| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elabd | Structured version Visualization version GIF version | ||
| Description: Explicit demonstration the class {𝑥 ∣ 𝜓} is not empty by the example 𝐴. (Contributed by RP, 12-Aug-2020.) (Revised by AV, 23-Mar-2024.) |
| Ref | Expression |
|---|---|
| elabd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| elabd.2 | ⊢ (𝜑 → 𝜒) |
| elabd.3 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| elabd | ⊢ (𝜑 → 𝐴 ∈ {𝑥 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elabd.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 2 | elabd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | elabd.3 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) | |
| 4 | 3 | elabg 3628 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝜒)) |
| 5 | 2, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝜒)) |
| 6 | 1, 5 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ∈ {𝑥 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 {cab 2711 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 |
| This theorem is referenced by: intidg 5400 lubval 18262 glbval 18275 sursubmefmnd 18806 injsubmefmnd 18807 nosupfv 27646 branmfn 32087 orvcval 34492 r1peuqusdeg1 35708 sticksstones3 42261 rngunsnply 43286 hoidmvlelem1 46717 cfsetsnfsetf 47182 iinfconstbaslem 49190 |
| Copyright terms: Public domain | W3C validator |