MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellimc Structured version   Visualization version   GIF version

Theorem ellimc 25791
Description: Value of the limit predicate. 𝐶 is the limit of the function 𝐹 at 𝐵 if the function 𝐺, formed by adding 𝐵 to the domain of 𝐹 and setting it to 𝐶, is continuous at 𝐵. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
limcval.j 𝐽 = (𝐾t (𝐴 ∪ {𝐵}))
limcval.k 𝐾 = (TopOpen‘ℂfld)
ellimc.g 𝐺 = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))
ellimc.f (𝜑𝐹:𝐴⟶ℂ)
ellimc.a (𝜑𝐴 ⊆ ℂ)
ellimc.b (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
ellimc (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐹   𝑧,𝐾   𝑧,𝐶
Allowed substitution hints:   𝜑(𝑧)   𝐺(𝑧)   𝐽(𝑧)

Proof of Theorem ellimc
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ellimc.f . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
2 ellimc.a . . . . 5 (𝜑𝐴 ⊆ ℂ)
3 ellimc.b . . . . 5 (𝜑𝐵 ∈ ℂ)
4 limcval.j . . . . . 6 𝐽 = (𝐾t (𝐴 ∪ {𝐵}))
5 limcval.k . . . . . 6 𝐾 = (TopOpen‘ℂfld)
64, 5limcfval 25790 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 lim 𝐵) = {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ∧ (𝐹 lim 𝐵) ⊆ ℂ))
71, 2, 3, 6syl3anc 1373 . . . 4 (𝜑 → ((𝐹 lim 𝐵) = {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ∧ (𝐹 lim 𝐵) ⊆ ℂ))
87simpld 494 . . 3 (𝜑 → (𝐹 lim 𝐵) = {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)})
98eleq2d 2814 . 2 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ 𝐶 ∈ {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)}))
10 ellimc.g . . . . 5 𝐺 = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))
114, 5, 10limcvallem 25789 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐶 ∈ ℂ))
121, 2, 3, 11syl3anc 1373 . . 3 (𝜑 → (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐶 ∈ ℂ))
13 ifeq1 4482 . . . . . . 7 (𝑦 = 𝐶 → if(𝑧 = 𝐵, 𝑦, (𝐹𝑧)) = if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))
1413mpteq2dv 5189 . . . . . 6 (𝑦 = 𝐶 → (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))))
1514, 10eqtr4di 2782 . . . . 5 (𝑦 = 𝐶 → (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) = 𝐺)
1615eleq1d 2813 . . . 4 (𝑦 = 𝐶 → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)))
1716elab3g 3643 . . 3 ((𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐶 ∈ ℂ) → (𝐶 ∈ {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)))
1812, 17syl 17 . 2 (𝜑 → (𝐶 ∈ {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)))
199, 18bitrd 279 1 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  cun 3903  wss 3905  ifcif 4478  {csn 4579  cmpt 5176  wf 6482  cfv 6486  (class class class)co 7353  cc 11026  t crest 17343  TopOpenctopn 17344  fldccnfld 21280   CnP ccnp 23129   lim climc 25780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fi 9320  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-q 12869  df-rp 12913  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-fz 13430  df-seq 13928  df-exp 13988  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-struct 17077  df-slot 17112  df-ndx 17124  df-base 17140  df-plusg 17193  df-mulr 17194  df-starv 17195  df-tset 17199  df-ple 17200  df-ds 17202  df-unif 17203  df-rest 17345  df-topn 17346  df-topgen 17366  df-psmet 21272  df-xmet 21273  df-met 21274  df-bl 21275  df-mopn 21276  df-cnfld 21281  df-top 22798  df-topon 22815  df-topsp 22837  df-bases 22850  df-cnp 23132  df-xms 24225  df-ms 24226  df-limc 25784
This theorem is referenced by:  limcdif  25794  ellimc2  25795  limcmpt  25801  limcres  25804  cnplimc  25805  limccnp  25809  dirkercncflem2  46105  fourierdlem93  46200  fourierdlem101  46208
  Copyright terms: Public domain W3C validator