![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elabd | Structured version Visualization version GIF version |
Description: Explicit demonstration the class {𝑥 ∣ 𝜓} is not empty by the example 𝑋. (Contributed by RP, 12-Aug-2020.) |
Ref | Expression |
---|---|
elab.xex | ⊢ (𝜑 → 𝑋 ∈ V) |
elab.xmaj | ⊢ (𝜑 → 𝜒) |
elab.xsub | ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
elabd | ⊢ (𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab.xex | . 2 ⊢ (𝜑 → 𝑋 ∈ V) | |
2 | elab.xmaj | . 2 ⊢ (𝜑 → 𝜒) | |
3 | elab.xsub | . . 3 ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) | |
4 | 3 | spcegv 3480 | . 2 ⊢ (𝑋 ∈ V → (𝜒 → ∃𝑥𝜓)) |
5 | 1, 2, 4 | sylc 65 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1653 ∃wex 1875 ∈ wcel 2157 Vcvv 3383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2775 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-v 3385 |
This theorem is referenced by: hasheqf1od 13390 setsexstruct2 16220 wwlksnextbij 27171 wwlksnextbijOLD 27172 eqvreltr 34835 clrellem 38700 clcnvlem 38701 isomgreqve 42483 isomushgr 42484 isomgrsym 42494 isomgrtr 42497 ushrisomgr 42499 uspgrsprfo 42543 uspgrbispr 42546 |
Copyright terms: Public domain | W3C validator |