HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  branmfn Structured version   Visualization version   GIF version

Theorem branmfn 32049
Description: The norm of the bra function. (Contributed by NM, 24-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
branmfn (𝐴 ∈ ℋ → (normfn‘(bra‘𝐴)) = (norm𝐴))

Proof of Theorem branmfn
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 6827 . . 3 (𝐴 = 0 → (normfn‘(bra‘𝐴)) = (normfn‘(bra‘0)))
2 fveq2 6822 . . 3 (𝐴 = 0 → (norm𝐴) = (norm‘0))
31, 2eqeq12d 2745 . 2 (𝐴 = 0 → ((normfn‘(bra‘𝐴)) = (norm𝐴) ↔ (normfn‘(bra‘0)) = (norm‘0)))
4 brafn 31891 . . . . 5 (𝐴 ∈ ℋ → (bra‘𝐴): ℋ⟶ℂ)
5 nmfnval 31820 . . . . 5 ((bra‘𝐴): ℋ⟶ℂ → (normfn‘(bra‘𝐴)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, < ))
64, 5syl 17 . . . 4 (𝐴 ∈ ℋ → (normfn‘(bra‘𝐴)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, < ))
76adantr 480 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (normfn‘(bra‘𝐴)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, < ))
8 nmfnsetre 31821 . . . . . . . 8 ((bra‘𝐴): ℋ⟶ℂ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ)
94, 8syl 17 . . . . . . 7 (𝐴 ∈ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ)
10 ressxr 11159 . . . . . . 7 ℝ ⊆ ℝ*
119, 10sstrdi 3948 . . . . . 6 (𝐴 ∈ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ*)
12 normcl 31069 . . . . . . 7 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ)
1312rexrd 11165 . . . . . 6 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ*)
1411, 13jca 511 . . . . 5 (𝐴 ∈ ℋ → ({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ* ∧ (norm𝐴) ∈ ℝ*))
1514adantr 480 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ* ∧ (norm𝐴) ∈ ℝ*))
16 vex 3440 . . . . . . . 8 𝑧 ∈ V
17 eqeq1 2733 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥 = (abs‘((bra‘𝐴)‘𝑦)) ↔ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))))
1817anbi2d 630 . . . . . . . . 9 (𝑥 = 𝑧 → (((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦)))))
1918rexbidv 3153 . . . . . . . 8 (𝑥 = 𝑧 → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦)))))
2016, 19elab 3635 . . . . . . 7 (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))))
21 id 22 . . . . . . . . . . . . 13 (𝑧 = (abs‘((bra‘𝐴)‘𝑦)) → 𝑧 = (abs‘((bra‘𝐴)‘𝑦)))
22 braval 31888 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((bra‘𝐴)‘𝑦) = (𝑦 ·ih 𝐴))
2322fveq2d 6826 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘((bra‘𝐴)‘𝑦)) = (abs‘(𝑦 ·ih 𝐴)))
2423adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) ≤ 1) → (abs‘((bra‘𝐴)‘𝑦)) = (abs‘(𝑦 ·ih 𝐴)))
2521, 24sylan9eqr 2786 . . . . . . . . . . . 12 ((((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) ≤ 1) ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → 𝑧 = (abs‘(𝑦 ·ih 𝐴)))
26 bcs2 31126 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝑦) ≤ 1) → (abs‘(𝑦 ·ih 𝐴)) ≤ (norm𝐴))
27263expa 1118 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℋ ∧ 𝐴 ∈ ℋ) ∧ (norm𝑦) ≤ 1) → (abs‘(𝑦 ·ih 𝐴)) ≤ (norm𝐴))
2827ancom1s 653 . . . . . . . . . . . . 13 (((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) ≤ 1) → (abs‘(𝑦 ·ih 𝐴)) ≤ (norm𝐴))
2928adantr 480 . . . . . . . . . . . 12 ((((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) ≤ 1) ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → (abs‘(𝑦 ·ih 𝐴)) ≤ (norm𝐴))
3025, 29eqbrtrd 5114 . . . . . . . . . . 11 ((((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) ≤ 1) ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → 𝑧 ≤ (norm𝐴))
3130exp41 434 . . . . . . . . . 10 (𝐴 ∈ ℋ → (𝑦 ∈ ℋ → ((norm𝑦) ≤ 1 → (𝑧 = (abs‘((bra‘𝐴)‘𝑦)) → 𝑧 ≤ (norm𝐴)))))
3231imp4a 422 . . . . . . . . 9 (𝐴 ∈ ℋ → (𝑦 ∈ ℋ → (((norm𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → 𝑧 ≤ (norm𝐴))))
3332rexlimdv 3128 . . . . . . . 8 (𝐴 ∈ ℋ → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → 𝑧 ≤ (norm𝐴)))
3433imp 406 . . . . . . 7 ((𝐴 ∈ ℋ ∧ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦)))) → 𝑧 ≤ (norm𝐴))
3520, 34sylan2b 594 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}) → 𝑧 ≤ (norm𝐴))
3635ralrimiva 3121 . . . . 5 (𝐴 ∈ ℋ → ∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 ≤ (norm𝐴))
3736adantr 480 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 ≤ (norm𝐴))
3812recnd 11143 . . . . . . . . . 10 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℂ)
3938adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ ℂ)
40 normne0 31074 . . . . . . . . . . . . . 14 (𝐴 ∈ ℋ → ((norm𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
4140biimpar 477 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ≠ 0)
4239, 41reccld 11893 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (1 / (norm𝐴)) ∈ ℂ)
43 simpl 482 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℋ)
44 hvmulcl 30957 . . . . . . . . . . . 12 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
4542, 43, 44syl2anc 584 . . . . . . . . . . 11 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
46 norm1 31193 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) = 1)
47 1le1 11748 . . . . . . . . . . . 12 1 ≤ 1
4846, 47eqbrtrdi 5131 . . . . . . . . . . 11 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1)
49 ax-his3 31028 . . . . . . . . . . . . 13 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((1 / (norm𝐴)) · 𝐴) ·ih 𝐴) = ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)))
5042, 43, 43, 49syl3anc 1373 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (((1 / (norm𝐴)) · 𝐴) ·ih 𝐴) = ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)))
5112adantr 480 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ ℝ)
5251, 41rereccld 11951 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (1 / (norm𝐴)) ∈ ℝ)
53 hiidrcl 31039 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℋ → (𝐴 ·ih 𝐴) ∈ ℝ)
5453adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (𝐴 ·ih 𝐴) ∈ ℝ)
5552, 54remulcld 11145 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)) ∈ ℝ)
5650, 55eqeltrd 2828 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (((1 / (norm𝐴)) · 𝐴) ·ih 𝐴) ∈ ℝ)
57 normgt0 31071 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℋ → (𝐴 ≠ 0 ↔ 0 < (norm𝐴)))
5857biimpa 476 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (norm𝐴))
5951, 58recgt0d 12059 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (1 / (norm𝐴)))
60 0re 11117 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
61 ltle 11204 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ (1 / (norm𝐴)) ∈ ℝ) → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
6260, 61mpan 690 . . . . . . . . . . . . . . . 16 ((1 / (norm𝐴)) ∈ ℝ → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
6352, 59, 62sylc 65 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 ≤ (1 / (norm𝐴)))
64 hiidge0 31042 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℋ → 0 ≤ (𝐴 ·ih 𝐴))
6564adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 ≤ (𝐴 ·ih 𝐴))
6652, 54, 63, 65mulge0d 11697 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 ≤ ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)))
6766, 50breqtrrd 5120 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 ≤ (((1 / (norm𝐴)) · 𝐴) ·ih 𝐴))
6856, 67absidd 15330 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘(((1 / (norm𝐴)) · 𝐴) ·ih 𝐴)) = (((1 / (norm𝐴)) · 𝐴) ·ih 𝐴))
6939, 41recid2d 11896 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · (norm𝐴)) = 1)
7069oveq2d 7365 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm𝐴) · ((1 / (norm𝐴)) · (norm𝐴))) = ((norm𝐴) · 1))
7139, 42, 39mul12d 11325 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm𝐴) · ((1 / (norm𝐴)) · (norm𝐴))) = ((1 / (norm𝐴)) · ((norm𝐴) · (norm𝐴))))
7238sqvald 14050 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℋ → ((norm𝐴)↑2) = ((norm𝐴) · (norm𝐴)))
73 normsq 31078 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℋ → ((norm𝐴)↑2) = (𝐴 ·ih 𝐴))
7472, 73eqtr3d 2766 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℋ → ((norm𝐴) · (norm𝐴)) = (𝐴 ·ih 𝐴))
7574adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm𝐴) · (norm𝐴)) = (𝐴 ·ih 𝐴))
7675oveq2d 7365 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · ((norm𝐴) · (norm𝐴))) = ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)))
7771, 76eqtrd 2764 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm𝐴) · ((1 / (norm𝐴)) · (norm𝐴))) = ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)))
7838mulridd 11132 . . . . . . . . . . . . . 14 (𝐴 ∈ ℋ → ((norm𝐴) · 1) = (norm𝐴))
7978adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm𝐴) · 1) = (norm𝐴))
8070, 77, 793eqtr3rd 2773 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) = ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)))
8150, 68, 803eqtr4rd 2775 . . . . . . . . . . 11 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) = (abs‘(((1 / (norm𝐴)) · 𝐴) ·ih 𝐴)))
82 fveq2 6822 . . . . . . . . . . . . . 14 (𝑦 = ((1 / (norm𝐴)) · 𝐴) → (norm𝑦) = (norm‘((1 / (norm𝐴)) · 𝐴)))
8382breq1d 5102 . . . . . . . . . . . . 13 (𝑦 = ((1 / (norm𝐴)) · 𝐴) → ((norm𝑦) ≤ 1 ↔ (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1))
84 fvoveq1 7372 . . . . . . . . . . . . . 14 (𝑦 = ((1 / (norm𝐴)) · 𝐴) → (abs‘(𝑦 ·ih 𝐴)) = (abs‘(((1 / (norm𝐴)) · 𝐴) ·ih 𝐴)))
8584eqeq2d 2740 . . . . . . . . . . . . 13 (𝑦 = ((1 / (norm𝐴)) · 𝐴) → ((norm𝐴) = (abs‘(𝑦 ·ih 𝐴)) ↔ (norm𝐴) = (abs‘(((1 / (norm𝐴)) · 𝐴) ·ih 𝐴))))
8683, 85anbi12d 632 . . . . . . . . . . . 12 (𝑦 = ((1 / (norm𝐴)) · 𝐴) → (((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴))) ↔ ((norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1 ∧ (norm𝐴) = (abs‘(((1 / (norm𝐴)) · 𝐴) ·ih 𝐴)))))
8786rspcev 3577 . . . . . . . . . . 11 ((((1 / (norm𝐴)) · 𝐴) ∈ ℋ ∧ ((norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1 ∧ (norm𝐴) = (abs‘(((1 / (norm𝐴)) · 𝐴) ·ih 𝐴)))) → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴))))
8845, 48, 81, 87syl12anc 836 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴))))
8923eqeq2d 2740 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm𝐴) = (abs‘((bra‘𝐴)‘𝑦)) ↔ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴))))
9089anbi2d 630 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴)))))
9190rexbidva 3151 . . . . . . . . . . 11 (𝐴 ∈ ℋ → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴)))))
9291adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴)))))
9388, 92mpbird 257 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦))))
94 eqeq1 2733 . . . . . . . . . . 11 (𝑥 = (norm𝐴) → (𝑥 = (abs‘((bra‘𝐴)‘𝑦)) ↔ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦))))
9594anbi2d 630 . . . . . . . . . 10 (𝑥 = (norm𝐴) → (((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦)))))
9695rexbidv 3153 . . . . . . . . 9 (𝑥 = (norm𝐴) → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦)))))
9739, 93, 96elabd 3637 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))})
98 breq2 5096 . . . . . . . . 9 (𝑤 = (norm𝐴) → (𝑧 < 𝑤𝑧 < (norm𝐴)))
9998rspcev 3577 . . . . . . . 8 (((norm𝐴) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ∧ 𝑧 < (norm𝐴)) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤)
10097, 99sylan 580 . . . . . . 7 (((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑧 < (norm𝐴)) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤)
101100adantlr 715 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 < (norm𝐴)) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤)
102101ex 412 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑧 ∈ ℝ) → (𝑧 < (norm𝐴) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤))
103102ralrimiva 3121 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ∀𝑧 ∈ ℝ (𝑧 < (norm𝐴) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤))
104 supxr2 13216 . . . 4 ((({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ* ∧ (norm𝐴) ∈ ℝ*) ∧ (∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 ≤ (norm𝐴) ∧ ∀𝑧 ∈ ℝ (𝑧 < (norm𝐴) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤))) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, < ) = (norm𝐴))
10515, 37, 103, 104syl12anc 836 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, < ) = (norm𝐴))
1067, 105eqtrd 2764 . 2 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (normfn‘(bra‘𝐴)) = (norm𝐴))
107 nmfn0 31931 . . . 4 (normfn‘( ℋ × {0})) = 0
108 bra0 31894 . . . . 5 (bra‘0) = ( ℋ × {0})
109108fveq2i 6825 . . . 4 (normfn‘(bra‘0)) = (normfn‘( ℋ × {0}))
110 norm0 31072 . . . 4 (norm‘0) = 0
111107, 109, 1103eqtr4i 2762 . . 3 (normfn‘(bra‘0)) = (norm‘0)
112111a1i 11 . 2 (𝐴 ∈ ℋ → (normfn‘(bra‘0)) = (norm‘0))
1133, 106, 112pm2.61ne 3010 1 (𝐴 ∈ ℋ → (normfn‘(bra‘𝐴)) = (norm𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  wss 3903  {csn 4577   class class class wbr 5092   × cxp 5617  wf 6478  cfv 6482  (class class class)co 7349  supcsup 9330  cc 11007  cr 11008  0cc0 11009  1c1 11010   · cmul 11014  *cxr 11148   < clt 11149  cle 11150   / cdiv 11777  2c2 12183  cexp 13968  abscabs 15141  chba 30863   · csm 30865   ·ih csp 30866  normcno 30867  0c0v 30868  normfncnmf 30895  bracbr 30900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089  ax-hilex 30943  ax-hfvadd 30944  ax-hvcom 30945  ax-hvass 30946  ax-hv0cl 30947  ax-hvaddid 30948  ax-hfvmul 30949  ax-hvmulid 30950  ax-hvmulass 30951  ax-hvdistr1 30952  ax-hvdistr2 30953  ax-hvmul0 30954  ax-hfi 31023  ax-his1 31026  ax-his2 31027  ax-his3 31028  ax-his4 31029
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-cn 23112  df-cnp 23113  df-t1 23199  df-haus 23200  df-tx 23447  df-hmeo 23640  df-xms 24206  df-ms 24207  df-tms 24208  df-grpo 30437  df-gid 30438  df-ginv 30439  df-gdiv 30440  df-ablo 30489  df-vc 30503  df-nv 30536  df-va 30539  df-ba 30540  df-sm 30541  df-0v 30542  df-vs 30543  df-nmcv 30544  df-ims 30545  df-dip 30645  df-ph 30757  df-hnorm 30912  df-hba 30913  df-hvsub 30915  df-nmfn 31789  df-lnfn 31792  df-bra 31794
This theorem is referenced by:  brabn  32050
  Copyright terms: Public domain W3C validator