Step | Hyp | Ref
| Expression |
1 | | ismtyval 35885 |
. . 3
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝑀 Ismty 𝑁) = {𝑓 ∣ (𝑓:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝑓‘𝑥)𝑁(𝑓‘𝑦)))}) |
2 | 1 | eleq2d 2824 |
. 2
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ 𝐹 ∈ {𝑓 ∣ (𝑓:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝑓‘𝑥)𝑁(𝑓‘𝑦)))})) |
3 | | f1of 6700 |
. . . . . . 7
⊢ (𝐹:𝑋–1-1-onto→𝑌 → 𝐹:𝑋⟶𝑌) |
4 | 3 | adantr 480 |
. . . . . 6
⊢ ((𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))) → 𝐹:𝑋⟶𝑌) |
5 | | elfvdm 6788 |
. . . . . 6
⊢ (𝑀 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) |
6 | | elfvdm 6788 |
. . . . . 6
⊢ (𝑁 ∈ (∞Met‘𝑌) → 𝑌 ∈ dom ∞Met) |
7 | | fex2 7754 |
. . . . . 6
⊢ ((𝐹:𝑋⟶𝑌 ∧ 𝑋 ∈ dom ∞Met ∧ 𝑌 ∈ dom ∞Met) →
𝐹 ∈
V) |
8 | 4, 5, 6, 7 | syl3an 1158 |
. . . . 5
⊢ (((𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))) ∧ 𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → 𝐹 ∈ V) |
9 | 8 | 3expib 1120 |
. . . 4
⊢ ((𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))) → ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → 𝐹 ∈ V)) |
10 | 9 | com12 32 |
. . 3
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → ((𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))) → 𝐹 ∈ V)) |
11 | | f1oeq1 6688 |
. . . . 5
⊢ (𝑓 = 𝐹 → (𝑓:𝑋–1-1-onto→𝑌 ↔ 𝐹:𝑋–1-1-onto→𝑌)) |
12 | | fveq1 6755 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) |
13 | | fveq1 6755 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) |
14 | 12, 13 | oveq12d 7273 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥)𝑁(𝑓‘𝑦)) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))) |
15 | 14 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑓 = 𝐹 → ((𝑥𝑀𝑦) = ((𝑓‘𝑥)𝑁(𝑓‘𝑦)) ↔ (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)))) |
16 | 15 | 2ralbidv 3122 |
. . . . 5
⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝑓‘𝑥)𝑁(𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)))) |
17 | 11, 16 | anbi12d 630 |
. . . 4
⊢ (𝑓 = 𝐹 → ((𝑓:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝑓‘𝑥)𝑁(𝑓‘𝑦))) ↔ (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))))) |
18 | 17 | elab3g 3609 |
. . 3
⊢ (((𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))) → 𝐹 ∈ V) → (𝐹 ∈ {𝑓 ∣ (𝑓:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝑓‘𝑥)𝑁(𝑓‘𝑦)))} ↔ (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))))) |
19 | 10, 18 | syl 17 |
. 2
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ {𝑓 ∣ (𝑓:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝑓‘𝑥)𝑁(𝑓‘𝑦)))} ↔ (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))))) |
20 | 2, 19 | bitrd 278 |
1
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))))) |