![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ellimc | Structured version Visualization version GIF version |
Description: Value of the limit predicate. πΆ is the limit of the function πΉ at π΅ if the function πΊ, formed by adding π΅ to the domain of πΉ and setting it to πΆ, is continuous at π΅. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
limcval.j | β’ π½ = (πΎ βΎt (π΄ βͺ {π΅})) |
limcval.k | β’ πΎ = (TopOpenββfld) |
ellimc.g | β’ πΊ = (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, πΆ, (πΉβπ§))) |
ellimc.f | β’ (π β πΉ:π΄βΆβ) |
ellimc.a | β’ (π β π΄ β β) |
ellimc.b | β’ (π β π΅ β β) |
Ref | Expression |
---|---|
ellimc | β’ (π β (πΆ β (πΉ limβ π΅) β πΊ β ((π½ CnP πΎ)βπ΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ellimc.f | . . . . 5 β’ (π β πΉ:π΄βΆβ) | |
2 | ellimc.a | . . . . 5 β’ (π β π΄ β β) | |
3 | ellimc.b | . . . . 5 β’ (π β π΅ β β) | |
4 | limcval.j | . . . . . 6 β’ π½ = (πΎ βΎt (π΄ βͺ {π΅})) | |
5 | limcval.k | . . . . . 6 β’ πΎ = (TopOpenββfld) | |
6 | 4, 5 | limcfval 25380 | . . . . 5 β’ ((πΉ:π΄βΆβ β§ π΄ β β β§ π΅ β β) β ((πΉ limβ π΅) = {π¦ β£ (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, π¦, (πΉβπ§))) β ((π½ CnP πΎ)βπ΅)} β§ (πΉ limβ π΅) β β)) |
7 | 1, 2, 3, 6 | syl3anc 1371 | . . . 4 β’ (π β ((πΉ limβ π΅) = {π¦ β£ (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, π¦, (πΉβπ§))) β ((π½ CnP πΎ)βπ΅)} β§ (πΉ limβ π΅) β β)) |
8 | 7 | simpld 495 | . . 3 β’ (π β (πΉ limβ π΅) = {π¦ β£ (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, π¦, (πΉβπ§))) β ((π½ CnP πΎ)βπ΅)}) |
9 | 8 | eleq2d 2819 | . 2 β’ (π β (πΆ β (πΉ limβ π΅) β πΆ β {π¦ β£ (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, π¦, (πΉβπ§))) β ((π½ CnP πΎ)βπ΅)})) |
10 | ellimc.g | . . . . 5 β’ πΊ = (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, πΆ, (πΉβπ§))) | |
11 | 4, 5, 10 | limcvallem 25379 | . . . 4 β’ ((πΉ:π΄βΆβ β§ π΄ β β β§ π΅ β β) β (πΊ β ((π½ CnP πΎ)βπ΅) β πΆ β β)) |
12 | 1, 2, 3, 11 | syl3anc 1371 | . . 3 β’ (π β (πΊ β ((π½ CnP πΎ)βπ΅) β πΆ β β)) |
13 | ifeq1 4531 | . . . . . . 7 β’ (π¦ = πΆ β if(π§ = π΅, π¦, (πΉβπ§)) = if(π§ = π΅, πΆ, (πΉβπ§))) | |
14 | 13 | mpteq2dv 5249 | . . . . . 6 β’ (π¦ = πΆ β (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, π¦, (πΉβπ§))) = (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, πΆ, (πΉβπ§)))) |
15 | 14, 10 | eqtr4di 2790 | . . . . 5 β’ (π¦ = πΆ β (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, π¦, (πΉβπ§))) = πΊ) |
16 | 15 | eleq1d 2818 | . . . 4 β’ (π¦ = πΆ β ((π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, π¦, (πΉβπ§))) β ((π½ CnP πΎ)βπ΅) β πΊ β ((π½ CnP πΎ)βπ΅))) |
17 | 16 | elab3g 3674 | . . 3 β’ ((πΊ β ((π½ CnP πΎ)βπ΅) β πΆ β β) β (πΆ β {π¦ β£ (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, π¦, (πΉβπ§))) β ((π½ CnP πΎ)βπ΅)} β πΊ β ((π½ CnP πΎ)βπ΅))) |
18 | 12, 17 | syl 17 | . 2 β’ (π β (πΆ β {π¦ β£ (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, π¦, (πΉβπ§))) β ((π½ CnP πΎ)βπ΅)} β πΊ β ((π½ CnP πΎ)βπ΅))) |
19 | 9, 18 | bitrd 278 | 1 β’ (π β (πΆ β (πΉ limβ π΅) β πΊ β ((π½ CnP πΎ)βπ΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 {cab 2709 βͺ cun 3945 β wss 3947 ifcif 4527 {csn 4627 β¦ cmpt 5230 βΆwf 6536 βcfv 6540 (class class class)co 7405 βcc 11104 βΎt crest 17362 TopOpenctopn 17363 βfldccnfld 20936 CnP ccnp 22720 limβ climc 25370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fi 9402 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-fz 13481 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-mulr 17207 df-starv 17208 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-rest 17364 df-topn 17365 df-topgen 17385 df-psmet 20928 df-xmet 20929 df-met 20930 df-bl 20931 df-mopn 20932 df-cnfld 20937 df-top 22387 df-topon 22404 df-topsp 22426 df-bases 22440 df-cnp 22723 df-xms 23817 df-ms 23818 df-limc 25374 |
This theorem is referenced by: limcdif 25384 ellimc2 25385 limcmpt 25391 limcres 25394 cnplimc 25395 limccnp 25399 dirkercncflem2 44806 fourierdlem93 44901 fourierdlem101 44909 |
Copyright terms: Public domain | W3C validator |