Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isismty Structured version   Visualization version   GIF version

Theorem isismty 37825
Description: The condition "is an isometry". (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
isismty ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))))
Distinct variable groups:   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝐹,𝑦

Proof of Theorem isismty
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ismtyval 37824 . . 3 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝑀 Ismty 𝑁) = {𝑓 ∣ (𝑓:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦)))})
21eleq2d 2820 . 2 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ 𝐹 ∈ {𝑓 ∣ (𝑓:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦)))}))
3 f1of 6818 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋𝑌)
43adantr 480 . . . . . 6 ((𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))) → 𝐹:𝑋𝑌)
5 elfvdm 6913 . . . . . 6 (𝑀 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
6 elfvdm 6913 . . . . . 6 (𝑁 ∈ (∞Met‘𝑌) → 𝑌 ∈ dom ∞Met)
7 fex2 7932 . . . . . 6 ((𝐹:𝑋𝑌𝑋 ∈ dom ∞Met ∧ 𝑌 ∈ dom ∞Met) → 𝐹 ∈ V)
84, 5, 6, 7syl3an 1160 . . . . 5 (((𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))) ∧ 𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → 𝐹 ∈ V)
983expib 1122 . . . 4 ((𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))) → ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → 𝐹 ∈ V))
109com12 32 . . 3 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → ((𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))) → 𝐹 ∈ V))
11 f1oeq1 6806 . . . . 5 (𝑓 = 𝐹 → (𝑓:𝑋1-1-onto𝑌𝐹:𝑋1-1-onto𝑌))
12 fveq1 6875 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
13 fveq1 6875 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
1412, 13oveq12d 7423 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓𝑥)𝑁(𝑓𝑦)) = ((𝐹𝑥)𝑁(𝐹𝑦)))
1514eqeq2d 2746 . . . . . 6 (𝑓 = 𝐹 → ((𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦)) ↔ (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))))
16152ralbidv 3205 . . . . 5 (𝑓 = 𝐹 → (∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦)) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))))
1711, 16anbi12d 632 . . . 4 (𝑓 = 𝐹 → ((𝑓:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦))) ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))))
1817elab3g 3664 . . 3 (((𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))) → 𝐹 ∈ V) → (𝐹 ∈ {𝑓 ∣ (𝑓:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦)))} ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))))
1910, 18syl 17 . 2 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ {𝑓 ∣ (𝑓:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦)))} ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))))
202, 19bitrd 279 1 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {cab 2713  wral 3051  Vcvv 3459  dom cdm 5654  wf 6527  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  ∞Metcxmet 21300   Ismty cismty 37822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8842  df-xr 11273  df-xmet 21308  df-ismty 37823
This theorem is referenced by:  ismtycnv  37826  ismtyima  37827  ismtyhmeolem  37828  ismtybndlem  37830  ismtyres  37832  ismrer1  37862  reheibor  37863
  Copyright terms: Public domain W3C validator