MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrelimasn Structured version   Visualization version   GIF version

Theorem elrelimasn 6037
Description: Elementhood in the image of a singleton. (Contributed by Mario Carneiro, 3-Nov-2015.)
Assertion
Ref Expression
elrelimasn (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵))

Proof of Theorem elrelimasn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 relimasn 6036 . . 3 (Rel 𝑅 → (𝑅 “ {𝐴}) = {𝑥𝐴𝑅𝑥})
21eleq2d 2814 . 2 (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐵 ∈ {𝑥𝐴𝑅𝑥}))
3 brrelex2 5673 . . . 4 ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ V)
43ex 412 . . 3 (Rel 𝑅 → (𝐴𝑅𝐵𝐵 ∈ V))
5 breq2 5096 . . . 4 (𝑥 = 𝐵 → (𝐴𝑅𝑥𝐴𝑅𝐵))
65elab3g 3641 . . 3 ((𝐴𝑅𝐵𝐵 ∈ V) → (𝐵 ∈ {𝑥𝐴𝑅𝑥} ↔ 𝐴𝑅𝐵))
74, 6syl 17 . 2 (Rel 𝑅 → (𝐵 ∈ {𝑥𝐴𝑅𝑥} ↔ 𝐴𝑅𝐵))
82, 7bitrd 279 1 (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  {cab 2707  Vcvv 3436  {csn 4577   class class class wbr 5092  cima 5622  Rel wrel 5624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632
This theorem is referenced by:  eliniseg2  6057  dprd2dlem2  19921  dprd2dlem1  19922  dprd2da  19923  dprd2d2  19925  dpjfval  19936  ustuqtop4  24130  utop2nei  24136  utop3cls  24137  ucncn  24170  extdgval  33620  cnambfre  37652  frege133d  43742  nzin  44295
  Copyright terms: Public domain W3C validator