Proof of Theorem measvuni
Step | Hyp | Ref
| Expression |
1 | | simp1 1134 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → 𝑀 ∈ (measures‘𝑆)) |
2 | | rabid 3294 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}} ↔ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ {∅})) |
3 | 2 | simprbi 501 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}} → 𝐵 ∈ {∅}) |
4 | 3 | adantl 486 |
. . . . . 6
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}) → 𝐵 ∈ {∅}) |
5 | 4 | ralrimiva 3111 |
. . . . 5
⊢ (𝑀 ∈ (measures‘𝑆) → ∀𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}𝐵 ∈ {∅}) |
6 | 5 | 3ad2ant1 1131 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → ∀𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}𝐵 ∈ {∅}) |
7 | | ssrab2 3980 |
. . . . . . 7
⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}} ⊆ 𝐴 |
8 | | ssct 8611 |
. . . . . . 7
⊢ (({𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}} ⊆ 𝐴 ∧ 𝐴 ≼ ω) → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}} ≼
ω) |
9 | 7, 8 | mpan 690 |
. . . . . 6
⊢ (𝐴 ≼ ω → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}} ≼
ω) |
10 | 9 | adantr 485 |
. . . . 5
⊢ ((𝐴 ≼ ω ∧
Disj 𝑥 ∈ 𝐴 𝐵) → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}} ≼
ω) |
11 | 10 | 3ad2ant3 1133 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}} ≼
ω) |
12 | | simp3r 1200 |
. . . . 5
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → Disj 𝑥 ∈ 𝐴 𝐵) |
13 | | nfrab1 3300 |
. . . . . 6
⊢
Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}} |
14 | | nfcv 2917 |
. . . . . 6
⊢
Ⅎ𝑥𝐴 |
15 | 13, 14 | disjss1f 30418 |
. . . . 5
⊢ ({𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}} ⊆ 𝐴 → (Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}𝐵)) |
16 | 7, 12, 15 | mpsyl 68 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → Disj 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}𝐵) |
17 | 13 | measvunilem0 31685 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}𝐵 ∈ {∅} ∧ ({𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}} ≼ ω ∧
Disj 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}𝐵)) → (𝑀‘∪
𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}𝐵) = Σ*𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}} (𝑀‘𝐵)) |
18 | 1, 6, 11, 16, 17 | syl112anc 1372 |
. . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (𝑀‘∪
𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}𝐵) = Σ*𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}} (𝑀‘𝐵)) |
19 | | rabid 3294 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})} ↔ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ (𝑆 ∖ {∅}))) |
20 | 19 | simprbi 501 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})} → 𝐵 ∈ (𝑆 ∖ {∅})) |
21 | 20 | adantl 486 |
. . . . . 6
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}) → 𝐵 ∈ (𝑆 ∖ {∅})) |
22 | 21 | ralrimiva 3111 |
. . . . 5
⊢ (𝑀 ∈ (measures‘𝑆) → ∀𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}𝐵 ∈ (𝑆 ∖ {∅})) |
23 | 22 | 3ad2ant1 1131 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → ∀𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}𝐵 ∈ (𝑆 ∖ {∅})) |
24 | | ssrab2 3980 |
. . . . . . 7
⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})} ⊆ 𝐴 |
25 | | ssct 8611 |
. . . . . . 7
⊢ (({𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})} ⊆ 𝐴 ∧ 𝐴 ≼ ω) → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})} ≼
ω) |
26 | 24, 25 | mpan 690 |
. . . . . 6
⊢ (𝐴 ≼ ω → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})} ≼
ω) |
27 | 26 | adantr 485 |
. . . . 5
⊢ ((𝐴 ≼ ω ∧
Disj 𝑥 ∈ 𝐴 𝐵) → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})} ≼
ω) |
28 | 27 | 3ad2ant3 1133 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})} ≼
ω) |
29 | | nfrab1 3300 |
. . . . . 6
⊢
Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})} |
30 | 29, 14 | disjss1f 30418 |
. . . . 5
⊢ ({𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})} ⊆ 𝐴 → (Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}𝐵)) |
31 | 24, 12, 30 | mpsyl 68 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → Disj 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}𝐵) |
32 | 29 | measvunilem 31684 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}𝐵 ∈ (𝑆 ∖ {∅}) ∧ ({𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω ∧
Disj 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}𝐵)) → (𝑀‘∪
𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = Σ*𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})} (𝑀‘𝐵)) |
33 | 1, 23, 28, 31, 32 | syl112anc 1372 |
. . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (𝑀‘∪
𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = Σ*𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})} (𝑀‘𝐵)) |
34 | 18, 33 | oveq12d 7161 |
. 2
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → ((𝑀‘∪
𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}𝐵) +𝑒 (𝑀‘∪
𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}𝐵)) = (Σ*𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}} (𝑀‘𝐵) +𝑒
Σ*𝑥 ∈
{𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})} (𝑀‘𝐵))) |
35 | | nfv 1916 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑀 ∈ (measures‘𝑆) |
36 | | nfra1 3145 |
. . . . . . 7
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 |
37 | | nfv 1916 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝐴 ≼
ω |
38 | | nfdisj1 5004 |
. . . . . . . 8
⊢
Ⅎ𝑥Disj
𝑥 ∈ 𝐴 𝐵 |
39 | 37, 38 | nfan 1901 |
. . . . . . 7
⊢
Ⅎ𝑥(𝐴 ≼ ω ∧
Disj 𝑥 ∈ 𝐴 𝐵) |
40 | 35, 36, 39 | nf3an 1903 |
. . . . . 6
⊢
Ⅎ𝑥(𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) |
41 | 13, 29 | nfun 4066 |
. . . . . 6
⊢
Ⅎ𝑥({𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}} ∪ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}) |
42 | | simp2 1135 |
. . . . . . . . 9
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆) |
43 | | rabid2 3297 |
. . . . . . . . 9
⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝑆} ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆) |
44 | 42, 43 | sylibr 237 |
. . . . . . . 8
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → 𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝑆}) |
45 | | elun 4050 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ({∅} ∪ (𝑆 ∖ {∅})) ↔
(𝐵 ∈ {∅} ∨
𝐵 ∈ (𝑆 ∖ {∅}))) |
46 | | measbase 31669 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran
sigAlgebra) |
47 | | 0elsiga 31586 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∅ ∈ 𝑆) |
48 | | snssi 4691 |
. . . . . . . . . . . . . 14
⊢ (∅
∈ 𝑆 → {∅}
⊆ 𝑆) |
49 | 46, 47, 48 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ (measures‘𝑆) → {∅} ⊆ 𝑆) |
50 | | undif 4371 |
. . . . . . . . . . . . 13
⊢
({∅} ⊆ 𝑆
↔ ({∅} ∪ (𝑆
∖ {∅})) = 𝑆) |
51 | 49, 50 | sylib 221 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ (measures‘𝑆) → ({∅} ∪ (𝑆 ∖ {∅})) = 𝑆) |
52 | 51 | eleq2d 2836 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ (measures‘𝑆) → (𝐵 ∈ ({∅} ∪ (𝑆 ∖ {∅})) ↔ 𝐵 ∈ 𝑆)) |
53 | 45, 52 | bitr3id 288 |
. . . . . . . . . 10
⊢ (𝑀 ∈ (measures‘𝑆) → ((𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅})) ↔ 𝐵 ∈ 𝑆)) |
54 | 53 | rabbidv 3390 |
. . . . . . . . 9
⊢ (𝑀 ∈ (measures‘𝑆) → {𝑥 ∈ 𝐴 ∣ (𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅}))} = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝑆}) |
55 | 54 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → {𝑥 ∈ 𝐴 ∣ (𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅}))} = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝑆}) |
56 | 44, 55 | eqtr4d 2797 |
. . . . . . 7
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → 𝐴 = {𝑥 ∈ 𝐴 ∣ (𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅}))}) |
57 | | unrab 4204 |
. . . . . . 7
⊢ ({𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}} ∪ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}) = {𝑥 ∈ 𝐴 ∣ (𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅}))} |
58 | 56, 57 | eqtr4di 2812 |
. . . . . 6
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → 𝐴 = ({𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}} ∪ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})})) |
59 | | eqidd 2760 |
. . . . . 6
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → 𝐵 = 𝐵) |
60 | 40, 14, 41, 58, 59 | iuneq12df 4902 |
. . . . 5
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}} ∪ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})})𝐵) |
61 | 60 | fveq2d 6655 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (𝑀‘∪
𝑥 ∈ 𝐴 𝐵) = (𝑀‘∪
𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}} ∪ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})})𝐵)) |
62 | | iunxun 4974 |
. . . . 5
⊢ ∪ 𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}} ∪ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})})𝐵 = (∪
𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}𝐵 ∪ ∪
𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}𝐵) |
63 | 62 | fveq2i 6654 |
. . . 4
⊢ (𝑀‘∪ 𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}} ∪ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})})𝐵) = (𝑀‘(∪
𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}𝐵 ∪ ∪
𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}𝐵)) |
64 | 61, 63 | eqtrdi 2810 |
. . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (𝑀‘∪
𝑥 ∈ 𝐴 𝐵) = (𝑀‘(∪
𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}𝐵 ∪ ∪
𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}𝐵))) |
65 | 46 | 3ad2ant1 1131 |
. . . . 5
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → 𝑆 ∈ ∪ ran
sigAlgebra) |
66 | 47 | adantr 485 |
. . . . . . . . 9
⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐵 ∈ {∅}) → ∅ ∈
𝑆) |
67 | | elsni 4532 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ {∅} → 𝐵 = ∅) |
68 | 67 | eleq1d 2835 |
. . . . . . . . . 10
⊢ (𝐵 ∈ {∅} → (𝐵 ∈ 𝑆 ↔ ∅ ∈ 𝑆)) |
69 | 68 | adantl 486 |
. . . . . . . . 9
⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐵 ∈ {∅}) → (𝐵 ∈ 𝑆 ↔ ∅ ∈ 𝑆)) |
70 | 66, 69 | mpbird 260 |
. . . . . . . 8
⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐵 ∈ {∅}) → 𝐵 ∈ 𝑆) |
71 | 46, 3, 70 | syl2an 599 |
. . . . . . 7
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}) → 𝐵 ∈ 𝑆) |
72 | 71 | ralrimiva 3111 |
. . . . . 6
⊢ (𝑀 ∈ (measures‘𝑆) → ∀𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}𝐵 ∈ 𝑆) |
73 | 72 | 3ad2ant1 1131 |
. . . . 5
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → ∀𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}𝐵 ∈ 𝑆) |
74 | 13 | sigaclcuni 31590 |
. . . . 5
⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}𝐵 ∈ 𝑆 ∧ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}} ≼ ω) →
∪ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}𝐵 ∈ 𝑆) |
75 | 65, 73, 11, 74 | syl3anc 1369 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → ∪ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}𝐵 ∈ 𝑆) |
76 | 21 | eldifad 3866 |
. . . . . . 7
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}) → 𝐵 ∈ 𝑆) |
77 | 76 | ralrimiva 3111 |
. . . . . 6
⊢ (𝑀 ∈ (measures‘𝑆) → ∀𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}𝐵 ∈ 𝑆) |
78 | 77 | 3ad2ant1 1131 |
. . . . 5
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → ∀𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}𝐵 ∈ 𝑆) |
79 | 29 | sigaclcuni 31590 |
. . . . 5
⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}𝐵 ∈ 𝑆 ∧ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω) →
∪ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}𝐵 ∈ 𝑆) |
80 | 65, 78, 28, 79 | syl3anc 1369 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → ∪ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}𝐵 ∈ 𝑆) |
81 | 3, 67 | syl 17 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}} → 𝐵 = ∅) |
82 | 81 | iuneq2i 4897 |
. . . . . 6
⊢ ∪ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}𝐵 = ∪ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}∅ |
83 | | iun0 4943 |
. . . . . 6
⊢ ∪ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}∅ =
∅ |
84 | 82, 83 | eqtri 2782 |
. . . . 5
⊢ ∪ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}𝐵 = ∅ |
85 | | ineq1 4105 |
. . . . . 6
⊢ (∪ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}𝐵 = ∅ → (∪ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}𝐵 ∩ ∪
𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = (∅ ∩ ∪ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}𝐵)) |
86 | | 0in 4283 |
. . . . . 6
⊢ (∅
∩ ∪ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = ∅ |
87 | 85, 86 | eqtrdi 2810 |
. . . . 5
⊢ (∪ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}𝐵 = ∅ → (∪ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}𝐵 ∩ ∪
𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = ∅) |
88 | 84, 87 | mp1i 13 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (∪ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}𝐵 ∩ ∪
𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = ∅) |
89 | | measun 31683 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (∪ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}𝐵 ∈ 𝑆 ∧ ∪
𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}𝐵 ∈ 𝑆) ∧ (∪
𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}𝐵 ∩ ∪
𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = ∅) → (𝑀‘(∪
𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}𝐵 ∪ ∪
𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}𝐵)) = ((𝑀‘∪
𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}𝐵) +𝑒 (𝑀‘∪
𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}𝐵))) |
90 | 1, 75, 80, 88, 89 | syl121anc 1373 |
. . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (𝑀‘(∪
𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}𝐵 ∪ ∪
𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}𝐵)) = ((𝑀‘∪
𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}𝐵) +𝑒 (𝑀‘∪
𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}𝐵))) |
91 | 64, 90 | eqtrd 2794 |
. 2
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (𝑀‘∪
𝑥 ∈ 𝐴 𝐵) = ((𝑀‘∪
𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}𝐵) +𝑒 (𝑀‘∪
𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}𝐵))) |
92 | 40, 58 | esumeq1d 31507 |
. . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → Σ*𝑥 ∈ 𝐴(𝑀‘𝐵) = Σ*𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}} ∪ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})})(𝑀‘𝐵)) |
93 | | ctex 8535 |
. . . . 5
⊢ ({𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}} ≼ ω →
{𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}} ∈
V) |
94 | 11, 93 | syl 17 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}} ∈
V) |
95 | | ctex 8535 |
. . . . 5
⊢ ({𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω →
{𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})} ∈
V) |
96 | 28, 95 | syl 17 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})} ∈
V) |
97 | | inrab 4205 |
. . . . . 6
⊢ ({𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}} ∩ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}) = {𝑥 ∈ 𝐴 ∣ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅}))} |
98 | | noel 4226 |
. . . . . . . . . 10
⊢ ¬
𝐵 ∈
∅ |
99 | | disjdif 4361 |
. . . . . . . . . . 11
⊢
({∅} ∩ (𝑆
∖ {∅})) = ∅ |
100 | 99 | eleq2i 2842 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ({∅} ∩ (𝑆 ∖ {∅})) ↔
𝐵 ∈
∅) |
101 | 98, 100 | mtbir 327 |
. . . . . . . . 9
⊢ ¬
𝐵 ∈ ({∅} ∩
(𝑆 ∖
{∅})) |
102 | | elin 3870 |
. . . . . . . . 9
⊢ (𝐵 ∈ ({∅} ∩ (𝑆 ∖ {∅})) ↔
(𝐵 ∈ {∅} ∧
𝐵 ∈ (𝑆 ∖ {∅}))) |
103 | 101, 102 | mtbi 326 |
. . . . . . . 8
⊢ ¬
(𝐵 ∈ {∅} ∧
𝐵 ∈ (𝑆 ∖ {∅})) |
104 | 103 | rgenw 3080 |
. . . . . . 7
⊢
∀𝑥 ∈
𝐴 ¬ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅})) |
105 | | rabeq0 4274 |
. . . . . . 7
⊢ ({𝑥 ∈ 𝐴 ∣ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅}))} = ∅ ↔
∀𝑥 ∈ 𝐴 ¬ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅}))) |
106 | 104, 105 | mpbir 234 |
. . . . . 6
⊢ {𝑥 ∈ 𝐴 ∣ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅}))} =
∅ |
107 | 97, 106 | eqtri 2782 |
. . . . 5
⊢ ({𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}} ∩ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}) =
∅ |
108 | 107 | a1i 11 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → ({𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}} ∩ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}) =
∅) |
109 | 1 | adantr 485 |
. . . . 5
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}) → 𝑀 ∈ (measures‘𝑆)) |
110 | 1, 71 | sylan 584 |
. . . . 5
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}) → 𝐵 ∈ 𝑆) |
111 | | measvxrge0 31677 |
. . . . 5
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵 ∈ 𝑆) → (𝑀‘𝐵) ∈ (0[,]+∞)) |
112 | 109, 110,
111 | syl2anc 588 |
. . . 4
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}}) → (𝑀‘𝐵) ∈ (0[,]+∞)) |
113 | 1 | adantr 485 |
. . . . 5
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}) → 𝑀 ∈ (measures‘𝑆)) |
114 | 20 | adantl 486 |
. . . . . 6
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}) → 𝐵 ∈ (𝑆 ∖ {∅})) |
115 | 114 | eldifad 3866 |
. . . . 5
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}) → 𝐵 ∈ 𝑆) |
116 | 113, 115,
111 | syl2anc 588 |
. . . 4
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})}) → (𝑀‘𝐵) ∈ (0[,]+∞)) |
117 | 40, 13, 29, 94, 96, 108, 112, 116 | esumsplit 31525 |
. . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → Σ*𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}} ∪ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})})(𝑀‘𝐵) = (Σ*𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}} (𝑀‘𝐵) +𝑒
Σ*𝑥 ∈
{𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})} (𝑀‘𝐵))) |
118 | 92, 117 | eqtrd 2794 |
. 2
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → Σ*𝑥 ∈ 𝐴(𝑀‘𝐵) = (Σ*𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {∅}} (𝑀‘𝐵) +𝑒
Σ*𝑥 ∈
{𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (𝑆 ∖ {∅})} (𝑀‘𝐵))) |
119 | 34, 91, 118 | 3eqtr4d 2804 |
1
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵)) → (𝑀‘∪
𝑥 ∈ 𝐴 𝐵) = Σ*𝑥 ∈ 𝐴(𝑀‘𝐵)) |