Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measvuni Structured version   Visualization version   GIF version

Theorem measvuni 34195
Description: The measure of a countable disjoint union is the sum of the measures. This theorem uses a collection rather than a set of subsets of 𝑆. (Contributed by Thierry Arnoux, 7-Mar-2017.)
Assertion
Ref Expression
measvuni ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = Σ*𝑥𝐴(𝑀𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀   𝑥,𝑆
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem measvuni
StepHypRef Expression
1 simp1 1135 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑀 ∈ (measures‘𝑆))
2 rabid 3455 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} ↔ (𝑥𝐴𝐵 ∈ {∅}))
32simprbi 496 . . . . . . 7 (𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} → 𝐵 ∈ {∅})
43adantl 481 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}) → 𝐵 ∈ {∅})
54ralrimiva 3144 . . . . 5 (𝑀 ∈ (measures‘𝑆) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 ∈ {∅})
653ad2ant1 1132 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 ∈ {∅})
7 ssrab2 4090 . . . . . . 7 {𝑥𝐴𝐵 ∈ {∅}} ⊆ 𝐴
8 ssct 9090 . . . . . . 7 (({𝑥𝐴𝐵 ∈ {∅}} ⊆ 𝐴𝐴 ≼ ω) → {𝑥𝐴𝐵 ∈ {∅}} ≼ ω)
97, 8mpan 690 . . . . . 6 (𝐴 ≼ ω → {𝑥𝐴𝐵 ∈ {∅}} ≼ ω)
109adantr 480 . . . . 5 ((𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵) → {𝑥𝐴𝐵 ∈ {∅}} ≼ ω)
11103ad2ant3 1134 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑥𝐴𝐵 ∈ {∅}} ≼ ω)
12 simp3r 1201 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Disj 𝑥𝐴 𝐵)
13 nfrab1 3454 . . . . . 6 𝑥{𝑥𝐴𝐵 ∈ {∅}}
14 nfcv 2903 . . . . . 6 𝑥𝐴
1513, 14disjss1f 32592 . . . . 5 ({𝑥𝐴𝐵 ∈ {∅}} ⊆ 𝐴 → (Disj 𝑥𝐴 𝐵Disj 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵))
167, 12, 15mpsyl 68 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Disj 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵)
1713measvunilem0 34194 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 ∈ {∅} ∧ ({𝑥𝐴𝐵 ∈ {∅}} ≼ ω ∧ Disj 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵)) → (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵) = Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} (𝑀𝐵))
181, 6, 11, 16, 17syl112anc 1373 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵) = Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} (𝑀𝐵))
19 rabid 3455 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ↔ (𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})))
2019simprbi 496 . . . . . . 7 (𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} → 𝐵 ∈ (𝑆 ∖ {∅}))
2120adantl 481 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) → 𝐵 ∈ (𝑆 ∖ {∅}))
2221ralrimiva 3144 . . . . 5 (𝑀 ∈ (measures‘𝑆) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵 ∈ (𝑆 ∖ {∅}))
23223ad2ant1 1132 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵 ∈ (𝑆 ∖ {∅}))
24 ssrab2 4090 . . . . . . 7 {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ⊆ 𝐴
25 ssct 9090 . . . . . . 7 (({𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ⊆ 𝐴𝐴 ≼ ω) → {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω)
2624, 25mpan 690 . . . . . 6 (𝐴 ≼ ω → {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω)
2726adantr 480 . . . . 5 ((𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵) → {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω)
28273ad2ant3 1134 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω)
29 nfrab1 3454 . . . . . 6 𝑥{𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}
3029, 14disjss1f 32592 . . . . 5 ({𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ⊆ 𝐴 → (Disj 𝑥𝐴 𝐵Disj 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵))
3124, 12, 30mpsyl 68 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Disj 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)
3229measvunilem 34193 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵 ∈ (𝑆 ∖ {∅}) ∧ ({𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω ∧ Disj 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)) → (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} (𝑀𝐵))
331, 23, 28, 31, 32syl112anc 1373 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} (𝑀𝐵))
3418, 33oveq12d 7449 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ((𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵) +𝑒 (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)) = (Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} (𝑀𝐵) +𝑒 Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} (𝑀𝐵)))
35 nfv 1912 . . . . . . 7 𝑥 𝑀 ∈ (measures‘𝑆)
36 nfra1 3282 . . . . . . 7 𝑥𝑥𝐴 𝐵𝑆
37 nfv 1912 . . . . . . . 8 𝑥 𝐴 ≼ ω
38 nfdisj1 5129 . . . . . . . 8 𝑥Disj 𝑥𝐴 𝐵
3937, 38nfan 1897 . . . . . . 7 𝑥(𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)
4035, 36, 39nf3an 1899 . . . . . 6 𝑥(𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵))
4113, 29nfun 4180 . . . . . 6 𝑥({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})
42 simp2 1136 . . . . . . . . 9 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ∀𝑥𝐴 𝐵𝑆)
43 rabid2 3468 . . . . . . . . 9 (𝐴 = {𝑥𝐴𝐵𝑆} ↔ ∀𝑥𝐴 𝐵𝑆)
4442, 43sylibr 234 . . . . . . . 8 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐴 = {𝑥𝐴𝐵𝑆})
45 elun 4163 . . . . . . . . . . 11 (𝐵 ∈ ({∅} ∪ (𝑆 ∖ {∅})) ↔ (𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅})))
46 measbase 34178 . . . . . . . . . . . . . 14 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
47 0elsiga 34095 . . . . . . . . . . . . . 14 (𝑆 ran sigAlgebra → ∅ ∈ 𝑆)
48 snssi 4813 . . . . . . . . . . . . . 14 (∅ ∈ 𝑆 → {∅} ⊆ 𝑆)
4946, 47, 483syl 18 . . . . . . . . . . . . 13 (𝑀 ∈ (measures‘𝑆) → {∅} ⊆ 𝑆)
50 undif 4488 . . . . . . . . . . . . 13 ({∅} ⊆ 𝑆 ↔ ({∅} ∪ (𝑆 ∖ {∅})) = 𝑆)
5149, 50sylib 218 . . . . . . . . . . . 12 (𝑀 ∈ (measures‘𝑆) → ({∅} ∪ (𝑆 ∖ {∅})) = 𝑆)
5251eleq2d 2825 . . . . . . . . . . 11 (𝑀 ∈ (measures‘𝑆) → (𝐵 ∈ ({∅} ∪ (𝑆 ∖ {∅})) ↔ 𝐵𝑆))
5345, 52bitr3id 285 . . . . . . . . . 10 (𝑀 ∈ (measures‘𝑆) → ((𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅})) ↔ 𝐵𝑆))
5453rabbidv 3441 . . . . . . . . 9 (𝑀 ∈ (measures‘𝑆) → {𝑥𝐴 ∣ (𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅}))} = {𝑥𝐴𝐵𝑆})
55543ad2ant1 1132 . . . . . . . 8 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑥𝐴 ∣ (𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅}))} = {𝑥𝐴𝐵𝑆})
5644, 55eqtr4d 2778 . . . . . . 7 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐴 = {𝑥𝐴 ∣ (𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅}))})
57 unrab 4321 . . . . . . 7 ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) = {𝑥𝐴 ∣ (𝐵 ∈ {∅} ∨ 𝐵 ∈ (𝑆 ∖ {∅}))}
5856, 57eqtr4di 2793 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐴 = ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}))
59 eqidd 2736 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝐵 = 𝐵)
6040, 14, 41, 58, 59iuneq12df 5023 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑥𝐴 𝐵 = 𝑥 ∈ ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})𝐵)
6160fveq2d 6911 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = (𝑀 𝑥 ∈ ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})𝐵))
62 iunxun 5099 . . . . 5 𝑥 ∈ ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})𝐵 = ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)
6362fveq2i 6910 . . . 4 (𝑀 𝑥 ∈ ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})𝐵) = (𝑀‘( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵))
6461, 63eqtrdi 2791 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = (𝑀‘( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)))
65463ad2ant1 1132 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑆 ran sigAlgebra)
6647adantr 480 . . . . . . . . 9 ((𝑆 ran sigAlgebra ∧ 𝐵 ∈ {∅}) → ∅ ∈ 𝑆)
67 elsni 4648 . . . . . . . . . . 11 (𝐵 ∈ {∅} → 𝐵 = ∅)
6867eleq1d 2824 . . . . . . . . . 10 (𝐵 ∈ {∅} → (𝐵𝑆 ↔ ∅ ∈ 𝑆))
6968adantl 481 . . . . . . . . 9 ((𝑆 ran sigAlgebra ∧ 𝐵 ∈ {∅}) → (𝐵𝑆 ↔ ∅ ∈ 𝑆))
7066, 69mpbird 257 . . . . . . . 8 ((𝑆 ran sigAlgebra ∧ 𝐵 ∈ {∅}) → 𝐵𝑆)
7146, 3, 70syl2an 596 . . . . . . 7 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}) → 𝐵𝑆)
7271ralrimiva 3144 . . . . . 6 (𝑀 ∈ (measures‘𝑆) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵𝑆)
73723ad2ant1 1132 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵𝑆)
7413sigaclcuni 34099 . . . . 5 ((𝑆 ran sigAlgebra ∧ ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵𝑆 ∧ {𝑥𝐴𝐵 ∈ {∅}} ≼ ω) → 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵𝑆)
7565, 73, 11, 74syl3anc 1370 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵𝑆)
7621eldifad 3975 . . . . . . 7 ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) → 𝐵𝑆)
7776ralrimiva 3144 . . . . . 6 (𝑀 ∈ (measures‘𝑆) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵𝑆)
78773ad2ant1 1132 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵𝑆)
7929sigaclcuni 34099 . . . . 5 ((𝑆 ran sigAlgebra ∧ ∀𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵𝑆 ∧ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω) → 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵𝑆)
8065, 78, 28, 79syl3anc 1370 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵𝑆)
813, 67syl 17 . . . . . . 7 (𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} → 𝐵 = ∅)
8281iuneq2i 5018 . . . . . 6 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 = 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}∅
83 iun0 5067 . . . . . 6 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}∅ = ∅
8482, 83eqtri 2763 . . . . 5 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 = ∅
85 ineq1 4221 . . . . . 6 ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 = ∅ → ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = (∅ ∩ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵))
86 0in 4403 . . . . . 6 (∅ ∩ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = ∅
8785, 86eqtrdi 2791 . . . . 5 ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 = ∅ → ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = ∅)
8884, 87mp1i 13 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = ∅)
89 measun 34192 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵𝑆 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵𝑆) ∧ ( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵) = ∅) → (𝑀‘( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)) = ((𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵) +𝑒 (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)))
901, 75, 80, 88, 89syl121anc 1374 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀‘( 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)) = ((𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵) +𝑒 (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)))
9164, 90eqtrd 2775 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = ((𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}𝐵) +𝑒 (𝑀 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}𝐵)))
9240, 58esumeq1d 34016 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Σ*𝑥𝐴(𝑀𝐵) = Σ*𝑥 ∈ ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})(𝑀𝐵))
93 ctex 9003 . . . . 5 ({𝑥𝐴𝐵 ∈ {∅}} ≼ ω → {𝑥𝐴𝐵 ∈ {∅}} ∈ V)
9411, 93syl 17 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑥𝐴𝐵 ∈ {∅}} ∈ V)
95 ctex 9003 . . . . 5 ({𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ≼ ω → {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ∈ V)
9628, 95syl 17 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} ∈ V)
97 inrab 4322 . . . . . 6 ({𝑥𝐴𝐵 ∈ {∅}} ∩ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) = {𝑥𝐴 ∣ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅}))}
98 noel 4344 . . . . . . . . . 10 ¬ 𝐵 ∈ ∅
99 disjdif 4478 . . . . . . . . . . 11 ({∅} ∩ (𝑆 ∖ {∅})) = ∅
10099eleq2i 2831 . . . . . . . . . 10 (𝐵 ∈ ({∅} ∩ (𝑆 ∖ {∅})) ↔ 𝐵 ∈ ∅)
10198, 100mtbir 323 . . . . . . . . 9 ¬ 𝐵 ∈ ({∅} ∩ (𝑆 ∖ {∅}))
102 elin 3979 . . . . . . . . 9 (𝐵 ∈ ({∅} ∩ (𝑆 ∖ {∅})) ↔ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅})))
103101, 102mtbi 322 . . . . . . . 8 ¬ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅}))
104103rgenw 3063 . . . . . . 7 𝑥𝐴 ¬ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅}))
105 rabeq0 4394 . . . . . . 7 ({𝑥𝐴 ∣ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅}))} = ∅ ↔ ∀𝑥𝐴 ¬ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅})))
106104, 105mpbir 231 . . . . . 6 {𝑥𝐴 ∣ (𝐵 ∈ {∅} ∧ 𝐵 ∈ (𝑆 ∖ {∅}))} = ∅
10797, 106eqtri 2763 . . . . 5 ({𝑥𝐴𝐵 ∈ {∅}} ∩ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) = ∅
108107a1i 11 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → ({𝑥𝐴𝐵 ∈ {∅}} ∩ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) = ∅)
1091adantr 480 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}) → 𝑀 ∈ (measures‘𝑆))
1101, 71sylan 580 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}) → 𝐵𝑆)
111 measvxrge0 34186 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵𝑆) → (𝑀𝐵) ∈ (0[,]+∞))
112109, 110, 111syl2anc 584 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}}) → (𝑀𝐵) ∈ (0[,]+∞))
1131adantr 480 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) → 𝑀 ∈ (measures‘𝑆))
11420adantl 481 . . . . . 6 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) → 𝐵 ∈ (𝑆 ∖ {∅}))
115114eldifad 3975 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) → 𝐵𝑆)
116113, 115, 111syl2anc 584 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) ∧ 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})}) → (𝑀𝐵) ∈ (0[,]+∞))
11740, 13, 29, 94, 96, 108, 112, 116esumsplit 34034 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Σ*𝑥 ∈ ({𝑥𝐴𝐵 ∈ {∅}} ∪ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})})(𝑀𝐵) = (Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} (𝑀𝐵) +𝑒 Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} (𝑀𝐵)))
11892, 117eqtrd 2775 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → Σ*𝑥𝐴(𝑀𝐵) = (Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ {∅}} (𝑀𝐵) +𝑒 Σ*𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝑆 ∖ {∅})} (𝑀𝐵)))
11934, 91, 1183eqtr4d 2785 1 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑥𝐴 𝐵𝑆 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵)) → (𝑀 𝑥𝐴 𝐵) = Σ*𝑥𝐴(𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  wral 3059  {crab 3433  Vcvv 3478  cdif 3960  cun 3961  cin 3962  wss 3963  c0 4339  {csn 4631   cuni 4912   ciun 4996  Disj wdisj 5115   class class class wbr 5148  ran crn 5690  cfv 6563  (class class class)co 7431  ωcom 7887  cdom 8982  0cc0 11153  +∞cpnf 11290   +𝑒 cxad 13150  [,]cicc 13387  Σ*cesum 34008  sigAlgebracsiga 34089  measurescmeas 34176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-ac2 10501  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-acn 9980  df-ac 10154  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103  df-pi 16105  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-ordt 17548  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-ps 18624  df-tsr 18625  df-plusf 18665  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-subrng 20563  df-subrg 20587  df-abv 20827  df-lmod 20877  df-scaf 20878  df-sra 21190  df-rgmod 21191  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-tmd 24096  df-tgp 24097  df-tsms 24151  df-trg 24184  df-xms 24346  df-ms 24347  df-tms 24348  df-nm 24611  df-ngp 24612  df-nrg 24614  df-nlm 24615  df-ii 24917  df-cncf 24918  df-limc 25916  df-dv 25917  df-log 26613  df-esum 34009  df-siga 34090  df-meas 34177
This theorem is referenced by:  measiuns  34198  measinblem  34201  sibfof  34322  dstrvprob  34453
  Copyright terms: Public domain W3C validator