![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrnmptg | Structured version Visualization version GIF version |
Description: Membership in the range of a function. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
elrnmptg | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmpt.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | rnmpt 5709 | . . 3 ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
3 | 2 | eleq2i 2874 | . 2 ⊢ (𝐶 ∈ ran 𝐹 ↔ 𝐶 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
4 | r19.29 3218 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) → ∃𝑥 ∈ 𝐴 (𝐵 ∈ 𝑉 ∧ 𝐶 = 𝐵)) | |
5 | eleq1 2870 | . . . . . . . 8 ⊢ (𝐶 = 𝐵 → (𝐶 ∈ 𝑉 ↔ 𝐵 ∈ 𝑉)) | |
6 | 5 | biimparc 480 | . . . . . . 7 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 = 𝐵) → 𝐶 ∈ 𝑉) |
7 | 6 | elexd 3457 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 = 𝐵) → 𝐶 ∈ V) |
8 | 7 | rexlimivw 3245 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 (𝐵 ∈ 𝑉 ∧ 𝐶 = 𝐵) → 𝐶 ∈ V) |
9 | 4, 8 | syl 17 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) → 𝐶 ∈ V) |
10 | 9 | ex 413 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∃𝑥 ∈ 𝐴 𝐶 = 𝐵 → 𝐶 ∈ V)) |
11 | eqeq1 2799 | . . . . 5 ⊢ (𝑦 = 𝐶 → (𝑦 = 𝐵 ↔ 𝐶 = 𝐵)) | |
12 | 11 | rexbidv 3260 | . . . 4 ⊢ (𝑦 = 𝐶 → (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
13 | 12 | elab3g 3611 | . . 3 ⊢ ((∃𝑥 ∈ 𝐴 𝐶 = 𝐵 → 𝐶 ∈ V) → (𝐶 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
14 | 10, 13 | syl 17 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝐶 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
15 | 3, 14 | syl5bb 284 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1522 ∈ wcel 2081 {cab 2775 ∀wral 3105 ∃wrex 3106 Vcvv 3437 ↦ cmpt 5041 ran crn 5444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pr 5221 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-br 4963 df-opab 5025 df-mpt 5042 df-cnv 5451 df-dm 5453 df-rn 5454 |
This theorem is referenced by: elrnmpti 5714 iunrnmptss 30007 |
Copyright terms: Public domain | W3C validator |