HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  branmfn Structured version   Visualization version   GIF version

Theorem branmfn 30368
Description: The norm of the bra function. (Contributed by NM, 24-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
branmfn (𝐴 ∈ ℋ → (normfn‘(bra‘𝐴)) = (norm𝐴))

Proof of Theorem branmfn
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 6761 . . 3 (𝐴 = 0 → (normfn‘(bra‘𝐴)) = (normfn‘(bra‘0)))
2 fveq2 6756 . . 3 (𝐴 = 0 → (norm𝐴) = (norm‘0))
31, 2eqeq12d 2754 . 2 (𝐴 = 0 → ((normfn‘(bra‘𝐴)) = (norm𝐴) ↔ (normfn‘(bra‘0)) = (norm‘0)))
4 brafn 30210 . . . . 5 (𝐴 ∈ ℋ → (bra‘𝐴): ℋ⟶ℂ)
5 nmfnval 30139 . . . . 5 ((bra‘𝐴): ℋ⟶ℂ → (normfn‘(bra‘𝐴)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, < ))
64, 5syl 17 . . . 4 (𝐴 ∈ ℋ → (normfn‘(bra‘𝐴)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, < ))
76adantr 480 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (normfn‘(bra‘𝐴)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, < ))
8 nmfnsetre 30140 . . . . . . . 8 ((bra‘𝐴): ℋ⟶ℂ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ)
94, 8syl 17 . . . . . . 7 (𝐴 ∈ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ)
10 ressxr 10950 . . . . . . 7 ℝ ⊆ ℝ*
119, 10sstrdi 3929 . . . . . 6 (𝐴 ∈ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ*)
12 normcl 29388 . . . . . . 7 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ)
1312rexrd 10956 . . . . . 6 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ*)
1411, 13jca 511 . . . . 5 (𝐴 ∈ ℋ → ({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ* ∧ (norm𝐴) ∈ ℝ*))
1514adantr 480 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ* ∧ (norm𝐴) ∈ ℝ*))
16 vex 3426 . . . . . . . 8 𝑧 ∈ V
17 eqeq1 2742 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥 = (abs‘((bra‘𝐴)‘𝑦)) ↔ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))))
1817anbi2d 628 . . . . . . . . 9 (𝑥 = 𝑧 → (((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦)))))
1918rexbidv 3225 . . . . . . . 8 (𝑥 = 𝑧 → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦)))))
2016, 19elab 3602 . . . . . . 7 (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))))
21 id 22 . . . . . . . . . . . . 13 (𝑧 = (abs‘((bra‘𝐴)‘𝑦)) → 𝑧 = (abs‘((bra‘𝐴)‘𝑦)))
22 braval 30207 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((bra‘𝐴)‘𝑦) = (𝑦 ·ih 𝐴))
2322fveq2d 6760 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘((bra‘𝐴)‘𝑦)) = (abs‘(𝑦 ·ih 𝐴)))
2423adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) ≤ 1) → (abs‘((bra‘𝐴)‘𝑦)) = (abs‘(𝑦 ·ih 𝐴)))
2521, 24sylan9eqr 2801 . . . . . . . . . . . 12 ((((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) ≤ 1) ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → 𝑧 = (abs‘(𝑦 ·ih 𝐴)))
26 bcs2 29445 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝑦) ≤ 1) → (abs‘(𝑦 ·ih 𝐴)) ≤ (norm𝐴))
27263expa 1116 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℋ ∧ 𝐴 ∈ ℋ) ∧ (norm𝑦) ≤ 1) → (abs‘(𝑦 ·ih 𝐴)) ≤ (norm𝐴))
2827ancom1s 649 . . . . . . . . . . . . 13 (((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) ≤ 1) → (abs‘(𝑦 ·ih 𝐴)) ≤ (norm𝐴))
2928adantr 480 . . . . . . . . . . . 12 ((((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) ≤ 1) ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → (abs‘(𝑦 ·ih 𝐴)) ≤ (norm𝐴))
3025, 29eqbrtrd 5092 . . . . . . . . . . 11 ((((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) ≤ 1) ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → 𝑧 ≤ (norm𝐴))
3130exp41 434 . . . . . . . . . 10 (𝐴 ∈ ℋ → (𝑦 ∈ ℋ → ((norm𝑦) ≤ 1 → (𝑧 = (abs‘((bra‘𝐴)‘𝑦)) → 𝑧 ≤ (norm𝐴)))))
3231imp4a 422 . . . . . . . . 9 (𝐴 ∈ ℋ → (𝑦 ∈ ℋ → (((norm𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → 𝑧 ≤ (norm𝐴))))
3332rexlimdv 3211 . . . . . . . 8 (𝐴 ∈ ℋ → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → 𝑧 ≤ (norm𝐴)))
3433imp 406 . . . . . . 7 ((𝐴 ∈ ℋ ∧ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦)))) → 𝑧 ≤ (norm𝐴))
3520, 34sylan2b 593 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}) → 𝑧 ≤ (norm𝐴))
3635ralrimiva 3107 . . . . 5 (𝐴 ∈ ℋ → ∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 ≤ (norm𝐴))
3736adantr 480 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 ≤ (norm𝐴))
3812recnd 10934 . . . . . . . . . 10 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℂ)
3938adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ ℂ)
40 normne0 29393 . . . . . . . . . . . . . 14 (𝐴 ∈ ℋ → ((norm𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
4140biimpar 477 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ≠ 0)
4239, 41reccld 11674 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (1 / (norm𝐴)) ∈ ℂ)
43 simpl 482 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℋ)
44 hvmulcl 29276 . . . . . . . . . . . 12 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
4542, 43, 44syl2anc 583 . . . . . . . . . . 11 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
46 norm1 29512 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) = 1)
47 1le1 11533 . . . . . . . . . . . 12 1 ≤ 1
4846, 47eqbrtrdi 5109 . . . . . . . . . . 11 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1)
49 ax-his3 29347 . . . . . . . . . . . . 13 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((1 / (norm𝐴)) · 𝐴) ·ih 𝐴) = ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)))
5042, 43, 43, 49syl3anc 1369 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (((1 / (norm𝐴)) · 𝐴) ·ih 𝐴) = ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)))
5112adantr 480 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ ℝ)
5251, 41rereccld 11732 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (1 / (norm𝐴)) ∈ ℝ)
53 hiidrcl 29358 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℋ → (𝐴 ·ih 𝐴) ∈ ℝ)
5453adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (𝐴 ·ih 𝐴) ∈ ℝ)
5552, 54remulcld 10936 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)) ∈ ℝ)
5650, 55eqeltrd 2839 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (((1 / (norm𝐴)) · 𝐴) ·ih 𝐴) ∈ ℝ)
57 normgt0 29390 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℋ → (𝐴 ≠ 0 ↔ 0 < (norm𝐴)))
5857biimpa 476 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (norm𝐴))
5951, 58recgt0d 11839 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (1 / (norm𝐴)))
60 0re 10908 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
61 ltle 10994 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ (1 / (norm𝐴)) ∈ ℝ) → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
6260, 61mpan 686 . . . . . . . . . . . . . . . 16 ((1 / (norm𝐴)) ∈ ℝ → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
6352, 59, 62sylc 65 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 ≤ (1 / (norm𝐴)))
64 hiidge0 29361 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℋ → 0 ≤ (𝐴 ·ih 𝐴))
6564adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 ≤ (𝐴 ·ih 𝐴))
6652, 54, 63, 65mulge0d 11482 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 ≤ ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)))
6766, 50breqtrrd 5098 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 ≤ (((1 / (norm𝐴)) · 𝐴) ·ih 𝐴))
6856, 67absidd 15062 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘(((1 / (norm𝐴)) · 𝐴) ·ih 𝐴)) = (((1 / (norm𝐴)) · 𝐴) ·ih 𝐴))
6939, 41recid2d 11677 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · (norm𝐴)) = 1)
7069oveq2d 7271 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm𝐴) · ((1 / (norm𝐴)) · (norm𝐴))) = ((norm𝐴) · 1))
7139, 42, 39mul12d 11114 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm𝐴) · ((1 / (norm𝐴)) · (norm𝐴))) = ((1 / (norm𝐴)) · ((norm𝐴) · (norm𝐴))))
7238sqvald 13789 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℋ → ((norm𝐴)↑2) = ((norm𝐴) · (norm𝐴)))
73 normsq 29397 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℋ → ((norm𝐴)↑2) = (𝐴 ·ih 𝐴))
7472, 73eqtr3d 2780 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℋ → ((norm𝐴) · (norm𝐴)) = (𝐴 ·ih 𝐴))
7574adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm𝐴) · (norm𝐴)) = (𝐴 ·ih 𝐴))
7675oveq2d 7271 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · ((norm𝐴) · (norm𝐴))) = ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)))
7771, 76eqtrd 2778 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm𝐴) · ((1 / (norm𝐴)) · (norm𝐴))) = ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)))
7838mulid1d 10923 . . . . . . . . . . . . . 14 (𝐴 ∈ ℋ → ((norm𝐴) · 1) = (norm𝐴))
7978adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm𝐴) · 1) = (norm𝐴))
8070, 77, 793eqtr3rd 2787 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) = ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)))
8150, 68, 803eqtr4rd 2789 . . . . . . . . . . 11 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) = (abs‘(((1 / (norm𝐴)) · 𝐴) ·ih 𝐴)))
82 fveq2 6756 . . . . . . . . . . . . . 14 (𝑦 = ((1 / (norm𝐴)) · 𝐴) → (norm𝑦) = (norm‘((1 / (norm𝐴)) · 𝐴)))
8382breq1d 5080 . . . . . . . . . . . . 13 (𝑦 = ((1 / (norm𝐴)) · 𝐴) → ((norm𝑦) ≤ 1 ↔ (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1))
84 fvoveq1 7278 . . . . . . . . . . . . . 14 (𝑦 = ((1 / (norm𝐴)) · 𝐴) → (abs‘(𝑦 ·ih 𝐴)) = (abs‘(((1 / (norm𝐴)) · 𝐴) ·ih 𝐴)))
8584eqeq2d 2749 . . . . . . . . . . . . 13 (𝑦 = ((1 / (norm𝐴)) · 𝐴) → ((norm𝐴) = (abs‘(𝑦 ·ih 𝐴)) ↔ (norm𝐴) = (abs‘(((1 / (norm𝐴)) · 𝐴) ·ih 𝐴))))
8683, 85anbi12d 630 . . . . . . . . . . . 12 (𝑦 = ((1 / (norm𝐴)) · 𝐴) → (((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴))) ↔ ((norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1 ∧ (norm𝐴) = (abs‘(((1 / (norm𝐴)) · 𝐴) ·ih 𝐴)))))
8786rspcev 3552 . . . . . . . . . . 11 ((((1 / (norm𝐴)) · 𝐴) ∈ ℋ ∧ ((norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1 ∧ (norm𝐴) = (abs‘(((1 / (norm𝐴)) · 𝐴) ·ih 𝐴)))) → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴))))
8845, 48, 81, 87syl12anc 833 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴))))
8923eqeq2d 2749 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm𝐴) = (abs‘((bra‘𝐴)‘𝑦)) ↔ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴))))
9089anbi2d 628 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴)))))
9190rexbidva 3224 . . . . . . . . . . 11 (𝐴 ∈ ℋ → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴)))))
9291adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴)))))
9388, 92mpbird 256 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦))))
94 eqeq1 2742 . . . . . . . . . . 11 (𝑥 = (norm𝐴) → (𝑥 = (abs‘((bra‘𝐴)‘𝑦)) ↔ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦))))
9594anbi2d 628 . . . . . . . . . 10 (𝑥 = (norm𝐴) → (((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦)))))
9695rexbidv 3225 . . . . . . . . 9 (𝑥 = (norm𝐴) → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦)))))
9739, 93, 96elabd 3605 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))})
98 breq2 5074 . . . . . . . . 9 (𝑤 = (norm𝐴) → (𝑧 < 𝑤𝑧 < (norm𝐴)))
9998rspcev 3552 . . . . . . . 8 (((norm𝐴) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ∧ 𝑧 < (norm𝐴)) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤)
10097, 99sylan 579 . . . . . . 7 (((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑧 < (norm𝐴)) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤)
101100adantlr 711 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 < (norm𝐴)) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤)
102101ex 412 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑧 ∈ ℝ) → (𝑧 < (norm𝐴) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤))
103102ralrimiva 3107 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ∀𝑧 ∈ ℝ (𝑧 < (norm𝐴) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤))
104 supxr2 12977 . . . 4 ((({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ* ∧ (norm𝐴) ∈ ℝ*) ∧ (∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 ≤ (norm𝐴) ∧ ∀𝑧 ∈ ℝ (𝑧 < (norm𝐴) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤))) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, < ) = (norm𝐴))
10515, 37, 103, 104syl12anc 833 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, < ) = (norm𝐴))
1067, 105eqtrd 2778 . 2 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (normfn‘(bra‘𝐴)) = (norm𝐴))
107 nmfn0 30250 . . . 4 (normfn‘( ℋ × {0})) = 0
108 bra0 30213 . . . . 5 (bra‘0) = ( ℋ × {0})
109108fveq2i 6759 . . . 4 (normfn‘(bra‘0)) = (normfn‘( ℋ × {0}))
110 norm0 29391 . . . 4 (norm‘0) = 0
111107, 109, 1103eqtr4i 2776 . . 3 (normfn‘(bra‘0)) = (norm‘0)
112111a1i 11 . 2 (𝐴 ∈ ℋ → (normfn‘(bra‘0)) = (norm‘0))
1133, 106, 112pm2.61ne 3029 1 (𝐴 ∈ ℋ → (normfn‘(bra‘𝐴)) = (norm𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  wne 2942  wral 3063  wrex 3064  wss 3883  {csn 4558   class class class wbr 5070   × cxp 5578  wf 6414  cfv 6418  (class class class)co 7255  supcsup 9129  cc 10800  cr 10801  0cc0 10802  1c1 10803   · cmul 10807  *cxr 10939   < clt 10940  cle 10941   / cdiv 11562  2c2 11958  cexp 13710  abscabs 14873  chba 29182   · csm 29184   ·ih csp 29185  normcno 29186  0c0v 29187  normfncnmf 29214  bracbr 29219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882  ax-hilex 29262  ax-hfvadd 29263  ax-hvcom 29264  ax-hvass 29265  ax-hv0cl 29266  ax-hvaddid 29267  ax-hfvmul 29268  ax-hvmulid 29269  ax-hvmulass 29270  ax-hvdistr1 29271  ax-hvdistr2 29272  ax-hvmul0 29273  ax-hfi 29342  ax-his1 29345  ax-his2 29346  ax-his3 29347  ax-his4 29348
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-cn 22286  df-cnp 22287  df-t1 22373  df-haus 22374  df-tx 22621  df-hmeo 22814  df-xms 23381  df-ms 23382  df-tms 23383  df-grpo 28756  df-gid 28757  df-ginv 28758  df-gdiv 28759  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-vs 28862  df-nmcv 28863  df-ims 28864  df-dip 28964  df-ph 29076  df-hnorm 29231  df-hba 29232  df-hvsub 29234  df-nmfn 30108  df-lnfn 30111  df-bra 30113
This theorem is referenced by:  brabn  30369
  Copyright terms: Public domain W3C validator