![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ellimc | Structured version Visualization version GIF version |
Description: Value of the limit predicate. 𝐶 is the limit of the function 𝐹 at 𝐵 if the function 𝐺, formed by adding 𝐵 to the domain of 𝐹 and setting it to 𝐶, is continuous at 𝐵. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
limcval.j | ⊢ 𝐽 = (𝐾 ↾t (𝐴 ∪ {𝐵})) |
limcval.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
ellimc.g | ⊢ 𝐺 = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧))) |
ellimc.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
ellimc.a | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
ellimc.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
ellimc | ⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐵) ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ellimc.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
2 | ellimc.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
3 | ellimc.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | limcval.j | . . . . . 6 ⊢ 𝐽 = (𝐾 ↾t (𝐴 ∪ {𝐵})) | |
5 | limcval.k | . . . . . 6 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
6 | 4, 5 | limcfval 23974 | . . . . 5 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 limℂ 𝐵) = {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ∧ (𝐹 limℂ 𝐵) ⊆ ℂ)) |
7 | 1, 2, 3, 6 | syl3anc 1491 | . . . 4 ⊢ (𝜑 → ((𝐹 limℂ 𝐵) = {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ∧ (𝐹 limℂ 𝐵) ⊆ ℂ)) |
8 | 7 | simpld 489 | . . 3 ⊢ (𝜑 → (𝐹 limℂ 𝐵) = {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)}) |
9 | 8 | eleq2d 2863 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐵) ↔ 𝐶 ∈ {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)})) |
10 | ellimc.g | . . . . 5 ⊢ 𝐺 = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧))) | |
11 | 4, 5, 10 | limcvallem 23973 | . . . 4 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐶 ∈ ℂ)) |
12 | 1, 2, 3, 11 | syl3anc 1491 | . . 3 ⊢ (𝜑 → (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐶 ∈ ℂ)) |
13 | ifeq1 4280 | . . . . . . 7 ⊢ (𝑦 = 𝐶 → if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧)) = if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧))) | |
14 | 13 | mpteq2dv 4937 | . . . . . 6 ⊢ (𝑦 = 𝐶 → (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹‘𝑧)))) |
15 | 14, 10 | syl6eqr 2850 | . . . . 5 ⊢ (𝑦 = 𝐶 → (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) = 𝐺) |
16 | 15 | eleq1d 2862 | . . . 4 ⊢ (𝑦 = 𝐶 → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
17 | 16 | elab3g 3548 | . . 3 ⊢ ((𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐶 ∈ ℂ) → (𝐶 ∈ {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
18 | 12, 17 | syl 17 | . 2 ⊢ (𝜑 → (𝐶 ∈ {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
19 | 9, 18 | bitrd 271 | 1 ⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐵) ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 {cab 2784 ∪ cun 3766 ⊆ wss 3768 ifcif 4276 {csn 4367 ↦ cmpt 4921 ⟶wf 6096 ‘cfv 6100 (class class class)co 6877 ℂcc 10221 ↾t crest 16393 TopOpenctopn 16394 ℂfldccnfld 20065 CnP ccnp 21355 limℂ climc 23964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2776 ax-rep 4963 ax-sep 4974 ax-nul 4982 ax-pow 5034 ax-pr 5096 ax-un 7182 ax-cnex 10279 ax-resscn 10280 ax-1cn 10281 ax-icn 10282 ax-addcl 10283 ax-addrcl 10284 ax-mulcl 10285 ax-mulrcl 10286 ax-mulcom 10287 ax-addass 10288 ax-mulass 10289 ax-distr 10290 ax-i2m1 10291 ax-1ne0 10292 ax-1rid 10293 ax-rnegex 10294 ax-rrecex 10295 ax-cnre 10296 ax-pre-lttri 10297 ax-pre-lttrn 10298 ax-pre-ltadd 10299 ax-pre-mulgt0 10300 ax-pre-sup 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-ne 2971 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3386 df-sbc 3633 df-csb 3728 df-dif 3771 df-un 3773 df-in 3775 df-ss 3782 df-pss 3784 df-nul 4115 df-if 4277 df-pw 4350 df-sn 4368 df-pr 4370 df-tp 4372 df-op 4374 df-uni 4628 df-int 4667 df-iun 4711 df-br 4843 df-opab 4905 df-mpt 4922 df-tr 4945 df-id 5219 df-eprel 5224 df-po 5232 df-so 5233 df-fr 5270 df-we 5272 df-xp 5317 df-rel 5318 df-cnv 5319 df-co 5320 df-dm 5321 df-rn 5322 df-res 5323 df-ima 5324 df-pred 5897 df-ord 5943 df-on 5944 df-lim 5945 df-suc 5946 df-iota 6063 df-fun 6102 df-fn 6103 df-f 6104 df-f1 6105 df-fo 6106 df-f1o 6107 df-fv 6108 df-riota 6838 df-ov 6880 df-oprab 6881 df-mpt2 6882 df-om 7299 df-1st 7400 df-2nd 7401 df-wrecs 7644 df-recs 7706 df-rdg 7744 df-1o 7798 df-oadd 7802 df-er 7981 df-map 8096 df-pm 8097 df-en 8195 df-dom 8196 df-sdom 8197 df-fin 8198 df-fi 8558 df-sup 8589 df-inf 8590 df-pnf 10364 df-mnf 10365 df-xr 10366 df-ltxr 10367 df-le 10368 df-sub 10557 df-neg 10558 df-div 10976 df-nn 11312 df-2 11373 df-3 11374 df-4 11375 df-5 11376 df-6 11377 df-7 11378 df-8 11379 df-9 11380 df-n0 11578 df-z 11664 df-dec 11781 df-uz 11928 df-q 12031 df-rp 12072 df-xneg 12190 df-xadd 12191 df-xmul 12192 df-fz 12578 df-seq 13053 df-exp 13112 df-cj 14177 df-re 14178 df-im 14179 df-sqrt 14313 df-abs 14314 df-struct 16183 df-ndx 16184 df-slot 16185 df-base 16187 df-plusg 16277 df-mulr 16278 df-starv 16279 df-tset 16283 df-ple 16284 df-ds 16286 df-unif 16287 df-rest 16395 df-topn 16396 df-topgen 16416 df-psmet 20057 df-xmet 20058 df-met 20059 df-bl 20060 df-mopn 20061 df-cnfld 20066 df-top 21024 df-topon 21041 df-topsp 21063 df-bases 21076 df-cnp 21358 df-xms 22450 df-ms 22451 df-limc 23968 |
This theorem is referenced by: limcdif 23978 ellimc2 23979 limcmpt 23985 limcres 23988 cnplimc 23989 limccnp 23993 dirkercncflem2 41053 fourierdlem93 41148 fourierdlem101 41156 |
Copyright terms: Public domain | W3C validator |