| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ellimc | Structured version Visualization version GIF version | ||
| Description: Value of the limit predicate. 𝐶 is the limit of the function 𝐹 at 𝐵 if the function 𝐺, formed by adding 𝐵 to the domain of 𝐹 and setting it to 𝐶, is continuous at 𝐵. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| limcval.j | ⊢ 𝐽 = (𝐾 ↾t (𝐴 ∪ {𝐵})) |
| limcval.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
| ellimc.g | ⊢ 𝐺 = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧))) |
| ellimc.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| ellimc.a | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
| ellimc.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| ellimc | ⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐵) ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellimc.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 2 | ellimc.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
| 3 | ellimc.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | limcval.j | . . . . . 6 ⊢ 𝐽 = (𝐾 ↾t (𝐴 ∪ {𝐵})) | |
| 5 | limcval.k | . . . . . 6 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
| 6 | 4, 5 | limcfval 25810 | . . . . 5 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 limℂ 𝐵) = {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ∧ (𝐹 limℂ 𝐵) ⊆ ℂ)) |
| 7 | 1, 2, 3, 6 | syl3anc 1372 | . . . 4 ⊢ (𝜑 → ((𝐹 limℂ 𝐵) = {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ∧ (𝐹 limℂ 𝐵) ⊆ ℂ)) |
| 8 | 7 | simpld 494 | . . 3 ⊢ (𝜑 → (𝐹 limℂ 𝐵) = {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)}) |
| 9 | 8 | eleq2d 2819 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐵) ↔ 𝐶 ∈ {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)})) |
| 10 | ellimc.g | . . . . 5 ⊢ 𝐺 = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧))) | |
| 11 | 4, 5, 10 | limcvallem 25809 | . . . 4 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐶 ∈ ℂ)) |
| 12 | 1, 2, 3, 11 | syl3anc 1372 | . . 3 ⊢ (𝜑 → (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐶 ∈ ℂ)) |
| 13 | ifeq1 4502 | . . . . . . 7 ⊢ (𝑦 = 𝐶 → if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧)) = if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧))) | |
| 14 | 13 | mpteq2dv 5212 | . . . . . 6 ⊢ (𝑦 = 𝐶 → (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧)))) |
| 15 | 14, 10 | eqtr4di 2787 | . . . . 5 ⊢ (𝑦 = 𝐶 → (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) = 𝐺) |
| 16 | 15 | eleq1d 2818 | . . . 4 ⊢ (𝑦 = 𝐶 → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
| 17 | 16 | elab3g 3662 | . . 3 ⊢ ((𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐶 ∈ ℂ) → (𝐶 ∈ {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
| 18 | 12, 17 | syl 17 | . 2 ⊢ (𝜑 → (𝐶 ∈ {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
| 19 | 9, 18 | bitrd 279 | 1 ⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐵) ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2712 ∪ cun 3922 ⊆ wss 3924 ifcif 4498 {csn 4599 ↦ cmpt 5198 ⟶wf 6523 ‘cfv 6527 (class class class)co 7399 ℂcc 11119 ↾t crest 17419 TopOpenctopn 17420 ℂfldccnfld 21300 CnP ccnp 23148 limℂ climc 25800 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 ax-pre-sup 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-1st 7982 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-er 8713 df-map 8836 df-pm 8837 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-fi 9417 df-sup 9448 df-inf 9449 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-div 11887 df-nn 12233 df-2 12295 df-3 12296 df-4 12297 df-5 12298 df-6 12299 df-7 12300 df-8 12301 df-9 12302 df-n0 12494 df-z 12581 df-dec 12701 df-uz 12845 df-q 12957 df-rp 13001 df-xneg 13120 df-xadd 13121 df-xmul 13122 df-fz 13514 df-seq 14009 df-exp 14069 df-cj 15105 df-re 15106 df-im 15107 df-sqrt 15241 df-abs 15242 df-struct 17151 df-slot 17186 df-ndx 17198 df-base 17214 df-plusg 17269 df-mulr 17270 df-starv 17271 df-tset 17275 df-ple 17276 df-ds 17278 df-unif 17279 df-rest 17421 df-topn 17422 df-topgen 17442 df-psmet 21292 df-xmet 21293 df-met 21294 df-bl 21295 df-mopn 21296 df-cnfld 21301 df-top 22817 df-topon 22834 df-topsp 22856 df-bases 22869 df-cnp 23151 df-xms 24244 df-ms 24245 df-limc 25804 |
| This theorem is referenced by: limcdif 25814 ellimc2 25815 limcmpt 25821 limcres 25824 cnplimc 25825 limccnp 25829 dirkercncflem2 46063 fourierdlem93 46158 fourierdlem101 46166 |
| Copyright terms: Public domain | W3C validator |