅}))}
5856, 57syl6eqr 2831 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐴 = ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}))
59 eqidd 2778 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐵 = 𝐵)
6040, 14, 41, 58, 59iuneq12df 4777 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑥𝐴 𝐵 = 𝑥 ∈ ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})𝐵)
6160fveq2d 6450 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = (𝑀 𝑥 ∈ ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})𝐵))
62 iunxun 4839 . . . . 5 𝑥 ∈ ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})𝐵 = ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)
6362fveq2i 6449 . . . 4 (𝑀 𝑥 ∈ ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})𝐵) = (𝑀‘( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵))
6461, 63syl6eq 2829 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = (𝑀‘( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)))
65463ad2ant1 1124 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑆 ran sigAlgebra)
6647adantr 474 . . . . . . . . 9 ((𝑆 ran sigAlgebra ∧ 𝐵 ∈ {∅}) → ∅ ∈ 𝑆)
67 elsni 4414 . . . . . . . . . . 11 (𝐵 ∈ {∅} → 𝐵 = ∅)
6867eleq1d 2843 . . . . . . . . . 10 (𝐵 ∈ {∅} → (𝐵𝑆 ↔ ∅ ∈ 𝑆))
6968adantl 475 . . . . . . . . 9 ((𝑆 ran sigAlgebra ∧ 𝐵 ∈ {∅}) → (𝐵𝑆 ↔ ∅ ∈ 𝑆))
7066, 69mpbird 249 . . . . . . . 8 ((𝑆 ran sigAlgebra ∧ 𝐵 ∈ {∅}) → 𝐵𝑆)
7146, 3, 70syl2an 589 . . . . . . 7 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}) → 𝐵𝑆)
7271ralrimiva 3147 . . . . . 6 (𝑀 ∈ (measures‘𝑆) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵𝑆)
73723ad2ant1 1124 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵𝑆)
7413sigaclcuni 30779 . . . . 5 ((𝑆 ran sigAlgebra ∧ ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵𝑆 ∧ {𝑥𝐴𝐵 ∈ {∅}} ≼ ω) → 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵𝑆)
7565, 73, 11, 74syl3anc 1439 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵𝑆)
7621eldifad 3803 . . . . . . 7 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) → 𝐵𝑆)
7776ralrimiva 3147 . . . . . 6 (𝑀 ∈ (measures‘𝑆) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵𝑆)
78773ad2ant1 1124 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵𝑆)
7929sigaclcuni 30779 . . . . 5 ((𝑆 ran sigAlgebra ∧ ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵𝑆 ∧ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω) → 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵𝑆)
8065, 78, 28, 79syl3anc 1439 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵𝑆)
813, 67syl 17 . . . . . . 7 (𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} → 𝐵 = ∅)
8281iuneq2i 4772 . . . . . 6 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 = 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}∅
83 iun0 4809 . . . . . 6 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}∅ = ∅
8482, 83eqtri 2801 . . . . 5 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 = ∅
85 ineq1 4029 . . . . . 6 ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 = ∅ → ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = (∅ ∩ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵))
86 0in 4194 . . . . . 6 (∅ ∩ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = ∅
8785, 86syl6eq 2829 . . . . 5 ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 = ∅ → ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = ∅)
8884, 87mp1i 13 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = ∅)
89 measun 30872 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵𝑆 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵𝑆) ∧ ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = ∅) → (𝑀‘( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)) = ((𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵) +𝑒 (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)))
901, 75, 80, 88, 89syl121anc 1443 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀‘( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)) = ((𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵) +𝑒 (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)))
9164, 90eqtrd 2813 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = ((𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵) +𝑒 (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)))
9240, 58esumeq1d 30695 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Σ*𝑥𝐴(𝑀𝐵) = Σ*𝑥 ∈ ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})(𝑀𝐵))
93 ctex 8256 . . . . 5 ({𝑥𝐴𝐵 ∈ {∅}} ≼ ω → {𝑥𝐴𝐵 ∈ {∅}} ∈ V)
9411, 93syl 17 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑥𝐴𝐵 ∈ {∅}} ∈ V)
95 ctex 8256 . . . . 5 ({𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω → {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ∈ V)
9628, 95syl 17 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ∈ V)
97 inrab 4124 . . . . . 6 ({𝑥𝐴𝐵 ∈ {∅}} ∩ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) = {𝑥𝐴 ∣ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅}))}
98 noel 4145 . . . . . . . . . 10 ¬ 𝐵 ∈ ∅
99 disjdif 4263 . . . . . . . . . . 11 ({∅} ∩ (𝑆 ∖ {∅})) = ∅
10099eleq2i 2850 . . . . . . . . . 10 (𝐵 ∈ ({∅} ∩ (𝑆 ∖ {∅})) ↔ 𝐵 ∈ ∅)
10198, 100mtbir 315 . . . . . . . . 9 ¬ 𝐵 ∈ ({∅} ∩ (𝑆 ∖ {∅}))
102 elin 4018 . . . . . . . . 9 (𝐵 ∈ ({∅} ∩ (𝑆 ∖ {∅})) ↔ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅})))
103101, 102mtbi 314 . . . . . . . 8 ¬ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅}))
104103rgenw 3105 . . . . . . 7 𝑥𝐴 ¬ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅}))
105 rabeq0 4186 . . . . . . 7 ({𝑥𝐴 ∣ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅}))} = ∅ ↔ ∀𝑥𝐴 ¬ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅})))
106104, 105mpbir 223 . . . . . 6 {𝑥𝐴 ∣ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅}))} = ∅
10797, 106eqtri 2801 . . . . 5 ({𝑥𝐴𝐵 ∈ {∅}} ∩ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) = ∅
108107a1i 11 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ({𝑥𝐴𝐵 ∈ {∅}} ∩ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) = ∅)
1091adantr 474 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}) → 𝑀 ∈ (measures‘𝑆))
1101, 71sylan 575 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}) → 𝐵𝑆)
111 measvxrge0 30866 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵𝑆) → (𝑀𝐵) ∈ (0[,]+∞))
112109, 110, 111syl2anc 579 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}) → (𝑀𝐵) ∈ (0[,]+∞))
1131adantr 474 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) → 𝑀 ∈ (measures‘𝑆))
11420adantl 475 . . . . . 6 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) → 𝐵 ∈ (𝑆 ∖ {∅}))
115114eldifad 3803 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) → 𝐵𝑆)
116113, 115, 111syl2anc 579 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) → (𝑀𝐵) ∈ (0[,]+∞))
11740, 13, 29, 94, 96, 108, 112, 116esumsplit 30713 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Σ*𝑥 ∈ ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})(𝑀𝐵) = (Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} (𝑀𝐵) +𝑒 Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} (𝑀𝐵)))
11892, 117eqtrd 2813 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Σ*𝑥𝐴(𝑀𝐵) = (Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} (𝑀𝐵) +𝑒 Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} (𝑀𝐵)))
11934, 91, 1183eqtr4d 2823 1 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = Σ*𝑥𝐴(𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 836  w3a 1071   = wceq 1601  wcel 2106  wral 3089  {crab 3093  Vcvv 3397  cdif 3788  cun 3789  cin 3790  wss 3791  c0 4140  {csn 4397   cuni 4671   ciun 4753  Disj wdisj 4854   class class class wbr 4886  ran crn 5356  cfv 6135  (class class class)co 6922  ωcom 7343  cdom 8239  0cc0 10272  +∞cpnf 10408   +𝑒 cxad 12255  [,]cicc 12490  Σ*cesum 30687  sigAlgebracsiga 30768  measurescmeas 30856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-ac2 9620  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-disj 4855  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-acn 9101  df-ac 9272  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ioc 12492  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-fl 12912  df-mod 12988  df-seq 13120  df-exp 13179  df-fac 13379  df-bc 13408  df-hash 13436  df-shft 14214  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-limsup 14610  df-clim 14627  df-rlim 14628  df-sum 14825  df-ef 15200  df-sin 15202  df-cos 15203  df-pi 15205  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-ordt 16547  df-xrs 16548  df-qtop 16553  df-imas 16554  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-ps 17586  df-tsr 17587  df-plusf 17627  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-mhm 17721  df-submnd 17722  df-grp 17812  df-minusg 17813  df-sbg 17814  df-mulg 17928  df-subg 17975  df-cntz 18133  df-cmn 18581  df-abl 18582  df-mgp 18877  df-ur 18889  df-ring 18936  df-cring 18937  df-subrg 19170  df-abv 19209  df-lmod 19257  df-scaf 19258  df-sra 19569  df-rgmod 19570  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-fbas 20139  df-fg 20140  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cld 21231  df-ntr 21232  df-cls 21233  df-nei 21310  df-lp 21348  df-perf 21349  df-cn 21439  df-cnp 21440  df-haus 21527  df-tx 21774  df-hmeo 21967  df-fil 22058  df-fm 22150  df-flim 22151  df-flf 22152  df-tmd 22284  df-tgp 22285  df-tsms 22338  df-trg 22371  df-xms 22533  df-ms 22534  df-tms 22535  df-nm 22795  df-ngp 22796  df-nrg 22798  df-nlm 22799  df-ii 23088  df-cncf 23089  df-limc 24067  df-dv 24068  df-log 24740  df-esum 30688  df-siga 30769  df-meas 30857
This theorem is referenced by:  measiuns  30878  measinblem  30881  sibfof  31000  dstrvprob  31132
  Copyright terms: Public domain W3C validator