MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmptg Structured version   Visualization version   GIF version

Theorem elrnmptg 5958
Description: Membership in the range of a function. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
rnmpt.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
elrnmptg (∀𝑥𝐴 𝐵𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem elrnmptg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rnmpt.1 . . . 4 𝐹 = (𝑥𝐴𝐵)
21rnmpt 5954 . . 3 ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
32eleq2i 2824 . 2 (𝐶 ∈ ran 𝐹𝐶 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
4 r19.29 3113 . . . . 5 ((∀𝑥𝐴 𝐵𝑉 ∧ ∃𝑥𝐴 𝐶 = 𝐵) → ∃𝑥𝐴 (𝐵𝑉𝐶 = 𝐵))
5 eleq1 2820 . . . . . . . 8 (𝐶 = 𝐵 → (𝐶𝑉𝐵𝑉))
65biimparc 479 . . . . . . 7 ((𝐵𝑉𝐶 = 𝐵) → 𝐶𝑉)
76elexd 3494 . . . . . 6 ((𝐵𝑉𝐶 = 𝐵) → 𝐶 ∈ V)
87rexlimivw 3150 . . . . 5 (∃𝑥𝐴 (𝐵𝑉𝐶 = 𝐵) → 𝐶 ∈ V)
94, 8syl 17 . . . 4 ((∀𝑥𝐴 𝐵𝑉 ∧ ∃𝑥𝐴 𝐶 = 𝐵) → 𝐶 ∈ V)
109ex 412 . . 3 (∀𝑥𝐴 𝐵𝑉 → (∃𝑥𝐴 𝐶 = 𝐵𝐶 ∈ V))
11 eqeq1 2735 . . . . 5 (𝑦 = 𝐶 → (𝑦 = 𝐵𝐶 = 𝐵))
1211rexbidv 3177 . . . 4 (𝑦 = 𝐶 → (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
1312elab3g 3675 . . 3 ((∃𝑥𝐴 𝐶 = 𝐵𝐶 ∈ V) → (𝐶 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ↔ ∃𝑥𝐴 𝐶 = 𝐵))
1410, 13syl 17 . 2 (∀𝑥𝐴 𝐵𝑉 → (𝐶 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ↔ ∃𝑥𝐴 𝐶 = 𝐵))
153, 14bitrid 283 1 (∀𝑥𝐴 𝐵𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  {cab 2708  wral 3060  wrex 3069  Vcvv 3473  cmpt 5231  ran crn 5677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-mpt 5232  df-cnv 5684  df-dm 5686  df-rn 5687
This theorem is referenced by:  elrnmpti  5959  iunrnmptss  32231
  Copyright terms: Public domain W3C validator