HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  branmfn Structured version   Visualization version   GIF version

Theorem branmfn 30821
Description: The norm of the bra function. (Contributed by NM, 24-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
branmfn (𝐴 ∈ ℋ → (normfn‘(bra‘𝐴)) = (norm𝐴))

Proof of Theorem branmfn
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 6839 . . 3 (𝐴 = 0 → (normfn‘(bra‘𝐴)) = (normfn‘(bra‘0)))
2 fveq2 6834 . . 3 (𝐴 = 0 → (norm𝐴) = (norm‘0))
31, 2eqeq12d 2753 . 2 (𝐴 = 0 → ((normfn‘(bra‘𝐴)) = (norm𝐴) ↔ (normfn‘(bra‘0)) = (norm‘0)))
4 brafn 30663 . . . . 5 (𝐴 ∈ ℋ → (bra‘𝐴): ℋ⟶ℂ)
5 nmfnval 30592 . . . . 5 ((bra‘𝐴): ℋ⟶ℂ → (normfn‘(bra‘𝐴)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, < ))
64, 5syl 17 . . . 4 (𝐴 ∈ ℋ → (normfn‘(bra‘𝐴)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, < ))
76adantr 482 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (normfn‘(bra‘𝐴)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, < ))
8 nmfnsetre 30593 . . . . . . . 8 ((bra‘𝐴): ℋ⟶ℂ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ)
94, 8syl 17 . . . . . . 7 (𝐴 ∈ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ)
10 ressxr 11129 . . . . . . 7 ℝ ⊆ ℝ*
119, 10sstrdi 3951 . . . . . 6 (𝐴 ∈ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ*)
12 normcl 29841 . . . . . . 7 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ)
1312rexrd 11135 . . . . . 6 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ*)
1411, 13jca 513 . . . . 5 (𝐴 ∈ ℋ → ({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ* ∧ (norm𝐴) ∈ ℝ*))
1514adantr 482 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ* ∧ (norm𝐴) ∈ ℝ*))
16 vex 3447 . . . . . . . 8 𝑧 ∈ V
17 eqeq1 2741 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥 = (abs‘((bra‘𝐴)‘𝑦)) ↔ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))))
1817anbi2d 630 . . . . . . . . 9 (𝑥 = 𝑧 → (((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦)))))
1918rexbidv 3173 . . . . . . . 8 (𝑥 = 𝑧 → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦)))))
2016, 19elab 3625 . . . . . . 7 (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))))
21 id 22 . . . . . . . . . . . . 13 (𝑧 = (abs‘((bra‘𝐴)‘𝑦)) → 𝑧 = (abs‘((bra‘𝐴)‘𝑦)))
22 braval 30660 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((bra‘𝐴)‘𝑦) = (𝑦 ·ih 𝐴))
2322fveq2d 6838 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘((bra‘𝐴)‘𝑦)) = (abs‘(𝑦 ·ih 𝐴)))
2423adantr 482 . . . . . . . . . . . . 13 (((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) ≤ 1) → (abs‘((bra‘𝐴)‘𝑦)) = (abs‘(𝑦 ·ih 𝐴)))
2521, 24sylan9eqr 2799 . . . . . . . . . . . 12 ((((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) ≤ 1) ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → 𝑧 = (abs‘(𝑦 ·ih 𝐴)))
26 bcs2 29898 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝑦) ≤ 1) → (abs‘(𝑦 ·ih 𝐴)) ≤ (norm𝐴))
27263expa 1118 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℋ ∧ 𝐴 ∈ ℋ) ∧ (norm𝑦) ≤ 1) → (abs‘(𝑦 ·ih 𝐴)) ≤ (norm𝐴))
2827ancom1s 651 . . . . . . . . . . . . 13 (((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) ≤ 1) → (abs‘(𝑦 ·ih 𝐴)) ≤ (norm𝐴))
2928adantr 482 . . . . . . . . . . . 12 ((((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) ≤ 1) ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → (abs‘(𝑦 ·ih 𝐴)) ≤ (norm𝐴))
3025, 29eqbrtrd 5122 . . . . . . . . . . 11 ((((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) ≤ 1) ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → 𝑧 ≤ (norm𝐴))
3130exp41 436 . . . . . . . . . 10 (𝐴 ∈ ℋ → (𝑦 ∈ ℋ → ((norm𝑦) ≤ 1 → (𝑧 = (abs‘((bra‘𝐴)‘𝑦)) → 𝑧 ≤ (norm𝐴)))))
3231imp4a 424 . . . . . . . . 9 (𝐴 ∈ ℋ → (𝑦 ∈ ℋ → (((norm𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → 𝑧 ≤ (norm𝐴))))
3332rexlimdv 3148 . . . . . . . 8 (𝐴 ∈ ℋ → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → 𝑧 ≤ (norm𝐴)))
3433imp 408 . . . . . . 7 ((𝐴 ∈ ℋ ∧ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦)))) → 𝑧 ≤ (norm𝐴))
3520, 34sylan2b 595 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}) → 𝑧 ≤ (norm𝐴))
3635ralrimiva 3141 . . . . 5 (𝐴 ∈ ℋ → ∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 ≤ (norm𝐴))
3736adantr 482 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 ≤ (norm𝐴))
3812recnd 11113 . . . . . . . . . 10 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℂ)
3938adantr 482 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ ℂ)
40 normne0 29846 . . . . . . . . . . . . . 14 (𝐴 ∈ ℋ → ((norm𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
4140biimpar 479 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ≠ 0)
4239, 41reccld 11854 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (1 / (norm𝐴)) ∈ ℂ)
43 simpl 484 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℋ)
44 hvmulcl 29729 . . . . . . . . . . . 12 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
4542, 43, 44syl2anc 585 . . . . . . . . . . 11 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
46 norm1 29965 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) = 1)
47 1le1 11713 . . . . . . . . . . . 12 1 ≤ 1
4846, 47eqbrtrdi 5139 . . . . . . . . . . 11 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1)
49 ax-his3 29800 . . . . . . . . . . . . 13 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((1 / (norm𝐴)) · 𝐴) ·ih 𝐴) = ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)))
5042, 43, 43, 49syl3anc 1371 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (((1 / (norm𝐴)) · 𝐴) ·ih 𝐴) = ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)))
5112adantr 482 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ ℝ)
5251, 41rereccld 11912 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (1 / (norm𝐴)) ∈ ℝ)
53 hiidrcl 29811 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℋ → (𝐴 ·ih 𝐴) ∈ ℝ)
5453adantr 482 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (𝐴 ·ih 𝐴) ∈ ℝ)
5552, 54remulcld 11115 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)) ∈ ℝ)
5650, 55eqeltrd 2838 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (((1 / (norm𝐴)) · 𝐴) ·ih 𝐴) ∈ ℝ)
57 normgt0 29843 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℋ → (𝐴 ≠ 0 ↔ 0 < (norm𝐴)))
5857biimpa 478 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (norm𝐴))
5951, 58recgt0d 12019 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (1 / (norm𝐴)))
60 0re 11087 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
61 ltle 11173 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ (1 / (norm𝐴)) ∈ ℝ) → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
6260, 61mpan 688 . . . . . . . . . . . . . . . 16 ((1 / (norm𝐴)) ∈ ℝ → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
6352, 59, 62sylc 65 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 ≤ (1 / (norm𝐴)))
64 hiidge0 29814 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℋ → 0 ≤ (𝐴 ·ih 𝐴))
6564adantr 482 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 ≤ (𝐴 ·ih 𝐴))
6652, 54, 63, 65mulge0d 11662 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 ≤ ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)))
6766, 50breqtrrd 5128 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 ≤ (((1 / (norm𝐴)) · 𝐴) ·ih 𝐴))
6856, 67absidd 15238 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘(((1 / (norm𝐴)) · 𝐴) ·ih 𝐴)) = (((1 / (norm𝐴)) · 𝐴) ·ih 𝐴))
6939, 41recid2d 11857 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · (norm𝐴)) = 1)
7069oveq2d 7362 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm𝐴) · ((1 / (norm𝐴)) · (norm𝐴))) = ((norm𝐴) · 1))
7139, 42, 39mul12d 11294 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm𝐴) · ((1 / (norm𝐴)) · (norm𝐴))) = ((1 / (norm𝐴)) · ((norm𝐴) · (norm𝐴))))
7238sqvald 13971 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℋ → ((norm𝐴)↑2) = ((norm𝐴) · (norm𝐴)))
73 normsq 29850 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℋ → ((norm𝐴)↑2) = (𝐴 ·ih 𝐴))
7472, 73eqtr3d 2779 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℋ → ((norm𝐴) · (norm𝐴)) = (𝐴 ·ih 𝐴))
7574adantr 482 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm𝐴) · (norm𝐴)) = (𝐴 ·ih 𝐴))
7675oveq2d 7362 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · ((norm𝐴) · (norm𝐴))) = ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)))
7771, 76eqtrd 2777 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm𝐴) · ((1 / (norm𝐴)) · (norm𝐴))) = ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)))
7838mulid1d 11102 . . . . . . . . . . . . . 14 (𝐴 ∈ ℋ → ((norm𝐴) · 1) = (norm𝐴))
7978adantr 482 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm𝐴) · 1) = (norm𝐴))
8070, 77, 793eqtr3rd 2786 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) = ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)))
8150, 68, 803eqtr4rd 2788 . . . . . . . . . . 11 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) = (abs‘(((1 / (norm𝐴)) · 𝐴) ·ih 𝐴)))
82 fveq2 6834 . . . . . . . . . . . . . 14 (𝑦 = ((1 / (norm𝐴)) · 𝐴) → (norm𝑦) = (norm‘((1 / (norm𝐴)) · 𝐴)))
8382breq1d 5110 . . . . . . . . . . . . 13 (𝑦 = ((1 / (norm𝐴)) · 𝐴) → ((norm𝑦) ≤ 1 ↔ (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1))
84 fvoveq1 7369 . . . . . . . . . . . . . 14 (𝑦 = ((1 / (norm𝐴)) · 𝐴) → (abs‘(𝑦 ·ih 𝐴)) = (abs‘(((1 / (norm𝐴)) · 𝐴) ·ih 𝐴)))
8584eqeq2d 2748 . . . . . . . . . . . . 13 (𝑦 = ((1 / (norm𝐴)) · 𝐴) → ((norm𝐴) = (abs‘(𝑦 ·ih 𝐴)) ↔ (norm𝐴) = (abs‘(((1 / (norm𝐴)) · 𝐴) ·ih 𝐴))))
8683, 85anbi12d 632 . . . . . . . . . . . 12 (𝑦 = ((1 / (norm𝐴)) · 𝐴) → (((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴))) ↔ ((norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1 ∧ (norm𝐴) = (abs‘(((1 / (norm𝐴)) · 𝐴) ·ih 𝐴)))))
8786rspcev 3576 . . . . . . . . . . 11 ((((1 / (norm𝐴)) · 𝐴) ∈ ℋ ∧ ((norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1 ∧ (norm𝐴) = (abs‘(((1 / (norm𝐴)) · 𝐴) ·ih 𝐴)))) → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴))))
8845, 48, 81, 87syl12anc 835 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴))))
8923eqeq2d 2748 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm𝐴) = (abs‘((bra‘𝐴)‘𝑦)) ↔ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴))))
9089anbi2d 630 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴)))))
9190rexbidva 3171 . . . . . . . . . . 11 (𝐴 ∈ ℋ → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴)))))
9291adantr 482 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴)))))
9388, 92mpbird 257 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦))))
94 eqeq1 2741 . . . . . . . . . . 11 (𝑥 = (norm𝐴) → (𝑥 = (abs‘((bra‘𝐴)‘𝑦)) ↔ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦))))
9594anbi2d 630 . . . . . . . . . 10 (𝑥 = (norm𝐴) → (((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦)))))
9695rexbidv 3173 . . . . . . . . 9 (𝑥 = (norm𝐴) → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦)))))
9739, 93, 96elabd 3628 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))})
98 breq2 5104 . . . . . . . . 9 (𝑤 = (norm𝐴) → (𝑧 < 𝑤𝑧 < (norm𝐴)))
9998rspcev 3576 . . . . . . . 8 (((norm𝐴) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ∧ 𝑧 < (norm𝐴)) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤)
10097, 99sylan 581 . . . . . . 7 (((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑧 < (norm𝐴)) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤)
101100adantlr 713 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 < (norm𝐴)) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤)
102101ex 414 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑧 ∈ ℝ) → (𝑧 < (norm𝐴) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤))
103102ralrimiva 3141 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ∀𝑧 ∈ ℝ (𝑧 < (norm𝐴) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤))
104 supxr2 13158 . . . 4 ((({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ* ∧ (norm𝐴) ∈ ℝ*) ∧ (∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 ≤ (norm𝐴) ∧ ∀𝑧 ∈ ℝ (𝑧 < (norm𝐴) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤))) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, < ) = (norm𝐴))
10515, 37, 103, 104syl12anc 835 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, < ) = (norm𝐴))
1067, 105eqtrd 2777 . 2 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (normfn‘(bra‘𝐴)) = (norm𝐴))
107 nmfn0 30703 . . . 4 (normfn‘( ℋ × {0})) = 0
108 bra0 30666 . . . . 5 (bra‘0) = ( ℋ × {0})
109108fveq2i 6837 . . . 4 (normfn‘(bra‘0)) = (normfn‘( ℋ × {0}))
110 norm0 29844 . . . 4 (norm‘0) = 0
111107, 109, 1103eqtr4i 2775 . . 3 (normfn‘(bra‘0)) = (norm‘0)
112111a1i 11 . 2 (𝐴 ∈ ℋ → (normfn‘(bra‘0)) = (norm‘0))
1133, 106, 112pm2.61ne 3028 1 (𝐴 ∈ ℋ → (normfn‘(bra‘𝐴)) = (norm𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1541  wcel 2106  {cab 2714  wne 2941  wral 3062  wrex 3071  wss 3905  {csn 4581   class class class wbr 5100   × cxp 5625  wf 6484  cfv 6488  (class class class)co 7346  supcsup 9306  cc 10979  cr 10980  0cc0 10981  1c1 10982   · cmul 10986  *cxr 11118   < clt 11119  cle 11120   / cdiv 11742  2c2 12138  cexp 13892  abscabs 15049  chba 29635   · csm 29637   ·ih csp 29638  normcno 29639  0c0v 29640  normfncnmf 29667  bracbr 29672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5237  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659  ax-inf2 9507  ax-cnex 11037  ax-resscn 11038  ax-1cn 11039  ax-icn 11040  ax-addcl 11041  ax-addrcl 11042  ax-mulcl 11043  ax-mulrcl 11044  ax-mulcom 11045  ax-addass 11046  ax-mulass 11047  ax-distr 11048  ax-i2m1 11049  ax-1ne0 11050  ax-1rid 11051  ax-rnegex 11052  ax-rrecex 11053  ax-cnre 11054  ax-pre-lttri 11055  ax-pre-lttrn 11056  ax-pre-ltadd 11057  ax-pre-mulgt0 11058  ax-pre-sup 11059  ax-addf 11060  ax-mulf 11061  ax-hilex 29715  ax-hfvadd 29716  ax-hvcom 29717  ax-hvass 29718  ax-hv0cl 29719  ax-hvaddid 29720  ax-hfvmul 29721  ax-hvmulid 29722  ax-hvmulass 29723  ax-hvdistr1 29724  ax-hvdistr2 29725  ax-hvmul0 29726  ax-hfi 29795  ax-his1 29798  ax-his2 29799  ax-his3 29800  ax-his4 29801
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3924  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-tp 4586  df-op 4588  df-uni 4861  df-int 4903  df-iun 4951  df-iin 4952  df-br 5101  df-opab 5163  df-mpt 5184  df-tr 5218  df-id 5525  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5582  df-se 5583  df-we 5584  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-pred 6246  df-ord 6313  df-on 6314  df-lim 6315  df-suc 6316  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7302  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7604  df-om 7790  df-1st 7908  df-2nd 7909  df-supp 8057  df-frecs 8176  df-wrecs 8207  df-recs 8281  df-rdg 8320  df-1o 8376  df-2o 8377  df-er 8578  df-map 8697  df-ixp 8766  df-en 8814  df-dom 8815  df-sdom 8816  df-fin 8817  df-fsupp 9236  df-fi 9277  df-sup 9308  df-inf 9309  df-oi 9376  df-card 9805  df-pnf 11121  df-mnf 11122  df-xr 11123  df-ltxr 11124  df-le 11125  df-sub 11317  df-neg 11318  df-div 11743  df-nn 12084  df-2 12146  df-3 12147  df-4 12148  df-5 12149  df-6 12150  df-7 12151  df-8 12152  df-9 12153  df-n0 12344  df-z 12430  df-dec 12548  df-uz 12693  df-q 12799  df-rp 12841  df-xneg 12958  df-xadd 12959  df-xmul 12960  df-ioo 13193  df-icc 13196  df-fz 13350  df-fzo 13493  df-seq 13832  df-exp 13893  df-hash 14155  df-cj 14914  df-re 14915  df-im 14916  df-sqrt 15050  df-abs 15051  df-clim 15301  df-sum 15502  df-struct 16950  df-sets 16967  df-slot 16985  df-ndx 16997  df-base 17015  df-ress 17044  df-plusg 17077  df-mulr 17078  df-starv 17079  df-sca 17080  df-vsca 17081  df-ip 17082  df-tset 17083  df-ple 17084  df-ds 17086  df-unif 17087  df-hom 17088  df-cco 17089  df-rest 17235  df-topn 17236  df-0g 17254  df-gsum 17255  df-topgen 17256  df-pt 17257  df-prds 17260  df-xrs 17315  df-qtop 17320  df-imas 17321  df-xps 17323  df-mre 17397  df-mrc 17398  df-acs 17400  df-mgm 18428  df-sgrp 18477  df-mnd 18488  df-submnd 18533  df-mulg 18802  df-cntz 19024  df-cmn 19488  df-psmet 20699  df-xmet 20700  df-met 20701  df-bl 20702  df-mopn 20703  df-cnfld 20708  df-top 22153  df-topon 22170  df-topsp 22192  df-bases 22206  df-cld 22280  df-ntr 22281  df-cls 22282  df-cn 22488  df-cnp 22489  df-t1 22575  df-haus 22576  df-tx 22823  df-hmeo 23016  df-xms 23583  df-ms 23584  df-tms 23585  df-grpo 29209  df-gid 29210  df-ginv 29211  df-gdiv 29212  df-ablo 29261  df-vc 29275  df-nv 29308  df-va 29311  df-ba 29312  df-sm 29313  df-0v 29314  df-vs 29315  df-nmcv 29316  df-ims 29317  df-dip 29417  df-ph 29529  df-hnorm 29684  df-hba 29685  df-hvsub 29687  df-nmfn 30561  df-lnfn 30564  df-bra 30566
This theorem is referenced by:  brabn  30822
  Copyright terms: Public domain W3C validator