MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellimc Structured version   Visualization version   GIF version

Theorem ellimc 25928
Description: Value of the limit predicate. 𝐶 is the limit of the function 𝐹 at 𝐵 if the function 𝐺, formed by adding 𝐵 to the domain of 𝐹 and setting it to 𝐶, is continuous at 𝐵. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
limcval.j 𝐽 = (𝐾t (𝐴 ∪ {𝐵}))
limcval.k 𝐾 = (TopOpen‘ℂfld)
ellimc.g 𝐺 = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))
ellimc.f (𝜑𝐹:𝐴⟶ℂ)
ellimc.a (𝜑𝐴 ⊆ ℂ)
ellimc.b (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
ellimc (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐹   𝑧,𝐾   𝑧,𝐶
Allowed substitution hints:   𝜑(𝑧)   𝐺(𝑧)   𝐽(𝑧)

Proof of Theorem ellimc
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ellimc.f . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
2 ellimc.a . . . . 5 (𝜑𝐴 ⊆ ℂ)
3 ellimc.b . . . . 5 (𝜑𝐵 ∈ ℂ)
4 limcval.j . . . . . 6 𝐽 = (𝐾t (𝐴 ∪ {𝐵}))
5 limcval.k . . . . . 6 𝐾 = (TopOpen‘ℂfld)
64, 5limcfval 25927 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 lim 𝐵) = {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ∧ (𝐹 lim 𝐵) ⊆ ℂ))
71, 2, 3, 6syl3anc 1371 . . . 4 (𝜑 → ((𝐹 lim 𝐵) = {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ∧ (𝐹 lim 𝐵) ⊆ ℂ))
87simpld 494 . . 3 (𝜑 → (𝐹 lim 𝐵) = {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)})
98eleq2d 2830 . 2 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ 𝐶 ∈ {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)}))
10 ellimc.g . . . . 5 𝐺 = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))
114, 5, 10limcvallem 25926 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐶 ∈ ℂ))
121, 2, 3, 11syl3anc 1371 . . 3 (𝜑 → (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐶 ∈ ℂ))
13 ifeq1 4552 . . . . . . 7 (𝑦 = 𝐶 → if(𝑧 = 𝐵, 𝑦, (𝐹𝑧)) = if(𝑧 = 𝐵, 𝐶, (𝐹𝑧)))
1413mpteq2dv 5268 . . . . . 6 (𝑦 = 𝐶 → (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, (𝐹𝑧))))
1514, 10eqtr4di 2798 . . . . 5 (𝑦 = 𝐶 → (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) = 𝐺)
1615eleq1d 2829 . . . 4 (𝑦 = 𝐶 → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)))
1716elab3g 3701 . . 3 ((𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵) → 𝐶 ∈ ℂ) → (𝐶 ∈ {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)))
1812, 17syl 17 . 2 (𝜑 → (𝐶 ∈ {𝑦 ∣ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)} ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)))
199, 18bitrd 279 1 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {cab 2717  cun 3974  wss 3976  ifcif 4548  {csn 4648  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  t crest 17480  TopOpenctopn 17481  fldccnfld 21387   CnP ccnp 23254   lim climc 25917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-rest 17482  df-topn 17483  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cnp 23257  df-xms 24351  df-ms 24352  df-limc 25921
This theorem is referenced by:  limcdif  25931  ellimc2  25932  limcmpt  25938  limcres  25941  cnplimc  25942  limccnp  25946  dirkercncflem2  46025  fourierdlem93  46120  fourierdlem101  46128
  Copyright terms: Public domain W3C validator