Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measvuni Structured version   Visualization version   GIF version

Theorem measvuni 32082
Description: The measure of a countable disjoint union is the sum of the measures. This theorem uses a collection rather than a set of subsets of 𝑆. (Contributed by Thierry Arnoux, 7-Mar-2017.)
Assertion
Ref Expression
measvuni ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = Σ*𝑥𝐴(𝑀𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀   𝑥,𝑆
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem measvuni
StepHypRef Expression
1 simp1 1134 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑀 ∈ (measures‘𝑆))
2 rabid 3304 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} ↔ (𝑥𝐴𝐵 ∈ {∅}))
32simprbi 496 . . . . . . 7 (𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} → 𝐵 ∈ {∅})
43adantl 481 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}) → 𝐵 ∈ {∅})
54ralrimiva 3107 . . . . 5 (𝑀 ∈ (measures‘𝑆) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 ∈ {∅})
653ad2ant1 1131 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 ∈ {∅})
7 ssrab2 4009 . . . . . . 7 {𝑥𝐴𝐵 ∈ {∅}} ⊆ 𝐴
8 ssct 8793 . . . . . . 7 (({𝑥𝐴𝐵 ∈ {∅}} ⊆ 𝐴𝐴 ≼ ω) → {𝑥𝐴𝐵 ∈ {∅}} ≼ ω)
97, 8mpan 686 . . . . . 6 (𝐴 ≼ ω → {𝑥𝐴𝐵 ∈ {∅}} ≼ ω)
109adantr 480 . . . . 5 ((𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵) → {𝑥𝐴𝐵 ∈ {∅}} ≼ ω)
11103ad2ant3 1133 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑥𝐴𝐵 ∈ {∅}} ≼ ω)
12 simp3r 1200 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Disj 𝑥𝐴 𝐵)
13 nfrab1 3310 . . . . . 6 𝑥{𝑥𝐴𝐵 ∈ {∅}}
14 nfcv 2906 . . . . . 6 𝑥𝐴
1513, 14disjss1f 30812 . . . . 5 ({𝑥𝐴𝐵 ∈ {∅}} ⊆ 𝐴 → (Disj 𝑥𝐴 𝐵Disj 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵))
167, 12, 15mpsyl 68 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Disj 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵)
1713measvunilem0 32081 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 ∈ {∅} ∧ ({𝑥𝐴𝐵 ∈ {∅}} ≼ ω ∧ Disj 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵)) → (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵) = Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} (𝑀𝐵))
181, 6, 11, 16, 17syl112anc 1372 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵) = Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} (𝑀𝐵))
19 rabid 3304 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ↔ (𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})))
2019simprbi 496 . . . . . . 7 (𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} → 𝐵 ∈ (𝑆 ∖ {∅}))
2120adantl 481 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) → 𝐵 ∈ (𝑆 ∖ {∅}))
2221ralrimiva 3107 . . . . 5 (𝑀 ∈ (measures‘𝑆) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵 ∈ (𝑆 ∖ {∅}))
23223ad2ant1 1131 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵 ∈ (𝑆 ∖ {∅}))
24 ssrab2 4009 . . . . . . 7 {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ⊆ 𝐴
25 ssct 8793 . . . . . . 7 (({𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ⊆ 𝐴𝐴 ≼ ω) → {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω)
2624, 25mpan 686 . . . . . 6 (𝐴 ≼ ω → {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω)
2726adantr 480 . . . . 5 ((𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵) → {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω)
28273ad2ant3 1133 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω)
29 nfrab1 3310 . . . . . 6 𝑥{𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}
3029, 14disjss1f 30812 . . . . 5 ({𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ⊆ 𝐴 → (Disj 𝑥𝐴 𝐵Disj 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵))
3124, 12, 30mpsyl 68 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Disj 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)
3229measvunilem 32080 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵 ∈ (𝑆 ∖ {∅}) ∧ ({𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω ∧ Disj 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)) → (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} (𝑀𝐵))
331, 23, 28, 31, 32syl112anc 1372 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} (𝑀𝐵))
3418, 33oveq12d 7273 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ((𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵) +𝑒 (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)) = (Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} (𝑀𝐵) +𝑒 Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} (𝑀𝐵)))
35 nfv 1918 . . . . . . 7 𝑥 𝑀 ∈ (measures‘𝑆)
36 nfra1 3142 . . . . . . 7 𝑥𝑥𝐴 𝐵𝑆
37 nfv 1918 . . . . . . . 8 𝑥 𝐴 ≼ ω
38 nfdisj1 5049 . . . . . . . 8 𝑥Disj 𝑥𝐴 𝐵
3937, 38nfan 1903 . . . . . . 7 𝑥(𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)
4035, 36, 39nf3an 1905 . . . . . 6 𝑥(𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵))
4113, 29nfun 4095 . . . . . 6 𝑥({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})
42 simp2 1135 . . . . . . . . 9 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ∀𝑥𝐴 𝐵𝑆)
43 rabid2 3307 . . . . . . . . 9 (𝐴 = {𝑥𝐴𝐵𝑆} ↔ ∀𝑥𝐴 𝐵𝑆)
4442, 43sylibr 233 . . . . . . . 8 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐴 = {𝑥𝐴𝐵𝑆})
45 elun 4079 . . . . . . . . . . 11 (𝐵 ∈ ({∅} ∪ (𝑆 ∖ {∅})) ↔ (𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅})))
46 measbase 32065 . . . . . . . . . . . . . 14 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
47 0elsiga 31982 . . . . . . . . . . . . . 14 (𝑆 ran sigAlgebra → ∅ ∈ 𝑆)
48 snssi 4738 . . . . . . . . . . . . . 14 (∅ ∈ 𝑆 → {∅} ⊆ 𝑆)
4946, 47, 483syl 18 . . . . . . . . . . . . 13 (𝑀 ∈ (measures‘𝑆) → {∅} ⊆ 𝑆)
50 undif 4412 . . . . . . . . . . . . 13 ({∅} ⊆ 𝑆 ↔ ({∅} ∪ (𝑆 ∖ {∅})) = 𝑆)
5149, 50sylib 217 . . . . . . . . . . . 12 (𝑀 ∈ (measures‘𝑆) → ({∅} ∪ (𝑆 ∖ {∅})) = 𝑆)
5251eleq2d 2824 . . . . . . . . . . 11 (𝑀 ∈ (measures‘𝑆) → (𝐵 ∈ ({∅} ∪ (𝑆 ∖ {∅})) ↔ 𝐵𝑆))
5345, 52bitr3id 284 . . . . . . . . . 10 (𝑀 ∈ (measures‘𝑆) → ((𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅})) ↔ 𝐵𝑆))
5453rabbidv 3404 . . . . . . . . 9 (𝑀 ∈ (measures‘𝑆) → {𝑥𝐴 ∣ (𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅}))} = {𝑥𝐴𝐵𝑆})
55543ad2ant1 1131 . . . . . . . 8 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑥𝐴 ∣ (𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅}))} = {𝑥𝐴𝐵𝑆})
5644, 55eqtr4d 2781 . . . . . . 7 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐴 = {𝑥𝐴 ∣ (𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅}))})
57 unrab 4236 . . . . . . 7 ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) = {𝑥𝐴 ∣ (𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅}))}
5856, 57eqtr4di 2797 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐴 = ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}))
59 eqidd 2739 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐵 = 𝐵)
6040, 14, 41, 58, 59iuneq12df 4947 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑥𝐴 𝐵 = 𝑥 ∈ ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})𝐵)
6160fveq2d 6760 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = (𝑀 𝑥 ∈ ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})𝐵))
62 iunxun 5019 . . . . 5 𝑥 ∈ ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})𝐵 = ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)
6362fveq2i 6759 . . . 4 (𝑀 𝑥 ∈ ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})𝐵) = (𝑀‘( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵))
6461, 63eqtrdi 2795 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = (𝑀‘( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)))
65463ad2ant1 1131 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑆 ran sigAlgebra)
6647adantr 480 . . . . . . . . 9 ((𝑆 ran sigAlgebra ∧ 𝐵 ∈ {∅}) → ∅ ∈ 𝑆)
67 elsni 4575 . . . . . . . . . . 11 (𝐵 ∈ {∅} → 𝐵 = ∅)
6867eleq1d 2823 . . . . . . . . . 10 (𝐵 ∈ {∅} → (𝐵𝑆 ↔ ∅ ∈ 𝑆))
6968adantl 481 . . . . . . . . 9 ((𝑆 ran sigAlgebra ∧ 𝐵 ∈ {∅}) → (𝐵𝑆 ↔ ∅ ∈ 𝑆))
7066, 69mpbird 256 . . . . . . . 8 ((𝑆 ran sigAlgebra ∧ 𝐵 ∈ {∅}) → 𝐵𝑆)
7146, 3, 70syl2an 595 . . . . . . 7 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}) → 𝐵𝑆)
7271ralrimiva 3107 . . . . . 6 (𝑀 ∈ (measures‘𝑆) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵𝑆)
73723ad2ant1 1131 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵𝑆)
7413sigaclcuni 31986 . . . . 5 ((𝑆 ran sigAlgebra ∧ ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵𝑆 ∧ {𝑥𝐴𝐵 ∈ {∅}} ≼ ω) → 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵𝑆)
7565, 73, 11, 74syl3anc 1369 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵𝑆)
7621eldifad 3895 . . . . . . 7 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) → 𝐵𝑆)
7776ralrimiva 3107 . . . . . 6 (𝑀 ∈ (measures‘𝑆) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵𝑆)
78773ad2ant1 1131 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵𝑆)
7929sigaclcuni 31986 . . . . 5 ((𝑆 ran sigAlgebra ∧ ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵𝑆 ∧ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω) → 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵𝑆)
8065, 78, 28, 79syl3anc 1369 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵𝑆)
813, 67syl 17 . . . . . . 7 (𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} → 𝐵 = ∅)
8281iuneq2i 4942 . . . . . 6 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 = 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}∅
83 iun0 4987 . . . . . 6 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}∅ = ∅
8482, 83eqtri 2766 . . . . 5 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 = ∅
85 ineq1 4136 . . . . . 6 ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 = ∅ → ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = (∅ ∩ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵))
86 0in 4324 . . . . . 6 (∅ ∩ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = ∅
8785, 86eqtrdi 2795 . . . . 5 ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 = ∅ → ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = ∅)
8884, 87mp1i 13 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = ∅)
89 measun 32079 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵𝑆 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵𝑆) ∧ ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = ∅) → (𝑀‘( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)) = ((𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵) +𝑒 (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)))
901, 75, 80, 88, 89syl121anc 1373 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀‘( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)) = ((𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵) +𝑒 (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)))
9164, 90eqtrd 2778 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = ((𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵) +𝑒 (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)))
9240, 58esumeq1d 31903 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Σ*𝑥𝐴(𝑀𝐵) = Σ*𝑥 ∈ ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})(𝑀𝐵))
93 ctex 8708 . . . . 5 ({𝑥𝐴𝐵 ∈ {∅}} ≼ ω → {𝑥𝐴𝐵 ∈ {∅}} ∈ V)
9411, 93syl 17 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑥𝐴𝐵 ∈ {∅}} ∈ V)
95 ctex 8708 . . . . 5 ({𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω → {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ∈ V)
9628, 95syl 17 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ∈ V)
97 inrab 4237 . . . . . 6 ({𝑥𝐴𝐵 ∈ {∅}} ∩ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) = {𝑥𝐴 ∣ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅}))}
98 noel 4261 . . . . . . . . . 10 ¬ 𝐵 ∈ ∅
99 disjdif 4402 . . . . . . . . . . 11 ({∅} ∩ (𝑆 ∖ {∅})) = ∅
10099eleq2i 2830 . . . . . . . . . 10 (𝐵 ∈ ({∅} ∩ (𝑆 ∖ {∅})) ↔ 𝐵 ∈ ∅)
10198, 100mtbir 322 . . . . . . . . 9 ¬ 𝐵 ∈ ({∅} ∩ (𝑆 ∖ {∅}))
102 elin 3899 . . . . . . . . 9 (𝐵 ∈ ({∅} ∩ (𝑆 ∖ {∅})) ↔ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅})))
103101, 102mtbi 321 . . . . . . . 8 ¬ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅}))
104103rgenw 3075 . . . . . . 7 𝑥𝐴 ¬ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅}))
105 rabeq0 4315 . . . . . . 7 ({𝑥𝐴 ∣ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅}))} = ∅ ↔ ∀𝑥𝐴 ¬ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅})))
106104, 105mpbir 230 . . . . . 6 {𝑥𝐴 ∣ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅}))} = ∅
10797, 106eqtri 2766 . . . . 5 ({𝑥𝐴𝐵 ∈ {∅}} ∩ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) = ∅
108107a1i 11 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ({𝑥𝐴𝐵 ∈ {∅}} ∩ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) = ∅)
1091adantr 480 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}) → 𝑀 ∈ (measures‘𝑆))
1101, 71sylan 579 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}) → 𝐵𝑆)
111 measvxrge0 32073 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵𝑆) → (𝑀𝐵) ∈ (0[,]+∞))
112109, 110, 111syl2anc 583 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}) → (𝑀𝐵) ∈ (0[,]+∞))
1131adantr 480 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) → 𝑀 ∈ (measures‘𝑆))
11420adantl 481 . . . . . 6 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) → 𝐵 ∈ (𝑆 ∖ {∅}))
115114eldifad 3895 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) → 𝐵𝑆)
116113, 115, 111syl2anc 583 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) → (𝑀𝐵) ∈ (0[,]+∞))
11740, 13, 29, 94, 96, 108, 112, 116esumsplit 31921 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Σ*𝑥 ∈ ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})(𝑀𝐵) = (Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} (𝑀𝐵) +𝑒 Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} (𝑀𝐵)))
11892, 117eqtrd 2778 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Σ*𝑥𝐴(𝑀𝐵) = (Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} (𝑀𝐵) +𝑒 Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} (𝑀𝐵)))
11934, 91, 1183eqtr4d 2788 1 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = Σ*𝑥𝐴(𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  {csn 4558   cuni 4836   ciun 4921  Disj wdisj 5035   class class class wbr 5070  ran crn 5581  cfv 6418  (class class class)co 7255  ωcom 7687  cdom 8689  0cc0 10802  +∞cpnf 10937   +𝑒 cxad 12775  [,]cicc 13011  Σ*cesum 31895  sigAlgebracsiga 31976  measurescmeas 32063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-ac2 10150  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-ac 9803  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-ordt 17129  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-ps 18199  df-tsr 18200  df-plusf 18240  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-subrg 19937  df-abv 19992  df-lmod 20040  df-scaf 20041  df-sra 20349  df-rgmod 20350  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-tmd 23131  df-tgp 23132  df-tsms 23186  df-trg 23219  df-xms 23381  df-ms 23382  df-tms 23383  df-nm 23644  df-ngp 23645  df-nrg 23647  df-nlm 23648  df-ii 23946  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-esum 31896  df-siga 31977  df-meas 32064
This theorem is referenced by:  measiuns  32085  measinblem  32088  sibfof  32207  dstrvprob  32338
  Copyright terms: Public domain W3C validator