| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrelimasn | Structured version Visualization version GIF version | ||
| Description: Elementhood in the image of a singleton. (Contributed by Mario Carneiro, 3-Nov-2015.) |
| Ref | Expression |
|---|---|
| elrelimasn | ⊢ (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relimasn 6056 | . . 3 ⊢ (Rel 𝑅 → (𝑅 “ {𝐴}) = {𝑥 ∣ 𝐴𝑅𝑥}) | |
| 2 | 1 | eleq2d 2814 | . 2 ⊢ (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐵 ∈ {𝑥 ∣ 𝐴𝑅𝑥})) |
| 3 | brrelex2 5692 | . . . 4 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ V) | |
| 4 | 3 | ex 412 | . . 3 ⊢ (Rel 𝑅 → (𝐴𝑅𝐵 → 𝐵 ∈ V)) |
| 5 | breq2 5111 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐵)) | |
| 6 | 5 | elab3g 3652 | . . 3 ⊢ ((𝐴𝑅𝐵 → 𝐵 ∈ V) → (𝐵 ∈ {𝑥 ∣ 𝐴𝑅𝑥} ↔ 𝐴𝑅𝐵)) |
| 7 | 4, 6 | syl 17 | . 2 ⊢ (Rel 𝑅 → (𝐵 ∈ {𝑥 ∣ 𝐴𝑅𝑥} ↔ 𝐴𝑅𝐵)) |
| 8 | 2, 7 | bitrd 279 | 1 ⊢ (Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 {cab 2707 Vcvv 3447 {csn 4589 class class class wbr 5107 “ cima 5641 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: eliniseg2 6077 dprd2dlem2 19972 dprd2dlem1 19973 dprd2da 19974 dprd2d2 19976 dpjfval 19987 ustuqtop4 24132 utop2nei 24138 utop3cls 24139 ucncn 24172 extdgval 33649 cnambfre 37662 frege133d 43754 nzin 44307 |
| Copyright terms: Public domain | W3C validator |