HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  branmfn Structured version   Visualization version   GIF version

Theorem branmfn 29679
Description: The norm of the bra function. (Contributed by NM, 24-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
branmfn (𝐴 ∈ ℋ → (normfn‘(bra‘𝐴)) = (norm𝐴))

Proof of Theorem branmfn
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 6502 . . 3 (𝐴 = 0 → (normfn‘(bra‘𝐴)) = (normfn‘(bra‘0)))
2 fveq2 6497 . . 3 (𝐴 = 0 → (norm𝐴) = (norm‘0))
31, 2eqeq12d 2788 . 2 (𝐴 = 0 → ((normfn‘(bra‘𝐴)) = (norm𝐴) ↔ (normfn‘(bra‘0)) = (norm‘0)))
4 brafn 29521 . . . . 5 (𝐴 ∈ ℋ → (bra‘𝐴): ℋ⟶ℂ)
5 nmfnval 29450 . . . . 5 ((bra‘𝐴): ℋ⟶ℂ → (normfn‘(bra‘𝐴)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, < ))
64, 5syl 17 . . . 4 (𝐴 ∈ ℋ → (normfn‘(bra‘𝐴)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, < ))
76adantr 473 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (normfn‘(bra‘𝐴)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, < ))
8 nmfnsetre 29451 . . . . . . . 8 ((bra‘𝐴): ℋ⟶ℂ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ)
94, 8syl 17 . . . . . . 7 (𝐴 ∈ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ)
10 ressxr 10483 . . . . . . 7 ℝ ⊆ ℝ*
119, 10syl6ss 3865 . . . . . 6 (𝐴 ∈ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ*)
12 normcl 28697 . . . . . . 7 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ)
1312rexrd 10489 . . . . . 6 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ*)
1411, 13jca 504 . . . . 5 (𝐴 ∈ ℋ → ({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ* ∧ (norm𝐴) ∈ ℝ*))
1514adantr 473 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ* ∧ (norm𝐴) ∈ ℝ*))
16 vex 3413 . . . . . . . 8 𝑧 ∈ V
17 eqeq1 2777 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥 = (abs‘((bra‘𝐴)‘𝑦)) ↔ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))))
1817anbi2d 620 . . . . . . . . 9 (𝑥 = 𝑧 → (((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦)))))
1918rexbidv 3237 . . . . . . . 8 (𝑥 = 𝑧 → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦)))))
2016, 19elab 3577 . . . . . . 7 (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))))
21 id 22 . . . . . . . . . . . . 13 (𝑧 = (abs‘((bra‘𝐴)‘𝑦)) → 𝑧 = (abs‘((bra‘𝐴)‘𝑦)))
22 braval 29518 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((bra‘𝐴)‘𝑦) = (𝑦 ·ih 𝐴))
2322fveq2d 6501 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘((bra‘𝐴)‘𝑦)) = (abs‘(𝑦 ·ih 𝐴)))
2423adantr 473 . . . . . . . . . . . . 13 (((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) ≤ 1) → (abs‘((bra‘𝐴)‘𝑦)) = (abs‘(𝑦 ·ih 𝐴)))
2521, 24sylan9eqr 2831 . . . . . . . . . . . 12 ((((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) ≤ 1) ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → 𝑧 = (abs‘(𝑦 ·ih 𝐴)))
26 bcs2 28754 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝑦) ≤ 1) → (abs‘(𝑦 ·ih 𝐴)) ≤ (norm𝐴))
27263expa 1099 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℋ ∧ 𝐴 ∈ ℋ) ∧ (norm𝑦) ≤ 1) → (abs‘(𝑦 ·ih 𝐴)) ≤ (norm𝐴))
2827ancom1s 641 . . . . . . . . . . . . 13 (((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) ≤ 1) → (abs‘(𝑦 ·ih 𝐴)) ≤ (norm𝐴))
2928adantr 473 . . . . . . . . . . . 12 ((((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) ≤ 1) ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → (abs‘(𝑦 ·ih 𝐴)) ≤ (norm𝐴))
3025, 29eqbrtrd 4948 . . . . . . . . . . 11 ((((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) ≤ 1) ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → 𝑧 ≤ (norm𝐴))
3130exp41 427 . . . . . . . . . 10 (𝐴 ∈ ℋ → (𝑦 ∈ ℋ → ((norm𝑦) ≤ 1 → (𝑧 = (abs‘((bra‘𝐴)‘𝑦)) → 𝑧 ≤ (norm𝐴)))))
3231imp4a 415 . . . . . . . . 9 (𝐴 ∈ ℋ → (𝑦 ∈ ℋ → (((norm𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → 𝑧 ≤ (norm𝐴))))
3332rexlimdv 3223 . . . . . . . 8 (𝐴 ∈ ℋ → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → 𝑧 ≤ (norm𝐴)))
3433imp 398 . . . . . . 7 ((𝐴 ∈ ℋ ∧ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦)))) → 𝑧 ≤ (norm𝐴))
3520, 34sylan2b 585 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}) → 𝑧 ≤ (norm𝐴))
3635ralrimiva 3127 . . . . 5 (𝐴 ∈ ℋ → ∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 ≤ (norm𝐴))
3736adantr 473 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 ≤ (norm𝐴))
3812recnd 10467 . . . . . . . . . . . . . 14 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℂ)
3938adantr 473 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ ℂ)
40 normne0 28702 . . . . . . . . . . . . . 14 (𝐴 ∈ ℋ → ((norm𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
4140biimpar 470 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ≠ 0)
4239, 41reccld 11209 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (1 / (norm𝐴)) ∈ ℂ)
43 simpl 475 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℋ)
44 hvmulcl 28585 . . . . . . . . . . . 12 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
4542, 43, 44syl2anc 576 . . . . . . . . . . 11 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
46 norm1 28821 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) = 1)
47 1le1 11068 . . . . . . . . . . . 12 1 ≤ 1
4846, 47syl6eqbr 4965 . . . . . . . . . . 11 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1)
49 ax-his3 28656 . . . . . . . . . . . . 13 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((1 / (norm𝐴)) · 𝐴) ·ih 𝐴) = ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)))
5042, 43, 43, 49syl3anc 1352 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (((1 / (norm𝐴)) · 𝐴) ·ih 𝐴) = ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)))
5112adantr 473 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ ℝ)
5251, 41rereccld 11267 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (1 / (norm𝐴)) ∈ ℝ)
53 hiidrcl 28667 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℋ → (𝐴 ·ih 𝐴) ∈ ℝ)
5453adantr 473 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (𝐴 ·ih 𝐴) ∈ ℝ)
5552, 54remulcld 10469 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)) ∈ ℝ)
5650, 55eqeltrd 2861 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (((1 / (norm𝐴)) · 𝐴) ·ih 𝐴) ∈ ℝ)
57 normgt0 28699 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℋ → (𝐴 ≠ 0 ↔ 0 < (norm𝐴)))
5857biimpa 469 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (norm𝐴))
5951, 58recgt0d 11374 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (1 / (norm𝐴)))
60 0re 10440 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
61 ltle 10528 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ (1 / (norm𝐴)) ∈ ℝ) → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
6260, 61mpan 678 . . . . . . . . . . . . . . . 16 ((1 / (norm𝐴)) ∈ ℝ → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
6352, 59, 62sylc 65 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 ≤ (1 / (norm𝐴)))
64 hiidge0 28670 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℋ → 0 ≤ (𝐴 ·ih 𝐴))
6564adantr 473 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 ≤ (𝐴 ·ih 𝐴))
6652, 54, 63, 65mulge0d 11017 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 ≤ ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)))
6766, 50breqtrrd 4954 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 ≤ (((1 / (norm𝐴)) · 𝐴) ·ih 𝐴))
6856, 67absidd 14642 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘(((1 / (norm𝐴)) · 𝐴) ·ih 𝐴)) = (((1 / (norm𝐴)) · 𝐴) ·ih 𝐴))
6939, 41recid2d 11212 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · (norm𝐴)) = 1)
7069oveq2d 6991 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm𝐴) · ((1 / (norm𝐴)) · (norm𝐴))) = ((norm𝐴) · 1))
7139, 42, 39mul12d 10648 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm𝐴) · ((1 / (norm𝐴)) · (norm𝐴))) = ((1 / (norm𝐴)) · ((norm𝐴) · (norm𝐴))))
7238sqvald 13321 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℋ → ((norm𝐴)↑2) = ((norm𝐴) · (norm𝐴)))
73 normsq 28706 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℋ → ((norm𝐴)↑2) = (𝐴 ·ih 𝐴))
7472, 73eqtr3d 2811 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℋ → ((norm𝐴) · (norm𝐴)) = (𝐴 ·ih 𝐴))
7574adantr 473 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm𝐴) · (norm𝐴)) = (𝐴 ·ih 𝐴))
7675oveq2d 6991 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · ((norm𝐴) · (norm𝐴))) = ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)))
7771, 76eqtrd 2809 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm𝐴) · ((1 / (norm𝐴)) · (norm𝐴))) = ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)))
7838mulid1d 10456 . . . . . . . . . . . . . 14 (𝐴 ∈ ℋ → ((norm𝐴) · 1) = (norm𝐴))
7978adantr 473 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm𝐴) · 1) = (norm𝐴))
8070, 77, 793eqtr3rd 2818 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) = ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)))
8150, 68, 803eqtr4rd 2820 . . . . . . . . . . 11 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) = (abs‘(((1 / (norm𝐴)) · 𝐴) ·ih 𝐴)))
82 fveq2 6497 . . . . . . . . . . . . . 14 (𝑦 = ((1 / (norm𝐴)) · 𝐴) → (norm𝑦) = (norm‘((1 / (norm𝐴)) · 𝐴)))
8382breq1d 4936 . . . . . . . . . . . . 13 (𝑦 = ((1 / (norm𝐴)) · 𝐴) → ((norm𝑦) ≤ 1 ↔ (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1))
84 fvoveq1 6998 . . . . . . . . . . . . . 14 (𝑦 = ((1 / (norm𝐴)) · 𝐴) → (abs‘(𝑦 ·ih 𝐴)) = (abs‘(((1 / (norm𝐴)) · 𝐴) ·ih 𝐴)))
8584eqeq2d 2783 . . . . . . . . . . . . 13 (𝑦 = ((1 / (norm𝐴)) · 𝐴) → ((norm𝐴) = (abs‘(𝑦 ·ih 𝐴)) ↔ (norm𝐴) = (abs‘(((1 / (norm𝐴)) · 𝐴) ·ih 𝐴))))
8683, 85anbi12d 622 . . . . . . . . . . . 12 (𝑦 = ((1 / (norm𝐴)) · 𝐴) → (((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴))) ↔ ((norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1 ∧ (norm𝐴) = (abs‘(((1 / (norm𝐴)) · 𝐴) ·ih 𝐴)))))
8786rspcev 3530 . . . . . . . . . . 11 ((((1 / (norm𝐴)) · 𝐴) ∈ ℋ ∧ ((norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1 ∧ (norm𝐴) = (abs‘(((1 / (norm𝐴)) · 𝐴) ·ih 𝐴)))) → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴))))
8845, 48, 81, 87syl12anc 825 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴))))
8923eqeq2d 2783 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm𝐴) = (abs‘((bra‘𝐴)‘𝑦)) ↔ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴))))
9089anbi2d 620 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴)))))
9190rexbidva 3236 . . . . . . . . . . 11 (𝐴 ∈ ℋ → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴)))))
9291adantr 473 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴)))))
9388, 92mpbird 249 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦))))
94 fvex 6510 . . . . . . . . . 10 (norm𝐴) ∈ V
95 eqeq1 2777 . . . . . . . . . . . 12 (𝑥 = (norm𝐴) → (𝑥 = (abs‘((bra‘𝐴)‘𝑦)) ↔ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦))))
9695anbi2d 620 . . . . . . . . . . 11 (𝑥 = (norm𝐴) → (((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦)))))
9796rexbidv 3237 . . . . . . . . . 10 (𝑥 = (norm𝐴) → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦)))))
9894, 97elab 3577 . . . . . . . . 9 ((norm𝐴) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦))))
9993, 98sylibr 226 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))})
100 breq2 4930 . . . . . . . . 9 (𝑤 = (norm𝐴) → (𝑧 < 𝑤𝑧 < (norm𝐴)))
101100rspcev 3530 . . . . . . . 8 (((norm𝐴) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ∧ 𝑧 < (norm𝐴)) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤)
10299, 101sylan 572 . . . . . . 7 (((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑧 < (norm𝐴)) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤)
103102adantlr 703 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 < (norm𝐴)) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤)
104103ex 405 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑧 ∈ ℝ) → (𝑧 < (norm𝐴) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤))
105104ralrimiva 3127 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ∀𝑧 ∈ ℝ (𝑧 < (norm𝐴) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤))
106 supxr2 12522 . . . 4 ((({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ* ∧ (norm𝐴) ∈ ℝ*) ∧ (∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 ≤ (norm𝐴) ∧ ∀𝑧 ∈ ℝ (𝑧 < (norm𝐴) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤))) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, < ) = (norm𝐴))
10715, 37, 105, 106syl12anc 825 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, < ) = (norm𝐴))
1087, 107eqtrd 2809 . 2 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (normfn‘(bra‘𝐴)) = (norm𝐴))
109 nmfn0 29561 . . . 4 (normfn‘( ℋ × {0})) = 0
110 bra0 29524 . . . . 5 (bra‘0) = ( ℋ × {0})
111110fveq2i 6500 . . . 4 (normfn‘(bra‘0)) = (normfn‘( ℋ × {0}))
112 norm0 28700 . . . 4 (norm‘0) = 0
113109, 111, 1123eqtr4i 2807 . . 3 (normfn‘(bra‘0)) = (norm‘0)
114113a1i 11 . 2 (𝐴 ∈ ℋ → (normfn‘(bra‘0)) = (norm‘0))
1153, 108, 114pm2.61ne 3048 1 (𝐴 ∈ ℋ → (normfn‘(bra‘𝐴)) = (norm𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1508  wcel 2051  {cab 2753  wne 2962  wral 3083  wrex 3084  wss 3824  {csn 4436   class class class wbr 4926   × cxp 5402  wf 6182  cfv 6186  (class class class)co 6975  supcsup 8698  cc 10332  cr 10333  0cc0 10334  1c1 10335   · cmul 10339  *cxr 10472   < clt 10473  cle 10474   / cdiv 11097  2c2 11494  cexp 13243  abscabs 14453  chba 28491   · csm 28493   ·ih csp 28494  normcno 28495  0c0v 28496  normfncnmf 28523  bracbr 28528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-rep 5046  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-inf2 8897  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411  ax-pre-sup 10412  ax-addf 10413  ax-mulf 10414  ax-hilex 28571  ax-hfvadd 28572  ax-hvcom 28573  ax-hvass 28574  ax-hv0cl 28575  ax-hvaddid 28576  ax-hfvmul 28577  ax-hvmulid 28578  ax-hvmulass 28579  ax-hvdistr1 28580  ax-hvdistr2 28581  ax-hvmul0 28582  ax-hfi 28651  ax-his1 28654  ax-his2 28655  ax-his3 28656  ax-his4 28657
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-int 4747  df-iun 4791  df-iin 4792  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-se 5364  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-isom 6195  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-of 7226  df-om 7396  df-1st 7500  df-2nd 7501  df-supp 7633  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-1o 7904  df-2o 7905  df-oadd 7908  df-er 8088  df-map 8207  df-ixp 8259  df-en 8306  df-dom 8307  df-sdom 8308  df-fin 8309  df-fsupp 8628  df-fi 8669  df-sup 8700  df-inf 8701  df-oi 8768  df-card 9161  df-cda 9387  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-div 11098  df-nn 11439  df-2 11502  df-3 11503  df-4 11504  df-5 11505  df-6 11506  df-7 11507  df-8 11508  df-9 11509  df-n0 11707  df-z 11793  df-dec 11911  df-uz 12058  df-q 12162  df-rp 12204  df-xneg 12323  df-xadd 12324  df-xmul 12325  df-ioo 12557  df-icc 12560  df-fz 12708  df-fzo 12849  df-seq 13184  df-exp 13244  df-hash 13505  df-cj 14318  df-re 14319  df-im 14320  df-sqrt 14454  df-abs 14455  df-clim 14705  df-sum 14903  df-struct 16340  df-ndx 16341  df-slot 16342  df-base 16344  df-sets 16345  df-ress 16346  df-plusg 16433  df-mulr 16434  df-starv 16435  df-sca 16436  df-vsca 16437  df-ip 16438  df-tset 16439  df-ple 16440  df-ds 16442  df-unif 16443  df-hom 16444  df-cco 16445  df-rest 16551  df-topn 16552  df-0g 16570  df-gsum 16571  df-topgen 16572  df-pt 16573  df-prds 16576  df-xrs 16630  df-qtop 16635  df-imas 16636  df-xps 16638  df-mre 16728  df-mrc 16729  df-acs 16731  df-mgm 17723  df-sgrp 17765  df-mnd 17776  df-submnd 17817  df-mulg 18025  df-cntz 18231  df-cmn 18681  df-psmet 20255  df-xmet 20256  df-met 20257  df-bl 20258  df-mopn 20259  df-cnfld 20264  df-top 21222  df-topon 21239  df-topsp 21261  df-bases 21274  df-cld 21347  df-ntr 21348  df-cls 21349  df-cn 21555  df-cnp 21556  df-t1 21642  df-haus 21643  df-tx 21890  df-hmeo 22083  df-xms 22649  df-ms 22650  df-tms 22651  df-grpo 28063  df-gid 28064  df-ginv 28065  df-gdiv 28066  df-ablo 28115  df-vc 28129  df-nv 28162  df-va 28165  df-ba 28166  df-sm 28167  df-0v 28168  df-vs 28169  df-nmcv 28170  df-ims 28171  df-dip 28271  df-ph 28383  df-hnorm 28540  df-hba 28541  df-hvsub 28543  df-nmfn 29419  df-lnfn 29422  df-bra 29424
This theorem is referenced by:  brabn  29680
  Copyright terms: Public domain W3C validator