Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ellimc | Structured version Visualization version GIF version |
Description: Value of the limit predicate. 𝐶 is the limit of the function 𝐹 at 𝐵 if the function 𝐺, formed by adding 𝐵 to the domain of 𝐹 and setting it to 𝐶, is continuous at 𝐵. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
limcval.j | ⊢ 𝐽 = (𝐾 ↾t (𝐴 ∪ {𝐵})) |
limcval.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
ellimc.g | ⊢ 𝐺 = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧))) |
ellimc.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
ellimc.a | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
ellimc.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
ellimc | ⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐵) ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ellimc.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
2 | ellimc.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
3 | ellimc.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | limcval.j | . . . . . 6 ⊢ 𝐽 = (𝐾 ↾t (𝐴 ∪ {𝐵})) | |
5 | limcval.k | . . . . . 6 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
6 | 4, 5 | limcfval 24637 | . . . . 5 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 limℂ 𝐵) = {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ∧ (𝐹 limℂ 𝐵) ⊆ ℂ)) |
7 | 1, 2, 3, 6 | syl3anc 1372 | . . . 4 ⊢ (𝜑 → ((𝐹 limℂ 𝐵) = {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ∧ (𝐹 limℂ 𝐵) ⊆ ℂ)) |
8 | 7 | simpld 498 | . . 3 ⊢ (𝜑 → (𝐹 limℂ 𝐵) = {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)}) |
9 | 8 | eleq2d 2819 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐵) ↔ 𝐶 ∈ {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)})) |
10 | ellimc.g | . . . . 5 ⊢ 𝐺 = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧))) | |
11 | 4, 5, 10 | limcvallem 24636 | . . . 4 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐶 ∈ ℂ)) |
12 | 1, 2, 3, 11 | syl3anc 1372 | . . 3 ⊢ (𝜑 → (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐶 ∈ ℂ)) |
13 | ifeq1 4428 | . . . . . . 7 ⊢ (𝑦 = 𝐶 → if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧)) = if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧))) | |
14 | 13 | mpteq2dv 5136 | . . . . . 6 ⊢ (𝑦 = 𝐶 → (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧)))) |
15 | 14, 10 | eqtr4di 2792 | . . . . 5 ⊢ (𝑦 = 𝐶 → (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) = 𝐺) |
16 | 15 | eleq1d 2818 | . . . 4 ⊢ (𝑦 = 𝐶 → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
17 | 16 | elab3g 3585 | . . 3 ⊢ ((𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐶 ∈ ℂ) → (𝐶 ∈ {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
18 | 12, 17 | syl 17 | . 2 ⊢ (𝜑 → (𝐶 ∈ {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
19 | 9, 18 | bitrd 282 | 1 ⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐵) ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 {cab 2717 ∪ cun 3851 ⊆ wss 3853 ifcif 4424 {csn 4526 ↦ cmpt 5120 ⟶wf 6346 ‘cfv 6350 (class class class)co 7183 ℂcc 10626 ↾t crest 16810 TopOpenctopn 16811 ℂfldccnfld 20230 CnP ccnp 21989 limℂ climc 24627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5164 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7492 ax-cnex 10684 ax-resscn 10685 ax-1cn 10686 ax-icn 10687 ax-addcl 10688 ax-addrcl 10689 ax-mulcl 10690 ax-mulrcl 10691 ax-mulcom 10692 ax-addass 10693 ax-mulass 10694 ax-distr 10695 ax-i2m1 10696 ax-1ne0 10697 ax-1rid 10698 ax-rnegex 10699 ax-rrecex 10700 ax-cnre 10701 ax-pre-lttri 10702 ax-pre-lttrn 10703 ax-pre-ltadd 10704 ax-pre-mulgt0 10705 ax-pre-sup 10706 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-int 4847 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-pred 6139 df-ord 6186 df-on 6187 df-lim 6188 df-suc 6189 df-iota 6308 df-fun 6352 df-fn 6353 df-f 6354 df-f1 6355 df-fo 6356 df-f1o 6357 df-fv 6358 df-riota 7140 df-ov 7186 df-oprab 7187 df-mpo 7188 df-om 7613 df-1st 7727 df-2nd 7728 df-wrecs 7989 df-recs 8050 df-rdg 8088 df-1o 8144 df-er 8333 df-map 8452 df-pm 8453 df-en 8569 df-dom 8570 df-sdom 8571 df-fin 8572 df-fi 8961 df-sup 8992 df-inf 8993 df-pnf 10768 df-mnf 10769 df-xr 10770 df-ltxr 10771 df-le 10772 df-sub 10963 df-neg 10964 df-div 11389 df-nn 11730 df-2 11792 df-3 11793 df-4 11794 df-5 11795 df-6 11796 df-7 11797 df-8 11798 df-9 11799 df-n0 11990 df-z 12076 df-dec 12193 df-uz 12338 df-q 12444 df-rp 12486 df-xneg 12603 df-xadd 12604 df-xmul 12605 df-fz 12995 df-seq 13474 df-exp 13535 df-cj 14561 df-re 14562 df-im 14563 df-sqrt 14697 df-abs 14698 df-struct 16601 df-ndx 16602 df-slot 16603 df-base 16605 df-plusg 16694 df-mulr 16695 df-starv 16696 df-tset 16700 df-ple 16701 df-ds 16703 df-unif 16704 df-rest 16812 df-topn 16813 df-topgen 16833 df-psmet 20222 df-xmet 20223 df-met 20224 df-bl 20225 df-mopn 20226 df-cnfld 20231 df-top 21658 df-topon 21675 df-topsp 21697 df-bases 21710 df-cnp 21992 df-xms 23086 df-ms 23087 df-limc 24631 |
This theorem is referenced by: limcdif 24641 ellimc2 24642 limcmpt 24648 limcres 24651 cnplimc 24652 limccnp 24656 dirkercncflem2 43228 fourierdlem93 43323 fourierdlem101 43331 |
Copyright terms: Public domain | W3C validator |