HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  branmfn Structured version   Visualization version   GIF version

Theorem branmfn 32034
Description: The norm of the bra function. (Contributed by NM, 24-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
branmfn (𝐴 ∈ ℋ → (normfn‘(bra‘𝐴)) = (norm𝐴))

Proof of Theorem branmfn
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 6863 . . 3 (𝐴 = 0 → (normfn‘(bra‘𝐴)) = (normfn‘(bra‘0)))
2 fveq2 6858 . . 3 (𝐴 = 0 → (norm𝐴) = (norm‘0))
31, 2eqeq12d 2745 . 2 (𝐴 = 0 → ((normfn‘(bra‘𝐴)) = (norm𝐴) ↔ (normfn‘(bra‘0)) = (norm‘0)))
4 brafn 31876 . . . . 5 (𝐴 ∈ ℋ → (bra‘𝐴): ℋ⟶ℂ)
5 nmfnval 31805 . . . . 5 ((bra‘𝐴): ℋ⟶ℂ → (normfn‘(bra‘𝐴)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, < ))
64, 5syl 17 . . . 4 (𝐴 ∈ ℋ → (normfn‘(bra‘𝐴)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, < ))
76adantr 480 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (normfn‘(bra‘𝐴)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, < ))
8 nmfnsetre 31806 . . . . . . . 8 ((bra‘𝐴): ℋ⟶ℂ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ)
94, 8syl 17 . . . . . . 7 (𝐴 ∈ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ)
10 ressxr 11218 . . . . . . 7 ℝ ⊆ ℝ*
119, 10sstrdi 3959 . . . . . 6 (𝐴 ∈ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ*)
12 normcl 31054 . . . . . . 7 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ)
1312rexrd 11224 . . . . . 6 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ*)
1411, 13jca 511 . . . . 5 (𝐴 ∈ ℋ → ({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ* ∧ (norm𝐴) ∈ ℝ*))
1514adantr 480 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ* ∧ (norm𝐴) ∈ ℝ*))
16 vex 3451 . . . . . . . 8 𝑧 ∈ V
17 eqeq1 2733 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥 = (abs‘((bra‘𝐴)‘𝑦)) ↔ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))))
1817anbi2d 630 . . . . . . . . 9 (𝑥 = 𝑧 → (((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦)))))
1918rexbidv 3157 . . . . . . . 8 (𝑥 = 𝑧 → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦)))))
2016, 19elab 3646 . . . . . . 7 (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))))
21 id 22 . . . . . . . . . . . . 13 (𝑧 = (abs‘((bra‘𝐴)‘𝑦)) → 𝑧 = (abs‘((bra‘𝐴)‘𝑦)))
22 braval 31873 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((bra‘𝐴)‘𝑦) = (𝑦 ·ih 𝐴))
2322fveq2d 6862 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (abs‘((bra‘𝐴)‘𝑦)) = (abs‘(𝑦 ·ih 𝐴)))
2423adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) ≤ 1) → (abs‘((bra‘𝐴)‘𝑦)) = (abs‘(𝑦 ·ih 𝐴)))
2521, 24sylan9eqr 2786 . . . . . . . . . . . 12 ((((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) ≤ 1) ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → 𝑧 = (abs‘(𝑦 ·ih 𝐴)))
26 bcs2 31111 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ (norm𝑦) ≤ 1) → (abs‘(𝑦 ·ih 𝐴)) ≤ (norm𝐴))
27263expa 1118 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℋ ∧ 𝐴 ∈ ℋ) ∧ (norm𝑦) ≤ 1) → (abs‘(𝑦 ·ih 𝐴)) ≤ (norm𝐴))
2827ancom1s 653 . . . . . . . . . . . . 13 (((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) ≤ 1) → (abs‘(𝑦 ·ih 𝐴)) ≤ (norm𝐴))
2928adantr 480 . . . . . . . . . . . 12 ((((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) ≤ 1) ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → (abs‘(𝑦 ·ih 𝐴)) ≤ (norm𝐴))
3025, 29eqbrtrd 5129 . . . . . . . . . . 11 ((((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) ∧ (norm𝑦) ≤ 1) ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → 𝑧 ≤ (norm𝐴))
3130exp41 434 . . . . . . . . . 10 (𝐴 ∈ ℋ → (𝑦 ∈ ℋ → ((norm𝑦) ≤ 1 → (𝑧 = (abs‘((bra‘𝐴)‘𝑦)) → 𝑧 ≤ (norm𝐴)))))
3231imp4a 422 . . . . . . . . 9 (𝐴 ∈ ℋ → (𝑦 ∈ ℋ → (((norm𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → 𝑧 ≤ (norm𝐴))))
3332rexlimdv 3132 . . . . . . . 8 (𝐴 ∈ ℋ → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦))) → 𝑧 ≤ (norm𝐴)))
3433imp 406 . . . . . . 7 ((𝐴 ∈ ℋ ∧ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (abs‘((bra‘𝐴)‘𝑦)))) → 𝑧 ≤ (norm𝐴))
3520, 34sylan2b 594 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}) → 𝑧 ≤ (norm𝐴))
3635ralrimiva 3125 . . . . 5 (𝐴 ∈ ℋ → ∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 ≤ (norm𝐴))
3736adantr 480 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 ≤ (norm𝐴))
3812recnd 11202 . . . . . . . . . 10 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℂ)
3938adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ ℂ)
40 normne0 31059 . . . . . . . . . . . . . 14 (𝐴 ∈ ℋ → ((norm𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
4140biimpar 477 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ≠ 0)
4239, 41reccld 11951 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (1 / (norm𝐴)) ∈ ℂ)
43 simpl 482 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℋ)
44 hvmulcl 30942 . . . . . . . . . . . 12 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
4542, 43, 44syl2anc 584 . . . . . . . . . . 11 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
46 norm1 31178 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) = 1)
47 1le1 11806 . . . . . . . . . . . 12 1 ≤ 1
4846, 47eqbrtrdi 5146 . . . . . . . . . . 11 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1)
49 ax-his3 31013 . . . . . . . . . . . . 13 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((1 / (norm𝐴)) · 𝐴) ·ih 𝐴) = ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)))
5042, 43, 43, 49syl3anc 1373 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (((1 / (norm𝐴)) · 𝐴) ·ih 𝐴) = ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)))
5112adantr 480 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ ℝ)
5251, 41rereccld 12009 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (1 / (norm𝐴)) ∈ ℝ)
53 hiidrcl 31024 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℋ → (𝐴 ·ih 𝐴) ∈ ℝ)
5453adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (𝐴 ·ih 𝐴) ∈ ℝ)
5552, 54remulcld 11204 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)) ∈ ℝ)
5650, 55eqeltrd 2828 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (((1 / (norm𝐴)) · 𝐴) ·ih 𝐴) ∈ ℝ)
57 normgt0 31056 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℋ → (𝐴 ≠ 0 ↔ 0 < (norm𝐴)))
5857biimpa 476 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (norm𝐴))
5951, 58recgt0d 12117 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (1 / (norm𝐴)))
60 0re 11176 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
61 ltle 11262 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ (1 / (norm𝐴)) ∈ ℝ) → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
6260, 61mpan 690 . . . . . . . . . . . . . . . 16 ((1 / (norm𝐴)) ∈ ℝ → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
6352, 59, 62sylc 65 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 ≤ (1 / (norm𝐴)))
64 hiidge0 31027 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℋ → 0 ≤ (𝐴 ·ih 𝐴))
6564adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 ≤ (𝐴 ·ih 𝐴))
6652, 54, 63, 65mulge0d 11755 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 ≤ ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)))
6766, 50breqtrrd 5135 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 ≤ (((1 / (norm𝐴)) · 𝐴) ·ih 𝐴))
6856, 67absidd 15389 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘(((1 / (norm𝐴)) · 𝐴) ·ih 𝐴)) = (((1 / (norm𝐴)) · 𝐴) ·ih 𝐴))
6939, 41recid2d 11954 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · (norm𝐴)) = 1)
7069oveq2d 7403 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm𝐴) · ((1 / (norm𝐴)) · (norm𝐴))) = ((norm𝐴) · 1))
7139, 42, 39mul12d 11383 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm𝐴) · ((1 / (norm𝐴)) · (norm𝐴))) = ((1 / (norm𝐴)) · ((norm𝐴) · (norm𝐴))))
7238sqvald 14108 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℋ → ((norm𝐴)↑2) = ((norm𝐴) · (norm𝐴)))
73 normsq 31063 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℋ → ((norm𝐴)↑2) = (𝐴 ·ih 𝐴))
7472, 73eqtr3d 2766 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℋ → ((norm𝐴) · (norm𝐴)) = (𝐴 ·ih 𝐴))
7574adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm𝐴) · (norm𝐴)) = (𝐴 ·ih 𝐴))
7675oveq2d 7403 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · ((norm𝐴) · (norm𝐴))) = ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)))
7771, 76eqtrd 2764 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm𝐴) · ((1 / (norm𝐴)) · (norm𝐴))) = ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)))
7838mulridd 11191 . . . . . . . . . . . . . 14 (𝐴 ∈ ℋ → ((norm𝐴) · 1) = (norm𝐴))
7978adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm𝐴) · 1) = (norm𝐴))
8070, 77, 793eqtr3rd 2773 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) = ((1 / (norm𝐴)) · (𝐴 ·ih 𝐴)))
8150, 68, 803eqtr4rd 2775 . . . . . . . . . . 11 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) = (abs‘(((1 / (norm𝐴)) · 𝐴) ·ih 𝐴)))
82 fveq2 6858 . . . . . . . . . . . . . 14 (𝑦 = ((1 / (norm𝐴)) · 𝐴) → (norm𝑦) = (norm‘((1 / (norm𝐴)) · 𝐴)))
8382breq1d 5117 . . . . . . . . . . . . 13 (𝑦 = ((1 / (norm𝐴)) · 𝐴) → ((norm𝑦) ≤ 1 ↔ (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1))
84 fvoveq1 7410 . . . . . . . . . . . . . 14 (𝑦 = ((1 / (norm𝐴)) · 𝐴) → (abs‘(𝑦 ·ih 𝐴)) = (abs‘(((1 / (norm𝐴)) · 𝐴) ·ih 𝐴)))
8584eqeq2d 2740 . . . . . . . . . . . . 13 (𝑦 = ((1 / (norm𝐴)) · 𝐴) → ((norm𝐴) = (abs‘(𝑦 ·ih 𝐴)) ↔ (norm𝐴) = (abs‘(((1 / (norm𝐴)) · 𝐴) ·ih 𝐴))))
8683, 85anbi12d 632 . . . . . . . . . . . 12 (𝑦 = ((1 / (norm𝐴)) · 𝐴) → (((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴))) ↔ ((norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1 ∧ (norm𝐴) = (abs‘(((1 / (norm𝐴)) · 𝐴) ·ih 𝐴)))))
8786rspcev 3588 . . . . . . . . . . 11 ((((1 / (norm𝐴)) · 𝐴) ∈ ℋ ∧ ((norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1 ∧ (norm𝐴) = (abs‘(((1 / (norm𝐴)) · 𝐴) ·ih 𝐴)))) → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴))))
8845, 48, 81, 87syl12anc 836 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴))))
8923eqeq2d 2740 . . . . . . . . . . . . 13 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm𝐴) = (abs‘((bra‘𝐴)‘𝑦)) ↔ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴))))
9089anbi2d 630 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴)))))
9190rexbidva 3155 . . . . . . . . . . 11 (𝐴 ∈ ℋ → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴)))))
9291adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘(𝑦 ·ih 𝐴)))))
9388, 92mpbird 257 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦))))
94 eqeq1 2733 . . . . . . . . . . 11 (𝑥 = (norm𝐴) → (𝑥 = (abs‘((bra‘𝐴)‘𝑦)) ↔ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦))))
9594anbi2d 630 . . . . . . . . . 10 (𝑥 = (norm𝐴) → (((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦)))))
9695rexbidv 3157 . . . . . . . . 9 (𝑥 = (norm𝐴) → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ (norm𝐴) = (abs‘((bra‘𝐴)‘𝑦)))))
9739, 93, 96elabd 3648 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))})
98 breq2 5111 . . . . . . . . 9 (𝑤 = (norm𝐴) → (𝑧 < 𝑤𝑧 < (norm𝐴)))
9998rspcev 3588 . . . . . . . 8 (((norm𝐴) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ∧ 𝑧 < (norm𝐴)) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤)
10097, 99sylan 580 . . . . . . 7 (((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑧 < (norm𝐴)) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤)
101100adantlr 715 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 < (norm𝐴)) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤)
102101ex 412 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑧 ∈ ℝ) → (𝑧 < (norm𝐴) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤))
103102ralrimiva 3125 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ∀𝑧 ∈ ℝ (𝑧 < (norm𝐴) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤))
104 supxr2 13274 . . . 4 ((({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))} ⊆ ℝ* ∧ (norm𝐴) ∈ ℝ*) ∧ (∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 ≤ (norm𝐴) ∧ ∀𝑧 ∈ ℝ (𝑧 < (norm𝐴) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}𝑧 < 𝑤))) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, < ) = (norm𝐴))
10515, 37, 103, 104syl12anc 836 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘((bra‘𝐴)‘𝑦)))}, ℝ*, < ) = (norm𝐴))
1067, 105eqtrd 2764 . 2 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (normfn‘(bra‘𝐴)) = (norm𝐴))
107 nmfn0 31916 . . . 4 (normfn‘( ℋ × {0})) = 0
108 bra0 31879 . . . . 5 (bra‘0) = ( ℋ × {0})
109108fveq2i 6861 . . . 4 (normfn‘(bra‘0)) = (normfn‘( ℋ × {0}))
110 norm0 31057 . . . 4 (norm‘0) = 0
111107, 109, 1103eqtr4i 2762 . . 3 (normfn‘(bra‘0)) = (norm‘0)
112111a1i 11 . 2 (𝐴 ∈ ℋ → (normfn‘(bra‘0)) = (norm‘0))
1133, 106, 112pm2.61ne 3010 1 (𝐴 ∈ ℋ → (normfn‘(bra‘𝐴)) = (norm𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  wss 3914  {csn 4589   class class class wbr 5107   × cxp 5636  wf 6507  cfv 6511  (class class class)co 7387  supcsup 9391  cc 11066  cr 11067  0cc0 11068  1c1 11069   · cmul 11073  *cxr 11207   < clt 11208  cle 11209   / cdiv 11835  2c2 12241  cexp 14026  abscabs 15200  chba 30848   · csm 30850   ·ih csp 30851  normcno 30852  0c0v 30853  normfncnmf 30880  bracbr 30885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148  ax-hilex 30928  ax-hfvadd 30929  ax-hvcom 30930  ax-hvass 30931  ax-hv0cl 30932  ax-hvaddid 30933  ax-hfvmul 30934  ax-hvmulid 30935  ax-hvmulass 30936  ax-hvdistr1 30937  ax-hvdistr2 30938  ax-hvmul0 30939  ax-hfi 31008  ax-his1 31011  ax-his2 31012  ax-his3 31013  ax-his4 31014
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-cn 23114  df-cnp 23115  df-t1 23201  df-haus 23202  df-tx 23449  df-hmeo 23642  df-xms 24208  df-ms 24209  df-tms 24210  df-grpo 30422  df-gid 30423  df-ginv 30424  df-gdiv 30425  df-ablo 30474  df-vc 30488  df-nv 30521  df-va 30524  df-ba 30525  df-sm 30526  df-0v 30527  df-vs 30528  df-nmcv 30529  df-ims 30530  df-dip 30630  df-ph 30742  df-hnorm 30897  df-hba 30898  df-hvsub 30900  df-nmfn 31774  df-lnfn 31777  df-bra 31779
This theorem is referenced by:  brabn  32035
  Copyright terms: Public domain W3C validator