Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isismty Structured version   Visualization version   GIF version

Theorem isismty 36607
Description: The condition "is an isometry". (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
isismty ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))))
Distinct variable groups:   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝐹,𝑦

Proof of Theorem isismty
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ismtyval 36606 . . 3 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝑀 Ismty 𝑁) = {𝑓 ∣ (𝑓:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦)))})
21eleq2d 2820 . 2 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ 𝐹 ∈ {𝑓 ∣ (𝑓:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦)))}))
3 f1of 6830 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋𝑌)
43adantr 482 . . . . . 6 ((𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))) → 𝐹:𝑋𝑌)
5 elfvdm 6925 . . . . . 6 (𝑀 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
6 elfvdm 6925 . . . . . 6 (𝑁 ∈ (∞Met‘𝑌) → 𝑌 ∈ dom ∞Met)
7 fex2 7919 . . . . . 6 ((𝐹:𝑋𝑌𝑋 ∈ dom ∞Met ∧ 𝑌 ∈ dom ∞Met) → 𝐹 ∈ V)
84, 5, 6, 7syl3an 1161 . . . . 5 (((𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))) ∧ 𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → 𝐹 ∈ V)
983expib 1123 . . . 4 ((𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))) → ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → 𝐹 ∈ V))
109com12 32 . . 3 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → ((𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))) → 𝐹 ∈ V))
11 f1oeq1 6818 . . . . 5 (𝑓 = 𝐹 → (𝑓:𝑋1-1-onto𝑌𝐹:𝑋1-1-onto𝑌))
12 fveq1 6887 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
13 fveq1 6887 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
1412, 13oveq12d 7422 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓𝑥)𝑁(𝑓𝑦)) = ((𝐹𝑥)𝑁(𝐹𝑦)))
1514eqeq2d 2744 . . . . . 6 (𝑓 = 𝐹 → ((𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦)) ↔ (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))))
16152ralbidv 3219 . . . . 5 (𝑓 = 𝐹 → (∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦)) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))))
1711, 16anbi12d 632 . . . 4 (𝑓 = 𝐹 → ((𝑓:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦))) ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))))
1817elab3g 3674 . . 3 (((𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))) → 𝐹 ∈ V) → (𝐹 ∈ {𝑓 ∣ (𝑓:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦)))} ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))))
1910, 18syl 17 . 2 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ {𝑓 ∣ (𝑓:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦)))} ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))))
202, 19bitrd 279 1 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  {cab 2710  wral 3062  Vcvv 3475  dom cdm 5675  wf 6536  1-1-ontowf1o 6539  cfv 6540  (class class class)co 7404  ∞Metcxmet 20914   Ismty cismty 36604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7407  df-oprab 7408  df-mpo 7409  df-map 8818  df-xr 11248  df-xmet 20922  df-ismty 36605
This theorem is referenced by:  ismtycnv  36608  ismtyima  36609  ismtyhmeolem  36610  ismtybndlem  36612  ismtyres  36614  ismrer1  36644  reheibor  36645
  Copyright terms: Public domain W3C validator