| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elabd | Structured version Visualization version GIF version | ||
| Description: Explicit demonstration the class {𝑥 ∣ 𝜓} is not empty by the example 𝐴. (Contributed by RP, 12-Aug-2020.) (Revised by AV, 23-Mar-2024.) |
| Ref | Expression |
|---|---|
| elabd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| elabd.2 | ⊢ (𝜑 → 𝜒) |
| elabd.3 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| elabd | ⊢ (𝜑 → 𝐴 ∈ {𝑥 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elabd.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 2 | elabd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | elabd.3 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) | |
| 4 | 3 | elabg 3660 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝜒)) |
| 5 | 2, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝜒)) |
| 6 | 1, 5 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ∈ {𝑥 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 |
| This theorem is referenced by: intidg 5437 wfrlem15OLD 8342 lubval 18371 glbval 18384 sursubmefmnd 18879 injsubmefmnd 18880 nosupfv 27675 branmfn 32091 orvcval 34495 r1peuqusdeg1 35670 sticksstones3 42166 rngunsnply 43160 hoidmvlelem1 46591 cfsetsnfsetf 47054 iinfconstbaslem 48999 |
| Copyright terms: Public domain | W3C validator |