![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elabd | Structured version Visualization version GIF version |
Description: Explicit demonstration the class {𝑥 ∣ 𝜓} is not empty by the example 𝐴. (Contributed by RP, 12-Aug-2020.) (Revised by AV, 23-Mar-2024.) |
Ref | Expression |
---|---|
elabd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
elabd.2 | ⊢ (𝜑 → 𝜒) |
elabd.3 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
elabd | ⊢ (𝜑 → 𝐴 ∈ {𝑥 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elabd.2 | . 2 ⊢ (𝜑 → 𝜒) | |
2 | elabd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | elabd.3 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) | |
4 | 3 | elabg 3690 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝜒)) |
5 | 2, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝜒)) |
6 | 1, 5 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ∈ {𝑥 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 {cab 2717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 |
This theorem is referenced by: intidg 5477 wfrlem15OLD 8379 lubval 18426 glbval 18439 sursubmefmnd 18931 injsubmefmnd 18932 nosupfv 27769 branmfn 32137 orvcval 34422 r1peuqusdeg1 35611 sticksstones3 42105 rngunsnply 43130 hoidmvlelem1 46516 cfsetsnfsetf 46973 |
Copyright terms: Public domain | W3C validator |