MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elabd Structured version   Visualization version   GIF version

Theorem elabd 3651
Description: Explicit demonstration the class {𝑥𝜓} is not empty by the example 𝐴. (Contributed by RP, 12-Aug-2020.) (Revised by AV, 23-Mar-2024.)
Hypotheses
Ref Expression
elabd.1 (𝜑𝐴𝑉)
elabd.2 (𝜑𝜒)
elabd.3 (𝑥 = 𝐴 → (𝜓𝜒))
Assertion
Ref Expression
elabd (𝜑𝐴 ∈ {𝑥𝜓})
Distinct variable groups:   𝑥,𝐴   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem elabd
StepHypRef Expression
1 elabd.2 . 2 (𝜑𝜒)
2 elabd.1 . . 3 (𝜑𝐴𝑉)
3 elabd.3 . . . 4 (𝑥 = 𝐴 → (𝜓𝜒))
43elabg 3646 . . 3 (𝐴𝑉 → (𝐴 ∈ {𝑥𝜓} ↔ 𝜒))
52, 4syl 17 . 2 (𝜑 → (𝐴 ∈ {𝑥𝜓} ↔ 𝜒))
61, 5mpbird 257 1 (𝜑𝐴 ∈ {𝑥𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {cab 2708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804
This theorem is referenced by:  intidg  5420  lubval  18322  glbval  18335  sursubmefmnd  18830  injsubmefmnd  18831  nosupfv  27625  branmfn  32041  orvcval  34456  r1peuqusdeg1  35637  sticksstones3  42143  rngunsnply  43165  hoidmvlelem1  46600  cfsetsnfsetf  47063  iinfconstbaslem  49058
  Copyright terms: Public domain W3C validator