MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellimc Structured version   Visualization version   GIF version

Theorem ellimc 23975
Description: Value of the limit predicate. 𝐶 is the limit of the function 𝐹 at 𝐵 if the function 𝐺, formed by adding 𝐵 to the domain of 𝐹 and setting it to 𝐶, is continuous at 𝐵. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
limcval.j 𝐽 = (𝐾t (𝐴 ∪ {𝐵}))
limcval.k 𝐾 = (TopOpen‘ℂfld)
ellimc.g 𝐺 = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))
ellimc.f (𝜑𝐹:𝐴⟶ℂ)
ellimc.a (𝜑𝐴 ⊆ ℂ)
ellimc.b (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
ellimc (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐹   𝑧,𝐾   𝑧,𝐶
Allowed substitution hints:   𝜑(𝑧)   𝐺(𝑧)   𝐽(𝑧)

Proof of Theorem ellimc
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ellimc.f . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
2 ellimc.a . . . . 5 (𝜑𝐴 ⊆ ℂ)
3 ellimc.b . . . . 5 (𝜑𝐵 ∈ ℂ)
4 limcval.j . . . . . 6 𝐽 = (𝐾t (𝐴 ∪ {𝐵}))
5 limcval.k . . . . . 6 𝐾 = (TopOpen‘ℂfld)
64, 5limcfval 23974 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 lim 𝐵) = {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ∧ (𝐹 lim 𝐵) ⊆ ℂ))
71, 2, 3, 6syl3anc 1491 . . . 4 (𝜑 → ((𝐹 lim 𝐵) = {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ∧ (𝐹 lim 𝐵) ⊆ ℂ))
87simpld 489 . . 3 (𝜑 → (𝐹 lim 𝐵) = {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)})
98eleq2d 2863 . 2 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ 𝐶 ∈ {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)}))
10 ellimc.g . . . . 5 𝐺 = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))
114, 5, 10limcvallem 23973 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐶 ∈ ℂ))
121, 2, 3, 11syl3anc 1491 . . 3 (𝜑 → (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐶 ∈ ℂ))
13 ifeq1 4280 . . . . . . 7 (𝑦 = 𝐶 → if(𝑧 = 𝐵, 𝑦, (𝐹𝑧)) = if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))
1413mpteq2dv 4937 . . . . . 6 (𝑦 = 𝐶 → (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))))
1514, 10syl6eqr 2850 . . . . 5 (𝑦 = 𝐶 → (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) = 𝐺)
1615eleq1d 2862 . . . 4 (𝑦 = 𝐶 → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)))
1716elab3g 3548 . . 3 ((𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐶 ∈ ℂ) → (𝐶 ∈ {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)))
1812, 17syl 17 . 2 (𝜑 → (𝐶 ∈ {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)))
199, 18bitrd 271 1 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  {cab 2784  cun 3766  wss 3768  ifcif 4276  {csn 4367  cmpt 4921  wf 6096  cfv 6100  (class class class)co 6877  cc 10221  t crest 16393  TopOpenctopn 16394  fldccnfld 20065   CnP ccnp 21355   lim climc 23964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2776  ax-rep 4963  ax-sep 4974  ax-nul 4982  ax-pow 5034  ax-pr 5096  ax-un 7182  ax-cnex 10279  ax-resscn 10280  ax-1cn 10281  ax-icn 10282  ax-addcl 10283  ax-addrcl 10284  ax-mulcl 10285  ax-mulrcl 10286  ax-mulcom 10287  ax-addass 10288  ax-mulass 10289  ax-distr 10290  ax-i2m1 10291  ax-1ne0 10292  ax-1rid 10293  ax-rnegex 10294  ax-rrecex 10295  ax-cnre 10296  ax-pre-lttri 10297  ax-pre-lttrn 10298  ax-pre-ltadd 10299  ax-pre-mulgt0 10300  ax-pre-sup 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2785  df-cleq 2791  df-clel 2794  df-nfc 2929  df-ne 2971  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3386  df-sbc 3633  df-csb 3728  df-dif 3771  df-un 3773  df-in 3775  df-ss 3782  df-pss 3784  df-nul 4115  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-tp 4372  df-op 4374  df-uni 4628  df-int 4667  df-iun 4711  df-br 4843  df-opab 4905  df-mpt 4922  df-tr 4945  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5897  df-ord 5943  df-on 5944  df-lim 5945  df-suc 5946  df-iota 6063  df-fun 6102  df-fn 6103  df-f 6104  df-f1 6105  df-fo 6106  df-f1o 6107  df-fv 6108  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-om 7299  df-1st 7400  df-2nd 7401  df-wrecs 7644  df-recs 7706  df-rdg 7744  df-1o 7798  df-oadd 7802  df-er 7981  df-map 8096  df-pm 8097  df-en 8195  df-dom 8196  df-sdom 8197  df-fin 8198  df-fi 8558  df-sup 8589  df-inf 8590  df-pnf 10364  df-mnf 10365  df-xr 10366  df-ltxr 10367  df-le 10368  df-sub 10557  df-neg 10558  df-div 10976  df-nn 11312  df-2 11373  df-3 11374  df-4 11375  df-5 11376  df-6 11377  df-7 11378  df-8 11379  df-9 11380  df-n0 11578  df-z 11664  df-dec 11781  df-uz 11928  df-q 12031  df-rp 12072  df-xneg 12190  df-xadd 12191  df-xmul 12192  df-fz 12578  df-seq 13053  df-exp 13112  df-cj 14177  df-re 14178  df-im 14179  df-sqrt 14313  df-abs 14314  df-struct 16183  df-ndx 16184  df-slot 16185  df-base 16187  df-plusg 16277  df-mulr 16278  df-starv 16279  df-tset 16283  df-ple 16284  df-ds 16286  df-unif 16287  df-rest 16395  df-topn 16396  df-topgen 16416  df-psmet 20057  df-xmet 20058  df-met 20059  df-bl 20060  df-mopn 20061  df-cnfld 20066  df-top 21024  df-topon 21041  df-topsp 21063  df-bases 21076  df-cnp 21358  df-xms 22450  df-ms 22451  df-limc 23968
This theorem is referenced by:  limcdif  23978  ellimc2  23979  limcmpt  23985  limcres  23988  cnplimc  23989  limccnp  23993  dirkercncflem2  41053  fourierdlem93  41148  fourierdlem101  41156
  Copyright terms: Public domain W3C validator