Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elrelimasn | Structured version Visualization version GIF version |
Description: Elementhood in the image of a singleton. (Contributed by Mario Carneiro, 3-Nov-2015.) |
Ref | Expression |
---|---|
elrelimasn | ⊢ (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relimasn 5992 | . . 3 ⊢ (Rel 𝑅 → (𝑅 “ {𝐴}) = {𝑥 ∣ 𝐴𝑅𝑥}) | |
2 | 1 | eleq2d 2824 | . 2 ⊢ (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐵 ∈ {𝑥 ∣ 𝐴𝑅𝑥})) |
3 | brrelex2 5641 | . . . 4 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ V) | |
4 | 3 | ex 413 | . . 3 ⊢ (Rel 𝑅 → (𝐴𝑅𝐵 → 𝐵 ∈ V)) |
5 | breq2 5078 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐵)) | |
6 | 5 | elab3g 3616 | . . 3 ⊢ ((𝐴𝑅𝐵 → 𝐵 ∈ V) → (𝐵 ∈ {𝑥 ∣ 𝐴𝑅𝑥} ↔ 𝐴𝑅𝐵)) |
7 | 4, 6 | syl 17 | . 2 ⊢ (Rel 𝑅 → (𝐵 ∈ {𝑥 ∣ 𝐴𝑅𝑥} ↔ 𝐴𝑅𝐵)) |
8 | 2, 7 | bitrd 278 | 1 ⊢ (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 {cab 2715 Vcvv 3432 {csn 4561 class class class wbr 5074 “ cima 5592 Rel wrel 5594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 |
This theorem is referenced by: eliniseg2 6014 dprd2dlem2 19643 dprd2dlem1 19644 dprd2da 19645 dprd2d2 19647 dpjfval 19658 ustuqtop4 23396 utop2nei 23402 utop3cls 23403 ucncn 23437 extdgval 31729 cnambfre 35825 frege133d 41373 nzin 41936 |
Copyright terms: Public domain | W3C validator |