![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ellimc | Structured version Visualization version GIF version |
Description: Value of the limit predicate. πΆ is the limit of the function πΉ at π΅ if the function πΊ, formed by adding π΅ to the domain of πΉ and setting it to πΆ, is continuous at π΅. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
limcval.j | β’ π½ = (πΎ βΎt (π΄ βͺ {π΅})) |
limcval.k | β’ πΎ = (TopOpenββfld) |
ellimc.g | β’ πΊ = (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, πΆ, (πΉβπ§))) |
ellimc.f | β’ (π β πΉ:π΄βΆβ) |
ellimc.a | β’ (π β π΄ β β) |
ellimc.b | β’ (π β π΅ β β) |
Ref | Expression |
---|---|
ellimc | β’ (π β (πΆ β (πΉ limβ π΅) β πΊ β ((π½ CnP πΎ)βπ΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ellimc.f | . . . . 5 β’ (π β πΉ:π΄βΆβ) | |
2 | ellimc.a | . . . . 5 β’ (π β π΄ β β) | |
3 | ellimc.b | . . . . 5 β’ (π β π΅ β β) | |
4 | limcval.j | . . . . . 6 β’ π½ = (πΎ βΎt (π΄ βͺ {π΅})) | |
5 | limcval.k | . . . . . 6 β’ πΎ = (TopOpenββfld) | |
6 | 4, 5 | limcfval 25819 | . . . . 5 β’ ((πΉ:π΄βΆβ β§ π΄ β β β§ π΅ β β) β ((πΉ limβ π΅) = {π¦ β£ (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, π¦, (πΉβπ§))) β ((π½ CnP πΎ)βπ΅)} β§ (πΉ limβ π΅) β β)) |
7 | 1, 2, 3, 6 | syl3anc 1368 | . . . 4 β’ (π β ((πΉ limβ π΅) = {π¦ β£ (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, π¦, (πΉβπ§))) β ((π½ CnP πΎ)βπ΅)} β§ (πΉ limβ π΅) β β)) |
8 | 7 | simpld 493 | . . 3 β’ (π β (πΉ limβ π΅) = {π¦ β£ (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, π¦, (πΉβπ§))) β ((π½ CnP πΎ)βπ΅)}) |
9 | 8 | eleq2d 2814 | . 2 β’ (π β (πΆ β (πΉ limβ π΅) β πΆ β {π¦ β£ (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, π¦, (πΉβπ§))) β ((π½ CnP πΎ)βπ΅)})) |
10 | ellimc.g | . . . . 5 β’ πΊ = (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, πΆ, (πΉβπ§))) | |
11 | 4, 5, 10 | limcvallem 25818 | . . . 4 β’ ((πΉ:π΄βΆβ β§ π΄ β β β§ π΅ β β) β (πΊ β ((π½ CnP πΎ)βπ΅) β πΆ β β)) |
12 | 1, 2, 3, 11 | syl3anc 1368 | . . 3 β’ (π β (πΊ β ((π½ CnP πΎ)βπ΅) β πΆ β β)) |
13 | ifeq1 4534 | . . . . . . 7 β’ (π¦ = πΆ β if(π§ = π΅, π¦, (πΉβπ§)) = if(π§ = π΅, πΆ, (πΉβπ§))) | |
14 | 13 | mpteq2dv 5252 | . . . . . 6 β’ (π¦ = πΆ β (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, π¦, (πΉβπ§))) = (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, πΆ, (πΉβπ§)))) |
15 | 14, 10 | eqtr4di 2785 | . . . . 5 β’ (π¦ = πΆ β (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, π¦, (πΉβπ§))) = πΊ) |
16 | 15 | eleq1d 2813 | . . . 4 β’ (π¦ = πΆ β ((π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, π¦, (πΉβπ§))) β ((π½ CnP πΎ)βπ΅) β πΊ β ((π½ CnP πΎ)βπ΅))) |
17 | 16 | elab3g 3674 | . . 3 β’ ((πΊ β ((π½ CnP πΎ)βπ΅) β πΆ β β) β (πΆ β {π¦ β£ (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, π¦, (πΉβπ§))) β ((π½ CnP πΎ)βπ΅)} β πΊ β ((π½ CnP πΎ)βπ΅))) |
18 | 12, 17 | syl 17 | . 2 β’ (π β (πΆ β {π¦ β£ (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, π¦, (πΉβπ§))) β ((π½ CnP πΎ)βπ΅)} β πΊ β ((π½ CnP πΎ)βπ΅))) |
19 | 9, 18 | bitrd 278 | 1 β’ (π β (πΆ β (πΉ limβ π΅) β πΊ β ((π½ CnP πΎ)βπ΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 {cab 2704 βͺ cun 3945 β wss 3947 ifcif 4530 {csn 4630 β¦ cmpt 5233 βΆwf 6547 βcfv 6551 (class class class)co 7424 βcc 11142 βΎt crest 17407 TopOpenctopn 17408 βfldccnfld 21284 CnP ccnp 23147 limβ climc 25809 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 ax-pre-sup 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-er 8729 df-map 8851 df-pm 8852 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-fi 9440 df-sup 9471 df-inf 9472 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-div 11908 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12509 df-z 12595 df-dec 12714 df-uz 12859 df-q 12969 df-rp 13013 df-xneg 13130 df-xadd 13131 df-xmul 13132 df-fz 13523 df-seq 14005 df-exp 14065 df-cj 15084 df-re 15085 df-im 15086 df-sqrt 15220 df-abs 15221 df-struct 17121 df-slot 17156 df-ndx 17168 df-base 17186 df-plusg 17251 df-mulr 17252 df-starv 17253 df-tset 17257 df-ple 17258 df-ds 17260 df-unif 17261 df-rest 17409 df-topn 17410 df-topgen 17430 df-psmet 21276 df-xmet 21277 df-met 21278 df-bl 21279 df-mopn 21280 df-cnfld 21285 df-top 22814 df-topon 22831 df-topsp 22853 df-bases 22867 df-cnp 23150 df-xms 24244 df-ms 24245 df-limc 25813 |
This theorem is referenced by: limcdif 25823 ellimc2 25824 limcmpt 25830 limcres 25833 cnplimc 25834 limccnp 25838 dirkercncflem2 45494 fourierdlem93 45589 fourierdlem101 45597 |
Copyright terms: Public domain | W3C validator |