MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrelimasn Structured version   Visualization version   GIF version

Theorem elrelimasn 5982
Description: Elementhood in the image of a singleton. (Contributed by Mario Carneiro, 3-Nov-2015.)
Assertion
Ref Expression
elrelimasn (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵))

Proof of Theorem elrelimasn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 relimasn 5981 . . 3 (Rel 𝑅 → (𝑅 “ {𝐴}) = {𝑥𝐴𝑅𝑥})
21eleq2d 2824 . 2 (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐵 ∈ {𝑥𝐴𝑅𝑥}))
3 brrelex2 5632 . . . 4 ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ V)
43ex 412 . . 3 (Rel 𝑅 → (𝐴𝑅𝐵𝐵 ∈ V))
5 breq2 5074 . . . 4 (𝑥 = 𝐵 → (𝐴𝑅𝑥𝐴𝑅𝐵))
65elab3g 3609 . . 3 ((𝐴𝑅𝐵𝐵 ∈ V) → (𝐵 ∈ {𝑥𝐴𝑅𝑥} ↔ 𝐴𝑅𝐵))
74, 6syl 17 . 2 (Rel 𝑅 → (𝐵 ∈ {𝑥𝐴𝑅𝑥} ↔ 𝐴𝑅𝐵))
82, 7bitrd 278 1 (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2108  {cab 2715  Vcvv 3422  {csn 4558   class class class wbr 5070  cima 5583  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593
This theorem is referenced by:  eliniseg2  6003  dprd2dlem2  19558  dprd2dlem1  19559  dprd2da  19560  dprd2d2  19562  dpjfval  19573  ustuqtop4  23304  utop2nei  23310  utop3cls  23311  ucncn  23345  extdgval  31631  cnambfre  35752  frege133d  41262  nzin  41825
  Copyright terms: Public domain W3C validator