Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elrnmptg | Structured version Visualization version GIF version |
Description: Membership in the range of a function. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
elrnmptg | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmpt.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | rnmpt 5853 | . . 3 ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
3 | 2 | eleq2i 2830 | . 2 ⊢ (𝐶 ∈ ran 𝐹 ↔ 𝐶 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
4 | r19.29 3183 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) → ∃𝑥 ∈ 𝐴 (𝐵 ∈ 𝑉 ∧ 𝐶 = 𝐵)) | |
5 | eleq1 2826 | . . . . . . . 8 ⊢ (𝐶 = 𝐵 → (𝐶 ∈ 𝑉 ↔ 𝐵 ∈ 𝑉)) | |
6 | 5 | biimparc 479 | . . . . . . 7 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 = 𝐵) → 𝐶 ∈ 𝑉) |
7 | 6 | elexd 3442 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 = 𝐵) → 𝐶 ∈ V) |
8 | 7 | rexlimivw 3210 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 (𝐵 ∈ 𝑉 ∧ 𝐶 = 𝐵) → 𝐶 ∈ V) |
9 | 4, 8 | syl 17 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) → 𝐶 ∈ V) |
10 | 9 | ex 412 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∃𝑥 ∈ 𝐴 𝐶 = 𝐵 → 𝐶 ∈ V)) |
11 | eqeq1 2742 | . . . . 5 ⊢ (𝑦 = 𝐶 → (𝑦 = 𝐵 ↔ 𝐶 = 𝐵)) | |
12 | 11 | rexbidv 3225 | . . . 4 ⊢ (𝑦 = 𝐶 → (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
13 | 12 | elab3g 3609 | . . 3 ⊢ ((∃𝑥 ∈ 𝐴 𝐶 = 𝐵 → 𝐶 ∈ V) → (𝐶 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
14 | 10, 13 | syl 17 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝐶 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
15 | 3, 14 | syl5bb 282 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ↦ cmpt 5153 ran crn 5581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-mpt 5154 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: elrnmpti 5858 iunrnmptss 30806 |
Copyright terms: Public domain | W3C validator |