| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ellimc | Structured version Visualization version GIF version | ||
| Description: Value of the limit predicate. 𝐶 is the limit of the function 𝐹 at 𝐵 if the function 𝐺, formed by adding 𝐵 to the domain of 𝐹 and setting it to 𝐶, is continuous at 𝐵. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| limcval.j | ⊢ 𝐽 = (𝐾 ↾t (𝐴 ∪ {𝐵})) |
| limcval.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
| ellimc.g | ⊢ 𝐺 = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧))) |
| ellimc.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| ellimc.a | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
| ellimc.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| ellimc | ⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐵) ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellimc.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 2 | ellimc.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
| 3 | ellimc.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | limcval.j | . . . . . 6 ⊢ 𝐽 = (𝐾 ↾t (𝐴 ∪ {𝐵})) | |
| 5 | limcval.k | . . . . . 6 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
| 6 | 4, 5 | limcfval 25773 | . . . . 5 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 limℂ 𝐵) = {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ∧ (𝐹 limℂ 𝐵) ⊆ ℂ)) |
| 7 | 1, 2, 3, 6 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((𝐹 limℂ 𝐵) = {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ∧ (𝐹 limℂ 𝐵) ⊆ ℂ)) |
| 8 | 7 | simpld 494 | . . 3 ⊢ (𝜑 → (𝐹 limℂ 𝐵) = {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)}) |
| 9 | 8 | eleq2d 2814 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐵) ↔ 𝐶 ∈ {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)})) |
| 10 | ellimc.g | . . . . 5 ⊢ 𝐺 = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧))) | |
| 11 | 4, 5, 10 | limcvallem 25772 | . . . 4 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐶 ∈ ℂ)) |
| 12 | 1, 2, 3, 11 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐶 ∈ ℂ)) |
| 13 | ifeq1 4492 | . . . . . . 7 ⊢ (𝑦 = 𝐶 → if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧)) = if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧))) | |
| 14 | 13 | mpteq2dv 5201 | . . . . . 6 ⊢ (𝑦 = 𝐶 → (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧)))) |
| 15 | 14, 10 | eqtr4di 2782 | . . . . 5 ⊢ (𝑦 = 𝐶 → (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) = 𝐺) |
| 16 | 15 | eleq1d 2813 | . . . 4 ⊢ (𝑦 = 𝐶 → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
| 17 | 16 | elab3g 3652 | . . 3 ⊢ ((𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐶 ∈ ℂ) → (𝐶 ∈ {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
| 18 | 12, 17 | syl 17 | . 2 ⊢ (𝜑 → (𝐶 ∈ {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
| 19 | 9, 18 | bitrd 279 | 1 ⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐵) ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∪ cun 3912 ⊆ wss 3914 ifcif 4488 {csn 4589 ↦ cmpt 5188 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ↾t crest 17383 TopOpenctopn 17384 ℂfldccnfld 21264 CnP ccnp 23112 limℂ climc 25763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fi 9362 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-fz 13469 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-starv 17235 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-rest 17385 df-topn 17386 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cnp 23115 df-xms 24208 df-ms 24209 df-limc 25767 |
| This theorem is referenced by: limcdif 25777 ellimc2 25778 limcmpt 25784 limcres 25787 cnplimc 25788 limccnp 25792 dirkercncflem2 46102 fourierdlem93 46197 fourierdlem101 46205 |
| Copyright terms: Public domain | W3C validator |