![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elabd | Structured version Visualization version GIF version |
Description: Explicit demonstration the class {𝑥 ∣ 𝜓} is not empty by the example 𝐴. (Contributed by RP, 12-Aug-2020.) (Revised by AV, 23-Mar-2024.) |
Ref | Expression |
---|---|
elabd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
elabd.2 | ⊢ (𝜑 → 𝜒) |
elabd.3 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
elabd | ⊢ (𝜑 → 𝐴 ∈ {𝑥 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elabd.2 | . 2 ⊢ (𝜑 → 𝜒) | |
2 | elabd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | elabd.3 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) | |
4 | 3 | elabg 3665 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝜒)) |
5 | 2, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝜒)) |
6 | 1, 5 | mpbird 256 | 1 ⊢ (𝜑 → 𝐴 ∈ {𝑥 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 {cab 2709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 |
This theorem is referenced by: intidg 5456 wfrlem15OLD 8319 lubval 18305 glbval 18318 sursubmefmnd 18773 injsubmefmnd 18774 nosupfv 27198 branmfn 31345 orvcval 33444 sticksstones3 40952 rngunsnply 41900 hoidmvlelem1 45297 cfsetsnfsetf 45754 |
Copyright terms: Public domain | W3C validator |