MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmptg Structured version   Visualization version   GIF version

Theorem elrnmptg 5824
Description: Membership in the range of a function. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
rnmpt.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
elrnmptg (∀𝑥𝐴 𝐵𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem elrnmptg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rnmpt.1 . . . 4 𝐹 = (𝑥𝐴𝐵)
21rnmpt 5820 . . 3 ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
32eleq2i 2901 . 2 (𝐶 ∈ ran 𝐹𝐶 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
4 r19.29 3251 . . . . 5 ((∀𝑥𝐴 𝐵𝑉 ∧ ∃𝑥𝐴 𝐶 = 𝐵) → ∃𝑥𝐴 (𝐵𝑉𝐶 = 𝐵))
5 eleq1 2897 . . . . . . . 8 (𝐶 = 𝐵 → (𝐶𝑉𝐵𝑉))
65biimparc 480 . . . . . . 7 ((𝐵𝑉𝐶 = 𝐵) → 𝐶𝑉)
76elexd 3512 . . . . . 6 ((𝐵𝑉𝐶 = 𝐵) → 𝐶 ∈ V)
87rexlimivw 3279 . . . . 5 (∃𝑥𝐴 (𝐵𝑉𝐶 = 𝐵) → 𝐶 ∈ V)
94, 8syl 17 . . . 4 ((∀𝑥𝐴 𝐵𝑉 ∧ ∃𝑥𝐴 𝐶 = 𝐵) → 𝐶 ∈ V)
109ex 413 . . 3 (∀𝑥𝐴 𝐵𝑉 → (∃𝑥𝐴 𝐶 = 𝐵𝐶 ∈ V))
11 eqeq1 2822 . . . . 5 (𝑦 = 𝐶 → (𝑦 = 𝐵𝐶 = 𝐵))
1211rexbidv 3294 . . . 4 (𝑦 = 𝐶 → (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
1312elab3g 3670 . . 3 ((∃𝑥𝐴 𝐶 = 𝐵𝐶 ∈ V) → (𝐶 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ↔ ∃𝑥𝐴 𝐶 = 𝐵))
1410, 13syl 17 . 2 (∀𝑥𝐴 𝐵𝑉 → (𝐶 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ↔ ∃𝑥𝐴 𝐶 = 𝐵))
153, 14syl5bb 284 1 (∀𝑥𝐴 𝐵𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  {cab 2796  wral 3135  wrex 3136  Vcvv 3492  cmpt 5137  ran crn 5549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-br 5058  df-opab 5120  df-mpt 5138  df-cnv 5556  df-dm 5558  df-rn 5559
This theorem is referenced by:  elrnmpti  5825  iunrnmptss  30245
  Copyright terms: Public domain W3C validator