| Step | Hyp | Ref
| Expression |
| 1 | | 2fveq3 6911 |
. . 3
⊢ (𝐴 = 0ℎ →
(normfn‘(bra‘𝐴)) =
(normfn‘(bra‘0ℎ))) |
| 2 | | fveq2 6906 |
. . 3
⊢ (𝐴 = 0ℎ →
(normℎ‘𝐴) =
(normℎ‘0ℎ)) |
| 3 | 1, 2 | eqeq12d 2753 |
. 2
⊢ (𝐴 = 0ℎ →
((normfn‘(bra‘𝐴)) = (normℎ‘𝐴) ↔
(normfn‘(bra‘0ℎ)) =
(normℎ‘0ℎ))) |
| 4 | | brafn 31966 |
. . . . 5
⊢ (𝐴 ∈ ℋ →
(bra‘𝐴):
ℋ⟶ℂ) |
| 5 | | nmfnval 31895 |
. . . . 5
⊢
((bra‘𝐴):
ℋ⟶ℂ → (normfn‘(bra‘𝐴)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, <
)) |
| 6 | 4, 5 | syl 17 |
. . . 4
⊢ (𝐴 ∈ ℋ →
(normfn‘(bra‘𝐴)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, <
)) |
| 7 | 6 | adantr 480 |
. . 3
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normfn‘(bra‘𝐴)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, <
)) |
| 8 | | nmfnsetre 31896 |
. . . . . . . 8
⊢
((bra‘𝐴):
ℋ⟶ℂ → {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ) |
| 9 | 4, 8 | syl 17 |
. . . . . . 7
⊢ (𝐴 ∈ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ) |
| 10 | | ressxr 11305 |
. . . . . . 7
⊢ ℝ
⊆ ℝ* |
| 11 | 9, 10 | sstrdi 3996 |
. . . . . 6
⊢ (𝐴 ∈ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆
ℝ*) |
| 12 | | normcl 31144 |
. . . . . . 7
⊢ (𝐴 ∈ ℋ →
(normℎ‘𝐴) ∈ ℝ) |
| 13 | 12 | rexrd 11311 |
. . . . . 6
⊢ (𝐴 ∈ ℋ →
(normℎ‘𝐴) ∈
ℝ*) |
| 14 | 11, 13 | jca 511 |
. . . . 5
⊢ (𝐴 ∈ ℋ → ({𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ* ∧
(normℎ‘𝐴) ∈
ℝ*)) |
| 15 | 14 | adantr 480 |
. . . 4
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ({𝑥 ∣
∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ* ∧
(normℎ‘𝐴) ∈
ℝ*)) |
| 16 | | vex 3484 |
. . . . . . . 8
⊢ 𝑧 ∈ V |
| 17 | | eqeq1 2741 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (𝑥 = (abs‘((bra‘𝐴)‘𝑦)) ↔ 𝑧 = (abs‘((bra‘𝐴)‘𝑦)))) |
| 18 | 17 | anbi2d 630 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 →
(((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦))) ↔
((normℎ‘𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))))) |
| 19 | 18 | rexbidv 3179 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦))) ↔ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))))) |
| 20 | 16, 19 | elab 3679 |
. . . . . . 7
⊢ (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ↔ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦)))) |
| 21 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (abs‘((bra‘𝐴)‘𝑦)) → 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) |
| 22 | | braval 31963 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) →
((bra‘𝐴)‘𝑦) = (𝑦 ·ih 𝐴)) |
| 23 | 22 | fveq2d 6910 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) →
(abs‘((bra‘𝐴)‘𝑦)) = (abs‘(𝑦 ·ih 𝐴))) |
| 24 | 23 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧
(normℎ‘𝑦) ≤ 1) → (abs‘((bra‘𝐴)‘𝑦)) = (abs‘(𝑦 ·ih 𝐴))) |
| 25 | 21, 24 | sylan9eqr 2799 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧
(normℎ‘𝑦) ≤ 1) ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → 𝑧 = (abs‘(𝑦 ·ih 𝐴))) |
| 26 | | bcs2 31201 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧
(normℎ‘𝑦) ≤ 1) → (abs‘(𝑦
·ih 𝐴)) ≤ (normℎ‘𝐴)) |
| 27 | 26 | 3expa 1119 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∈ ℋ ∧ 𝐴 ∈ ℋ) ∧
(normℎ‘𝑦) ≤ 1) → (abs‘(𝑦
·ih 𝐴)) ≤ (normℎ‘𝐴)) |
| 28 | 27 | ancom1s 653 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧
(normℎ‘𝑦) ≤ 1) → (abs‘(𝑦
·ih 𝐴)) ≤ (normℎ‘𝐴)) |
| 29 | 28 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧
(normℎ‘𝑦) ≤ 1) ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → (abs‘(𝑦 ·ih 𝐴)) ≤
(normℎ‘𝐴)) |
| 30 | 25, 29 | eqbrtrd 5165 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧
(normℎ‘𝑦) ≤ 1) ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → 𝑧 ≤ (normℎ‘𝐴)) |
| 31 | 30 | exp41 434 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℋ → (𝑦 ∈ ℋ →
((normℎ‘𝑦) ≤ 1 → (𝑧 = (abs‘((bra‘𝐴)‘𝑦)) → 𝑧 ≤ (normℎ‘𝐴))))) |
| 32 | 31 | imp4a 422 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℋ → (𝑦 ∈ ℋ →
(((normℎ‘𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → 𝑧 ≤ (normℎ‘𝐴)))) |
| 33 | 32 | rexlimdv 3153 |
. . . . . . . 8
⊢ (𝐴 ∈ ℋ →
(∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → 𝑧 ≤ (normℎ‘𝐴))) |
| 34 | 33 | imp 406 |
. . . . . . 7
⊢ ((𝐴 ∈ ℋ ∧
∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦)))) → 𝑧 ≤ (normℎ‘𝐴)) |
| 35 | 20, 34 | sylan2b 594 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}) → 𝑧 ≤ (normℎ‘𝐴)) |
| 36 | 35 | ralrimiva 3146 |
. . . . 5
⊢ (𝐴 ∈ ℋ →
∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 ≤ (normℎ‘𝐴)) |
| 37 | 36 | adantr 480 |
. . . 4
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ∀𝑧 ∈
{𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 ≤ (normℎ‘𝐴)) |
| 38 | 12 | recnd 11289 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℋ →
(normℎ‘𝐴) ∈ ℂ) |
| 39 | 38 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘𝐴) ∈ ℂ) |
| 40 | | normne0 31149 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℋ →
((normℎ‘𝐴) ≠ 0 ↔ 𝐴 ≠
0ℎ)) |
| 41 | 40 | biimpar 477 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘𝐴) ≠ 0) |
| 42 | 39, 41 | reccld 12036 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (1 / (normℎ‘𝐴)) ∈ ℂ) |
| 43 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 𝐴 ∈
ℋ) |
| 44 | | hvmulcl 31032 |
. . . . . . . . . . . 12
⊢ (((1 /
(normℎ‘𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 /
(normℎ‘𝐴)) ·ℎ 𝐴) ∈
ℋ) |
| 45 | 42, 43, 44 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((1 / (normℎ‘𝐴)) ·ℎ 𝐴) ∈
ℋ) |
| 46 | | norm1 31268 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) = 1) |
| 47 | | 1le1 11891 |
. . . . . . . . . . . 12
⊢ 1 ≤
1 |
| 48 | 46, 47 | eqbrtrdi 5182 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) ≤ 1) |
| 49 | | ax-his3 31103 |
. . . . . . . . . . . . 13
⊢ (((1 /
(normℎ‘𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)
·ih 𝐴) = ((1 /
(normℎ‘𝐴)) · (𝐴 ·ih 𝐴))) |
| 50 | 42, 43, 43, 49 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (((1 / (normℎ‘𝐴)) ·ℎ 𝐴)
·ih 𝐴) = ((1 /
(normℎ‘𝐴)) · (𝐴 ·ih 𝐴))) |
| 51 | 12 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘𝐴) ∈ ℝ) |
| 52 | 51, 41 | rereccld 12094 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (1 / (normℎ‘𝐴)) ∈ ℝ) |
| 53 | | hiidrcl 31114 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ ℋ → (𝐴
·ih 𝐴) ∈ ℝ) |
| 54 | 53 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (𝐴
·ih 𝐴) ∈ ℝ) |
| 55 | 52, 54 | remulcld 11291 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((1 / (normℎ‘𝐴)) · (𝐴 ·ih 𝐴)) ∈
ℝ) |
| 56 | 50, 55 | eqeltrd 2841 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (((1 / (normℎ‘𝐴)) ·ℎ 𝐴)
·ih 𝐴) ∈ ℝ) |
| 57 | | normgt0 31146 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ ℋ → (𝐴 ≠ 0ℎ
↔ 0 < (normℎ‘𝐴))) |
| 58 | 57 | biimpa 476 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 0 < (normℎ‘𝐴)) |
| 59 | 51, 58 | recgt0d 12202 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 0 < (1 / (normℎ‘𝐴))) |
| 60 | | 0re 11263 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
ℝ |
| 61 | | ltle 11349 |
. . . . . . . . . . . . . . . . 17
⊢ ((0
∈ ℝ ∧ (1 / (normℎ‘𝐴)) ∈ ℝ) → (0 < (1 /
(normℎ‘𝐴)) → 0 ≤ (1 /
(normℎ‘𝐴)))) |
| 62 | 60, 61 | mpan 690 |
. . . . . . . . . . . . . . . 16
⊢ ((1 /
(normℎ‘𝐴)) ∈ ℝ → (0 < (1 /
(normℎ‘𝐴)) → 0 ≤ (1 /
(normℎ‘𝐴)))) |
| 63 | 52, 59, 62 | sylc 65 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 0 ≤ (1 / (normℎ‘𝐴))) |
| 64 | | hiidge0 31117 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ ℋ → 0 ≤
(𝐴
·ih 𝐴)) |
| 65 | 64 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 0 ≤ (𝐴
·ih 𝐴)) |
| 66 | 52, 54, 63, 65 | mulge0d 11840 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 0 ≤ ((1 / (normℎ‘𝐴)) · (𝐴 ·ih 𝐴))) |
| 67 | 66, 50 | breqtrrd 5171 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 0 ≤ (((1 / (normℎ‘𝐴)) ·ℎ 𝐴)
·ih 𝐴)) |
| 68 | 56, 67 | absidd 15461 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (abs‘(((1 / (normℎ‘𝐴)) ·ℎ 𝐴)
·ih 𝐴)) = (((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)
·ih 𝐴)) |
| 69 | 39, 41 | recid2d 12039 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((1 / (normℎ‘𝐴)) ·
(normℎ‘𝐴)) = 1) |
| 70 | 69 | oveq2d 7447 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((normℎ‘𝐴) · ((1 /
(normℎ‘𝐴)) ·
(normℎ‘𝐴))) = ((normℎ‘𝐴) · 1)) |
| 71 | 39, 42, 39 | mul12d 11470 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((normℎ‘𝐴) · ((1 /
(normℎ‘𝐴)) ·
(normℎ‘𝐴))) = ((1 /
(normℎ‘𝐴)) ·
((normℎ‘𝐴) ·
(normℎ‘𝐴)))) |
| 72 | 38 | sqvald 14183 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℋ →
((normℎ‘𝐴)↑2) =
((normℎ‘𝐴) ·
(normℎ‘𝐴))) |
| 73 | | normsq 31153 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℋ →
((normℎ‘𝐴)↑2) = (𝐴 ·ih 𝐴)) |
| 74 | 72, 73 | eqtr3d 2779 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ ℋ →
((normℎ‘𝐴) ·
(normℎ‘𝐴)) = (𝐴 ·ih 𝐴)) |
| 75 | 74 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((normℎ‘𝐴) ·
(normℎ‘𝐴)) = (𝐴 ·ih 𝐴)) |
| 76 | 75 | oveq2d 7447 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((1 / (normℎ‘𝐴)) ·
((normℎ‘𝐴) ·
(normℎ‘𝐴))) = ((1 /
(normℎ‘𝐴)) · (𝐴 ·ih 𝐴))) |
| 77 | 71, 76 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((normℎ‘𝐴) · ((1 /
(normℎ‘𝐴)) ·
(normℎ‘𝐴))) = ((1 /
(normℎ‘𝐴)) · (𝐴 ·ih 𝐴))) |
| 78 | 38 | mulridd 11278 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℋ →
((normℎ‘𝐴) · 1) =
(normℎ‘𝐴)) |
| 79 | 78 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((normℎ‘𝐴) · 1) =
(normℎ‘𝐴)) |
| 80 | 70, 77, 79 | 3eqtr3rd 2786 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘𝐴) = ((1 /
(normℎ‘𝐴)) · (𝐴 ·ih 𝐴))) |
| 81 | 50, 68, 80 | 3eqtr4rd 2788 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘𝐴) = (abs‘(((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)
·ih 𝐴))) |
| 82 | | fveq2 6906 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = ((1 /
(normℎ‘𝐴)) ·ℎ 𝐴) →
(normℎ‘𝑦) = (normℎ‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴))) |
| 83 | 82 | breq1d 5153 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ((1 /
(normℎ‘𝐴)) ·ℎ 𝐴) →
((normℎ‘𝑦) ≤ 1 ↔
(normℎ‘((1 / (normℎ‘𝐴))
·ℎ 𝐴)) ≤ 1)) |
| 84 | | fvoveq1 7454 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = ((1 /
(normℎ‘𝐴)) ·ℎ 𝐴) → (abs‘(𝑦
·ih 𝐴)) = (abs‘(((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)
·ih 𝐴))) |
| 85 | 84 | eqeq2d 2748 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ((1 /
(normℎ‘𝐴)) ·ℎ 𝐴) →
((normℎ‘𝐴) = (abs‘(𝑦 ·ih 𝐴)) ↔
(normℎ‘𝐴) = (abs‘(((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)
·ih 𝐴)))) |
| 86 | 83, 85 | anbi12d 632 |
. . . . . . . . . . . 12
⊢ (𝑦 = ((1 /
(normℎ‘𝐴)) ·ℎ 𝐴) →
(((normℎ‘𝑦) ≤ 1 ∧
(normℎ‘𝐴) = (abs‘(𝑦 ·ih 𝐴))) ↔
((normℎ‘((1 / (normℎ‘𝐴))
·ℎ 𝐴)) ≤ 1 ∧
(normℎ‘𝐴) = (abs‘(((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)
·ih 𝐴))))) |
| 87 | 86 | rspcev 3622 |
. . . . . . . . . . 11
⊢ ((((1 /
(normℎ‘𝐴)) ·ℎ 𝐴) ∈ ℋ ∧
((normℎ‘((1 / (normℎ‘𝐴))
·ℎ 𝐴)) ≤ 1 ∧
(normℎ‘𝐴) = (abs‘(((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)
·ih 𝐴)))) → ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧
(normℎ‘𝐴) = (abs‘(𝑦 ·ih 𝐴)))) |
| 88 | 45, 48, 81, 87 | syl12anc 837 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ∃𝑦 ∈
ℋ ((normℎ‘𝑦) ≤ 1 ∧
(normℎ‘𝐴) = (abs‘(𝑦 ·ih 𝐴)))) |
| 89 | 23 | eqeq2d 2748 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) →
((normℎ‘𝐴) = (abs‘((bra‘𝐴)‘𝑦)) ↔
(normℎ‘𝐴) = (abs‘(𝑦 ·ih 𝐴)))) |
| 90 | 89 | anbi2d 630 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) →
(((normℎ‘𝑦) ≤ 1 ∧
(normℎ‘𝐴) = (abs‘((bra‘𝐴)‘𝑦))) ↔
((normℎ‘𝑦) ≤ 1 ∧
(normℎ‘𝐴) = (abs‘(𝑦 ·ih 𝐴))))) |
| 91 | 90 | rexbidva 3177 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℋ →
(∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧
(normℎ‘𝐴) = (abs‘((bra‘𝐴)‘𝑦))) ↔ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧
(normℎ‘𝐴) = (abs‘(𝑦 ·ih 𝐴))))) |
| 92 | 91 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (∃𝑦 ∈
ℋ ((normℎ‘𝑦) ≤ 1 ∧
(normℎ‘𝐴) = (abs‘((bra‘𝐴)‘𝑦))) ↔ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧
(normℎ‘𝐴) = (abs‘(𝑦 ·ih 𝐴))))) |
| 93 | 88, 92 | mpbird 257 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ∃𝑦 ∈
ℋ ((normℎ‘𝑦) ≤ 1 ∧
(normℎ‘𝐴) = (abs‘((bra‘𝐴)‘𝑦)))) |
| 94 | | eqeq1 2741 |
. . . . . . . . . . 11
⊢ (𝑥 =
(normℎ‘𝐴) → (𝑥 = (abs‘((bra‘𝐴)‘𝑦)) ↔
(normℎ‘𝐴) = (abs‘((bra‘𝐴)‘𝑦)))) |
| 95 | 94 | anbi2d 630 |
. . . . . . . . . 10
⊢ (𝑥 =
(normℎ‘𝐴) →
(((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦))) ↔
((normℎ‘𝑦) ≤ 1 ∧
(normℎ‘𝐴) = (abs‘((bra‘𝐴)‘𝑦))))) |
| 96 | 95 | rexbidv 3179 |
. . . . . . . . 9
⊢ (𝑥 =
(normℎ‘𝐴) → (∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦))) ↔ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧
(normℎ‘𝐴) = (abs‘((bra‘𝐴)‘𝑦))))) |
| 97 | 39, 93, 96 | elabd 3681 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘𝐴) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}) |
| 98 | | breq2 5147 |
. . . . . . . . 9
⊢ (𝑤 =
(normℎ‘𝐴) → (𝑧 < 𝑤 ↔ 𝑧 < (normℎ‘𝐴))) |
| 99 | 98 | rspcev 3622 |
. . . . . . . 8
⊢
(((normℎ‘𝐴) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ∧ 𝑧 < (normℎ‘𝐴)) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤) |
| 100 | 97, 99 | sylan 580 |
. . . . . . 7
⊢ (((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
∧ 𝑧 <
(normℎ‘𝐴)) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤) |
| 101 | 100 | adantlr 715 |
. . . . . 6
⊢ ((((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
∧ 𝑧 ∈ ℝ)
∧ 𝑧 <
(normℎ‘𝐴)) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤) |
| 102 | 101 | ex 412 |
. . . . 5
⊢ (((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
∧ 𝑧 ∈ ℝ)
→ (𝑧 <
(normℎ‘𝐴) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤)) |
| 103 | 102 | ralrimiva 3146 |
. . . 4
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ∀𝑧 ∈
ℝ (𝑧 <
(normℎ‘𝐴) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤)) |
| 104 | | supxr2 13356 |
. . . 4
⊢ ((({𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ* ∧
(normℎ‘𝐴) ∈ ℝ*) ∧
(∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 ≤ (normℎ‘𝐴) ∧ ∀𝑧 ∈ ℝ (𝑧 <
(normℎ‘𝐴) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤))) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, < ) =
(normℎ‘𝐴)) |
| 105 | 15, 37, 103, 104 | syl12anc 837 |
. . 3
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ sup({𝑥 ∣
∃𝑦 ∈ ℋ
((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, < ) =
(normℎ‘𝐴)) |
| 106 | 7, 105 | eqtrd 2777 |
. 2
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normfn‘(bra‘𝐴)) = (normℎ‘𝐴)) |
| 107 | | nmfn0 32006 |
. . . 4
⊢
(normfn‘( ℋ × {0})) = 0 |
| 108 | | bra0 31969 |
. . . . 5
⊢
(bra‘0ℎ) = ( ℋ ×
{0}) |
| 109 | 108 | fveq2i 6909 |
. . . 4
⊢
(normfn‘(bra‘0ℎ)) =
(normfn‘( ℋ × {0})) |
| 110 | | norm0 31147 |
. . . 4
⊢
(normℎ‘0ℎ) =
0 |
| 111 | 107, 109,
110 | 3eqtr4i 2775 |
. . 3
⊢
(normfn‘(bra‘0ℎ)) =
(normℎ‘0ℎ) |
| 112 | 111 | a1i 11 |
. 2
⊢ (𝐴 ∈ ℋ →
(normfn‘(bra‘0ℎ)) =
(normℎ‘0ℎ)) |
| 113 | 3, 106, 112 | pm2.61ne 3027 |
1
⊢ (𝐴 ∈ ℋ →
(normfn‘(bra‘𝐴)) = (normℎ‘𝐴)) |