HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  branmfn Structured version   Visualization version   GIF version

Theorem branmfn 31345
Description: The norm of the bra function. (Contributed by NM, 24-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
branmfn (𝐴 ∈ β„‹ β†’ (normfnβ€˜(braβ€˜π΄)) = (normβ„Žβ€˜π΄))

Proof of Theorem branmfn
Dummy variables π‘₯ 𝑦 𝑧 𝑀 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 6893 . . 3 (𝐴 = 0β„Ž β†’ (normfnβ€˜(braβ€˜π΄)) = (normfnβ€˜(braβ€˜0β„Ž)))
2 fveq2 6888 . . 3 (𝐴 = 0β„Ž β†’ (normβ„Žβ€˜π΄) = (normβ„Žβ€˜0β„Ž))
31, 2eqeq12d 2748 . 2 (𝐴 = 0β„Ž β†’ ((normfnβ€˜(braβ€˜π΄)) = (normβ„Žβ€˜π΄) ↔ (normfnβ€˜(braβ€˜0β„Ž)) = (normβ„Žβ€˜0β„Ž)))
4 brafn 31187 . . . . 5 (𝐴 ∈ β„‹ β†’ (braβ€˜π΄): β„‹βŸΆβ„‚)
5 nmfnval 31116 . . . . 5 ((braβ€˜π΄): β„‹βŸΆβ„‚ β†’ (normfnβ€˜(braβ€˜π΄)) = sup({π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜((braβ€˜π΄)β€˜π‘¦)))}, ℝ*, < ))
64, 5syl 17 . . . 4 (𝐴 ∈ β„‹ β†’ (normfnβ€˜(braβ€˜π΄)) = sup({π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜((braβ€˜π΄)β€˜π‘¦)))}, ℝ*, < ))
76adantr 481 . . 3 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ (normfnβ€˜(braβ€˜π΄)) = sup({π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜((braβ€˜π΄)β€˜π‘¦)))}, ℝ*, < ))
8 nmfnsetre 31117 . . . . . . . 8 ((braβ€˜π΄): β„‹βŸΆβ„‚ β†’ {π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜((braβ€˜π΄)β€˜π‘¦)))} βŠ† ℝ)
94, 8syl 17 . . . . . . 7 (𝐴 ∈ β„‹ β†’ {π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜((braβ€˜π΄)β€˜π‘¦)))} βŠ† ℝ)
10 ressxr 11254 . . . . . . 7 ℝ βŠ† ℝ*
119, 10sstrdi 3993 . . . . . 6 (𝐴 ∈ β„‹ β†’ {π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜((braβ€˜π΄)β€˜π‘¦)))} βŠ† ℝ*)
12 normcl 30365 . . . . . . 7 (𝐴 ∈ β„‹ β†’ (normβ„Žβ€˜π΄) ∈ ℝ)
1312rexrd 11260 . . . . . 6 (𝐴 ∈ β„‹ β†’ (normβ„Žβ€˜π΄) ∈ ℝ*)
1411, 13jca 512 . . . . 5 (𝐴 ∈ β„‹ β†’ ({π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜((braβ€˜π΄)β€˜π‘¦)))} βŠ† ℝ* ∧ (normβ„Žβ€˜π΄) ∈ ℝ*))
1514adantr 481 . . . 4 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ ({π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜((braβ€˜π΄)β€˜π‘¦)))} βŠ† ℝ* ∧ (normβ„Žβ€˜π΄) ∈ ℝ*))
16 vex 3478 . . . . . . . 8 𝑧 ∈ V
17 eqeq1 2736 . . . . . . . . . 10 (π‘₯ = 𝑧 β†’ (π‘₯ = (absβ€˜((braβ€˜π΄)β€˜π‘¦)) ↔ 𝑧 = (absβ€˜((braβ€˜π΄)β€˜π‘¦))))
1817anbi2d 629 . . . . . . . . 9 (π‘₯ = 𝑧 β†’ (((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜((braβ€˜π΄)β€˜π‘¦))) ↔ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ 𝑧 = (absβ€˜((braβ€˜π΄)β€˜π‘¦)))))
1918rexbidv 3178 . . . . . . . 8 (π‘₯ = 𝑧 β†’ (βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜((braβ€˜π΄)β€˜π‘¦))) ↔ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ 𝑧 = (absβ€˜((braβ€˜π΄)β€˜π‘¦)))))
2016, 19elab 3667 . . . . . . 7 (𝑧 ∈ {π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜((braβ€˜π΄)β€˜π‘¦)))} ↔ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ 𝑧 = (absβ€˜((braβ€˜π΄)β€˜π‘¦))))
21 id 22 . . . . . . . . . . . . 13 (𝑧 = (absβ€˜((braβ€˜π΄)β€˜π‘¦)) β†’ 𝑧 = (absβ€˜((braβ€˜π΄)β€˜π‘¦)))
22 braval 31184 . . . . . . . . . . . . . . 15 ((𝐴 ∈ β„‹ ∧ 𝑦 ∈ β„‹) β†’ ((braβ€˜π΄)β€˜π‘¦) = (𝑦 Β·ih 𝐴))
2322fveq2d 6892 . . . . . . . . . . . . . 14 ((𝐴 ∈ β„‹ ∧ 𝑦 ∈ β„‹) β†’ (absβ€˜((braβ€˜π΄)β€˜π‘¦)) = (absβ€˜(𝑦 Β·ih 𝐴)))
2423adantr 481 . . . . . . . . . . . . 13 (((𝐴 ∈ β„‹ ∧ 𝑦 ∈ β„‹) ∧ (normβ„Žβ€˜π‘¦) ≀ 1) β†’ (absβ€˜((braβ€˜π΄)β€˜π‘¦)) = (absβ€˜(𝑦 Β·ih 𝐴)))
2521, 24sylan9eqr 2794 . . . . . . . . . . . 12 ((((𝐴 ∈ β„‹ ∧ 𝑦 ∈ β„‹) ∧ (normβ„Žβ€˜π‘¦) ≀ 1) ∧ 𝑧 = (absβ€˜((braβ€˜π΄)β€˜π‘¦))) β†’ 𝑧 = (absβ€˜(𝑦 Β·ih 𝐴)))
26 bcs2 30422 . . . . . . . . . . . . . . 15 ((𝑦 ∈ β„‹ ∧ 𝐴 ∈ β„‹ ∧ (normβ„Žβ€˜π‘¦) ≀ 1) β†’ (absβ€˜(𝑦 Β·ih 𝐴)) ≀ (normβ„Žβ€˜π΄))
27263expa 1118 . . . . . . . . . . . . . 14 (((𝑦 ∈ β„‹ ∧ 𝐴 ∈ β„‹) ∧ (normβ„Žβ€˜π‘¦) ≀ 1) β†’ (absβ€˜(𝑦 Β·ih 𝐴)) ≀ (normβ„Žβ€˜π΄))
2827ancom1s 651 . . . . . . . . . . . . 13 (((𝐴 ∈ β„‹ ∧ 𝑦 ∈ β„‹) ∧ (normβ„Žβ€˜π‘¦) ≀ 1) β†’ (absβ€˜(𝑦 Β·ih 𝐴)) ≀ (normβ„Žβ€˜π΄))
2928adantr 481 . . . . . . . . . . . 12 ((((𝐴 ∈ β„‹ ∧ 𝑦 ∈ β„‹) ∧ (normβ„Žβ€˜π‘¦) ≀ 1) ∧ 𝑧 = (absβ€˜((braβ€˜π΄)β€˜π‘¦))) β†’ (absβ€˜(𝑦 Β·ih 𝐴)) ≀ (normβ„Žβ€˜π΄))
3025, 29eqbrtrd 5169 . . . . . . . . . . 11 ((((𝐴 ∈ β„‹ ∧ 𝑦 ∈ β„‹) ∧ (normβ„Žβ€˜π‘¦) ≀ 1) ∧ 𝑧 = (absβ€˜((braβ€˜π΄)β€˜π‘¦))) β†’ 𝑧 ≀ (normβ„Žβ€˜π΄))
3130exp41 435 . . . . . . . . . 10 (𝐴 ∈ β„‹ β†’ (𝑦 ∈ β„‹ β†’ ((normβ„Žβ€˜π‘¦) ≀ 1 β†’ (𝑧 = (absβ€˜((braβ€˜π΄)β€˜π‘¦)) β†’ 𝑧 ≀ (normβ„Žβ€˜π΄)))))
3231imp4a 423 . . . . . . . . 9 (𝐴 ∈ β„‹ β†’ (𝑦 ∈ β„‹ β†’ (((normβ„Žβ€˜π‘¦) ≀ 1 ∧ 𝑧 = (absβ€˜((braβ€˜π΄)β€˜π‘¦))) β†’ 𝑧 ≀ (normβ„Žβ€˜π΄))))
3332rexlimdv 3153 . . . . . . . 8 (𝐴 ∈ β„‹ β†’ (βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ 𝑧 = (absβ€˜((braβ€˜π΄)β€˜π‘¦))) β†’ 𝑧 ≀ (normβ„Žβ€˜π΄)))
3433imp 407 . . . . . . 7 ((𝐴 ∈ β„‹ ∧ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ 𝑧 = (absβ€˜((braβ€˜π΄)β€˜π‘¦)))) β†’ 𝑧 ≀ (normβ„Žβ€˜π΄))
3520, 34sylan2b 594 . . . . . 6 ((𝐴 ∈ β„‹ ∧ 𝑧 ∈ {π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜((braβ€˜π΄)β€˜π‘¦)))}) β†’ 𝑧 ≀ (normβ„Žβ€˜π΄))
3635ralrimiva 3146 . . . . 5 (𝐴 ∈ β„‹ β†’ βˆ€π‘§ ∈ {π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜((braβ€˜π΄)β€˜π‘¦)))}𝑧 ≀ (normβ„Žβ€˜π΄))
3736adantr 481 . . . 4 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ βˆ€π‘§ ∈ {π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜((braβ€˜π΄)β€˜π‘¦)))}𝑧 ≀ (normβ„Žβ€˜π΄))
3812recnd 11238 . . . . . . . . . 10 (𝐴 ∈ β„‹ β†’ (normβ„Žβ€˜π΄) ∈ β„‚)
3938adantr 481 . . . . . . . . 9 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ (normβ„Žβ€˜π΄) ∈ β„‚)
40 normne0 30370 . . . . . . . . . . . . . 14 (𝐴 ∈ β„‹ β†’ ((normβ„Žβ€˜π΄) β‰  0 ↔ 𝐴 β‰  0β„Ž))
4140biimpar 478 . . . . . . . . . . . . 13 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ (normβ„Žβ€˜π΄) β‰  0)
4239, 41reccld 11979 . . . . . . . . . . . 12 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ (1 / (normβ„Žβ€˜π΄)) ∈ β„‚)
43 simpl 483 . . . . . . . . . . . 12 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ 𝐴 ∈ β„‹)
44 hvmulcl 30253 . . . . . . . . . . . 12 (((1 / (normβ„Žβ€˜π΄)) ∈ β„‚ ∧ 𝐴 ∈ β„‹) β†’ ((1 / (normβ„Žβ€˜π΄)) Β·β„Ž 𝐴) ∈ β„‹)
4542, 43, 44syl2anc 584 . . . . . . . . . . 11 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ ((1 / (normβ„Žβ€˜π΄)) Β·β„Ž 𝐴) ∈ β„‹)
46 norm1 30489 . . . . . . . . . . . 12 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ (normβ„Žβ€˜((1 / (normβ„Žβ€˜π΄)) Β·β„Ž 𝐴)) = 1)
47 1le1 11838 . . . . . . . . . . . 12 1 ≀ 1
4846, 47eqbrtrdi 5186 . . . . . . . . . . 11 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ (normβ„Žβ€˜((1 / (normβ„Žβ€˜π΄)) Β·β„Ž 𝐴)) ≀ 1)
49 ax-his3 30324 . . . . . . . . . . . . 13 (((1 / (normβ„Žβ€˜π΄)) ∈ β„‚ ∧ 𝐴 ∈ β„‹ ∧ 𝐴 ∈ β„‹) β†’ (((1 / (normβ„Žβ€˜π΄)) Β·β„Ž 𝐴) Β·ih 𝐴) = ((1 / (normβ„Žβ€˜π΄)) Β· (𝐴 Β·ih 𝐴)))
5042, 43, 43, 49syl3anc 1371 . . . . . . . . . . . 12 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ (((1 / (normβ„Žβ€˜π΄)) Β·β„Ž 𝐴) Β·ih 𝐴) = ((1 / (normβ„Žβ€˜π΄)) Β· (𝐴 Β·ih 𝐴)))
5112adantr 481 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ (normβ„Žβ€˜π΄) ∈ ℝ)
5251, 41rereccld 12037 . . . . . . . . . . . . . . 15 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ (1 / (normβ„Žβ€˜π΄)) ∈ ℝ)
53 hiidrcl 30335 . . . . . . . . . . . . . . . 16 (𝐴 ∈ β„‹ β†’ (𝐴 Β·ih 𝐴) ∈ ℝ)
5453adantr 481 . . . . . . . . . . . . . . 15 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ (𝐴 Β·ih 𝐴) ∈ ℝ)
5552, 54remulcld 11240 . . . . . . . . . . . . . 14 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ ((1 / (normβ„Žβ€˜π΄)) Β· (𝐴 Β·ih 𝐴)) ∈ ℝ)
5650, 55eqeltrd 2833 . . . . . . . . . . . . 13 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ (((1 / (normβ„Žβ€˜π΄)) Β·β„Ž 𝐴) Β·ih 𝐴) ∈ ℝ)
57 normgt0 30367 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ β„‹ β†’ (𝐴 β‰  0β„Ž ↔ 0 < (normβ„Žβ€˜π΄)))
5857biimpa 477 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ 0 < (normβ„Žβ€˜π΄))
5951, 58recgt0d 12144 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ 0 < (1 / (normβ„Žβ€˜π΄)))
60 0re 11212 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
61 ltle 11298 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ (1 / (normβ„Žβ€˜π΄)) ∈ ℝ) β†’ (0 < (1 / (normβ„Žβ€˜π΄)) β†’ 0 ≀ (1 / (normβ„Žβ€˜π΄))))
6260, 61mpan 688 . . . . . . . . . . . . . . . 16 ((1 / (normβ„Žβ€˜π΄)) ∈ ℝ β†’ (0 < (1 / (normβ„Žβ€˜π΄)) β†’ 0 ≀ (1 / (normβ„Žβ€˜π΄))))
6352, 59, 62sylc 65 . . . . . . . . . . . . . . 15 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ 0 ≀ (1 / (normβ„Žβ€˜π΄)))
64 hiidge0 30338 . . . . . . . . . . . . . . . 16 (𝐴 ∈ β„‹ β†’ 0 ≀ (𝐴 Β·ih 𝐴))
6564adantr 481 . . . . . . . . . . . . . . 15 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ 0 ≀ (𝐴 Β·ih 𝐴))
6652, 54, 63, 65mulge0d 11787 . . . . . . . . . . . . . 14 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ 0 ≀ ((1 / (normβ„Žβ€˜π΄)) Β· (𝐴 Β·ih 𝐴)))
6766, 50breqtrrd 5175 . . . . . . . . . . . . 13 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ 0 ≀ (((1 / (normβ„Žβ€˜π΄)) Β·β„Ž 𝐴) Β·ih 𝐴))
6856, 67absidd 15365 . . . . . . . . . . . 12 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ (absβ€˜(((1 / (normβ„Žβ€˜π΄)) Β·β„Ž 𝐴) Β·ih 𝐴)) = (((1 / (normβ„Žβ€˜π΄)) Β·β„Ž 𝐴) Β·ih 𝐴))
6939, 41recid2d 11982 . . . . . . . . . . . . . 14 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ ((1 / (normβ„Žβ€˜π΄)) Β· (normβ„Žβ€˜π΄)) = 1)
7069oveq2d 7421 . . . . . . . . . . . . 13 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ ((normβ„Žβ€˜π΄) Β· ((1 / (normβ„Žβ€˜π΄)) Β· (normβ„Žβ€˜π΄))) = ((normβ„Žβ€˜π΄) Β· 1))
7139, 42, 39mul12d 11419 . . . . . . . . . . . . . 14 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ ((normβ„Žβ€˜π΄) Β· ((1 / (normβ„Žβ€˜π΄)) Β· (normβ„Žβ€˜π΄))) = ((1 / (normβ„Žβ€˜π΄)) Β· ((normβ„Žβ€˜π΄) Β· (normβ„Žβ€˜π΄))))
7238sqvald 14104 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ β„‹ β†’ ((normβ„Žβ€˜π΄)↑2) = ((normβ„Žβ€˜π΄) Β· (normβ„Žβ€˜π΄)))
73 normsq 30374 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ β„‹ β†’ ((normβ„Žβ€˜π΄)↑2) = (𝐴 Β·ih 𝐴))
7472, 73eqtr3d 2774 . . . . . . . . . . . . . . . 16 (𝐴 ∈ β„‹ β†’ ((normβ„Žβ€˜π΄) Β· (normβ„Žβ€˜π΄)) = (𝐴 Β·ih 𝐴))
7574adantr 481 . . . . . . . . . . . . . . 15 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ ((normβ„Žβ€˜π΄) Β· (normβ„Žβ€˜π΄)) = (𝐴 Β·ih 𝐴))
7675oveq2d 7421 . . . . . . . . . . . . . 14 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ ((1 / (normβ„Žβ€˜π΄)) Β· ((normβ„Žβ€˜π΄) Β· (normβ„Žβ€˜π΄))) = ((1 / (normβ„Žβ€˜π΄)) Β· (𝐴 Β·ih 𝐴)))
7771, 76eqtrd 2772 . . . . . . . . . . . . 13 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ ((normβ„Žβ€˜π΄) Β· ((1 / (normβ„Žβ€˜π΄)) Β· (normβ„Žβ€˜π΄))) = ((1 / (normβ„Žβ€˜π΄)) Β· (𝐴 Β·ih 𝐴)))
7838mulridd 11227 . . . . . . . . . . . . . 14 (𝐴 ∈ β„‹ β†’ ((normβ„Žβ€˜π΄) Β· 1) = (normβ„Žβ€˜π΄))
7978adantr 481 . . . . . . . . . . . . 13 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ ((normβ„Žβ€˜π΄) Β· 1) = (normβ„Žβ€˜π΄))
8070, 77, 793eqtr3rd 2781 . . . . . . . . . . . 12 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ (normβ„Žβ€˜π΄) = ((1 / (normβ„Žβ€˜π΄)) Β· (𝐴 Β·ih 𝐴)))
8150, 68, 803eqtr4rd 2783 . . . . . . . . . . 11 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ (normβ„Žβ€˜π΄) = (absβ€˜(((1 / (normβ„Žβ€˜π΄)) Β·β„Ž 𝐴) Β·ih 𝐴)))
82 fveq2 6888 . . . . . . . . . . . . . 14 (𝑦 = ((1 / (normβ„Žβ€˜π΄)) Β·β„Ž 𝐴) β†’ (normβ„Žβ€˜π‘¦) = (normβ„Žβ€˜((1 / (normβ„Žβ€˜π΄)) Β·β„Ž 𝐴)))
8382breq1d 5157 . . . . . . . . . . . . 13 (𝑦 = ((1 / (normβ„Žβ€˜π΄)) Β·β„Ž 𝐴) β†’ ((normβ„Žβ€˜π‘¦) ≀ 1 ↔ (normβ„Žβ€˜((1 / (normβ„Žβ€˜π΄)) Β·β„Ž 𝐴)) ≀ 1))
84 fvoveq1 7428 . . . . . . . . . . . . . 14 (𝑦 = ((1 / (normβ„Žβ€˜π΄)) Β·β„Ž 𝐴) β†’ (absβ€˜(𝑦 Β·ih 𝐴)) = (absβ€˜(((1 / (normβ„Žβ€˜π΄)) Β·β„Ž 𝐴) Β·ih 𝐴)))
8584eqeq2d 2743 . . . . . . . . . . . . 13 (𝑦 = ((1 / (normβ„Žβ€˜π΄)) Β·β„Ž 𝐴) β†’ ((normβ„Žβ€˜π΄) = (absβ€˜(𝑦 Β·ih 𝐴)) ↔ (normβ„Žβ€˜π΄) = (absβ€˜(((1 / (normβ„Žβ€˜π΄)) Β·β„Ž 𝐴) Β·ih 𝐴))))
8683, 85anbi12d 631 . . . . . . . . . . . 12 (𝑦 = ((1 / (normβ„Žβ€˜π΄)) Β·β„Ž 𝐴) β†’ (((normβ„Žβ€˜π‘¦) ≀ 1 ∧ (normβ„Žβ€˜π΄) = (absβ€˜(𝑦 Β·ih 𝐴))) ↔ ((normβ„Žβ€˜((1 / (normβ„Žβ€˜π΄)) Β·β„Ž 𝐴)) ≀ 1 ∧ (normβ„Žβ€˜π΄) = (absβ€˜(((1 / (normβ„Žβ€˜π΄)) Β·β„Ž 𝐴) Β·ih 𝐴)))))
8786rspcev 3612 . . . . . . . . . . 11 ((((1 / (normβ„Žβ€˜π΄)) Β·β„Ž 𝐴) ∈ β„‹ ∧ ((normβ„Žβ€˜((1 / (normβ„Žβ€˜π΄)) Β·β„Ž 𝐴)) ≀ 1 ∧ (normβ„Žβ€˜π΄) = (absβ€˜(((1 / (normβ„Žβ€˜π΄)) Β·β„Ž 𝐴) Β·ih 𝐴)))) β†’ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ (normβ„Žβ€˜π΄) = (absβ€˜(𝑦 Β·ih 𝐴))))
8845, 48, 81, 87syl12anc 835 . . . . . . . . . 10 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ (normβ„Žβ€˜π΄) = (absβ€˜(𝑦 Β·ih 𝐴))))
8923eqeq2d 2743 . . . . . . . . . . . . 13 ((𝐴 ∈ β„‹ ∧ 𝑦 ∈ β„‹) β†’ ((normβ„Žβ€˜π΄) = (absβ€˜((braβ€˜π΄)β€˜π‘¦)) ↔ (normβ„Žβ€˜π΄) = (absβ€˜(𝑦 Β·ih 𝐴))))
9089anbi2d 629 . . . . . . . . . . . 12 ((𝐴 ∈ β„‹ ∧ 𝑦 ∈ β„‹) β†’ (((normβ„Žβ€˜π‘¦) ≀ 1 ∧ (normβ„Žβ€˜π΄) = (absβ€˜((braβ€˜π΄)β€˜π‘¦))) ↔ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ (normβ„Žβ€˜π΄) = (absβ€˜(𝑦 Β·ih 𝐴)))))
9190rexbidva 3176 . . . . . . . . . . 11 (𝐴 ∈ β„‹ β†’ (βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ (normβ„Žβ€˜π΄) = (absβ€˜((braβ€˜π΄)β€˜π‘¦))) ↔ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ (normβ„Žβ€˜π΄) = (absβ€˜(𝑦 Β·ih 𝐴)))))
9291adantr 481 . . . . . . . . . 10 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ (βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ (normβ„Žβ€˜π΄) = (absβ€˜((braβ€˜π΄)β€˜π‘¦))) ↔ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ (normβ„Žβ€˜π΄) = (absβ€˜(𝑦 Β·ih 𝐴)))))
9388, 92mpbird 256 . . . . . . . . 9 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ (normβ„Žβ€˜π΄) = (absβ€˜((braβ€˜π΄)β€˜π‘¦))))
94 eqeq1 2736 . . . . . . . . . . 11 (π‘₯ = (normβ„Žβ€˜π΄) β†’ (π‘₯ = (absβ€˜((braβ€˜π΄)β€˜π‘¦)) ↔ (normβ„Žβ€˜π΄) = (absβ€˜((braβ€˜π΄)β€˜π‘¦))))
9594anbi2d 629 . . . . . . . . . 10 (π‘₯ = (normβ„Žβ€˜π΄) β†’ (((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜((braβ€˜π΄)β€˜π‘¦))) ↔ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ (normβ„Žβ€˜π΄) = (absβ€˜((braβ€˜π΄)β€˜π‘¦)))))
9695rexbidv 3178 . . . . . . . . 9 (π‘₯ = (normβ„Žβ€˜π΄) β†’ (βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜((braβ€˜π΄)β€˜π‘¦))) ↔ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ (normβ„Žβ€˜π΄) = (absβ€˜((braβ€˜π΄)β€˜π‘¦)))))
9739, 93, 96elabd 3670 . . . . . . . 8 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ (normβ„Žβ€˜π΄) ∈ {π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜((braβ€˜π΄)β€˜π‘¦)))})
98 breq2 5151 . . . . . . . . 9 (𝑀 = (normβ„Žβ€˜π΄) β†’ (𝑧 < 𝑀 ↔ 𝑧 < (normβ„Žβ€˜π΄)))
9998rspcev 3612 . . . . . . . 8 (((normβ„Žβ€˜π΄) ∈ {π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜((braβ€˜π΄)β€˜π‘¦)))} ∧ 𝑧 < (normβ„Žβ€˜π΄)) β†’ βˆƒπ‘€ ∈ {π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜((braβ€˜π΄)β€˜π‘¦)))}𝑧 < 𝑀)
10097, 99sylan 580 . . . . . . 7 (((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) ∧ 𝑧 < (normβ„Žβ€˜π΄)) β†’ βˆƒπ‘€ ∈ {π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜((braβ€˜π΄)β€˜π‘¦)))}𝑧 < 𝑀)
101100adantlr 713 . . . . . 6 ((((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 < (normβ„Žβ€˜π΄)) β†’ βˆƒπ‘€ ∈ {π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜((braβ€˜π΄)β€˜π‘¦)))}𝑧 < 𝑀)
102101ex 413 . . . . 5 (((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) ∧ 𝑧 ∈ ℝ) β†’ (𝑧 < (normβ„Žβ€˜π΄) β†’ βˆƒπ‘€ ∈ {π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜((braβ€˜π΄)β€˜π‘¦)))}𝑧 < 𝑀))
103102ralrimiva 3146 . . . 4 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ βˆ€π‘§ ∈ ℝ (𝑧 < (normβ„Žβ€˜π΄) β†’ βˆƒπ‘€ ∈ {π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜((braβ€˜π΄)β€˜π‘¦)))}𝑧 < 𝑀))
104 supxr2 13289 . . . 4 ((({π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜((braβ€˜π΄)β€˜π‘¦)))} βŠ† ℝ* ∧ (normβ„Žβ€˜π΄) ∈ ℝ*) ∧ (βˆ€π‘§ ∈ {π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜((braβ€˜π΄)β€˜π‘¦)))}𝑧 ≀ (normβ„Žβ€˜π΄) ∧ βˆ€π‘§ ∈ ℝ (𝑧 < (normβ„Žβ€˜π΄) β†’ βˆƒπ‘€ ∈ {π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜((braβ€˜π΄)β€˜π‘¦)))}𝑧 < 𝑀))) β†’ sup({π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜((braβ€˜π΄)β€˜π‘¦)))}, ℝ*, < ) = (normβ„Žβ€˜π΄))
10515, 37, 103, 104syl12anc 835 . . 3 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ sup({π‘₯ ∣ βˆƒπ‘¦ ∈ β„‹ ((normβ„Žβ€˜π‘¦) ≀ 1 ∧ π‘₯ = (absβ€˜((braβ€˜π΄)β€˜π‘¦)))}, ℝ*, < ) = (normβ„Žβ€˜π΄))
1067, 105eqtrd 2772 . 2 ((𝐴 ∈ β„‹ ∧ 𝐴 β‰  0β„Ž) β†’ (normfnβ€˜(braβ€˜π΄)) = (normβ„Žβ€˜π΄))
107 nmfn0 31227 . . . 4 (normfnβ€˜( β„‹ Γ— {0})) = 0
108 bra0 31190 . . . . 5 (braβ€˜0β„Ž) = ( β„‹ Γ— {0})
109108fveq2i 6891 . . . 4 (normfnβ€˜(braβ€˜0β„Ž)) = (normfnβ€˜( β„‹ Γ— {0}))
110 norm0 30368 . . . 4 (normβ„Žβ€˜0β„Ž) = 0
111107, 109, 1103eqtr4i 2770 . . 3 (normfnβ€˜(braβ€˜0β„Ž)) = (normβ„Žβ€˜0β„Ž)
112111a1i 11 . 2 (𝐴 ∈ β„‹ β†’ (normfnβ€˜(braβ€˜0β„Ž)) = (normβ„Žβ€˜0β„Ž))
1133, 106, 112pm2.61ne 3027 1 (𝐴 ∈ β„‹ β†’ (normfnβ€˜(braβ€˜π΄)) = (normβ„Žβ€˜π΄))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {cab 2709   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070   βŠ† wss 3947  {csn 4627   class class class wbr 5147   Γ— cxp 5673  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  supcsup 9431  β„‚cc 11104  β„cr 11105  0cc0 11106  1c1 11107   Β· cmul 11111  β„*cxr 11243   < clt 11244   ≀ cle 11245   / cdiv 11867  2c2 12263  β†‘cexp 14023  abscabs 15177   β„‹chba 30159   Β·β„Ž csm 30161   Β·ih csp 30162  normβ„Žcno 30163  0β„Žc0v 30164  normfncnmf 30191  bracbr 30196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186  ax-hilex 30239  ax-hfvadd 30240  ax-hvcom 30241  ax-hvass 30242  ax-hv0cl 30243  ax-hvaddid 30244  ax-hfvmul 30245  ax-hvmulid 30246  ax-hvmulass 30247  ax-hvdistr1 30248  ax-hvdistr2 30249  ax-hvmul0 30250  ax-hfi 30319  ax-his1 30322  ax-his2 30323  ax-his3 30324  ax-his4 30325
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-icc 13327  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-rest 17364  df-topn 17365  df-0g 17383  df-gsum 17384  df-topgen 17385  df-pt 17386  df-prds 17389  df-xrs 17444  df-qtop 17449  df-imas 17450  df-xps 17452  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-mulg 18945  df-cntz 19175  df-cmn 19644  df-psmet 20928  df-xmet 20929  df-met 20930  df-bl 20931  df-mopn 20932  df-cnfld 20937  df-top 22387  df-topon 22404  df-topsp 22426  df-bases 22440  df-cld 22514  df-ntr 22515  df-cls 22516  df-cn 22722  df-cnp 22723  df-t1 22809  df-haus 22810  df-tx 23057  df-hmeo 23250  df-xms 23817  df-ms 23818  df-tms 23819  df-grpo 29733  df-gid 29734  df-ginv 29735  df-gdiv 29736  df-ablo 29785  df-vc 29799  df-nv 29832  df-va 29835  df-ba 29836  df-sm 29837  df-0v 29838  df-vs 29839  df-nmcv 29840  df-ims 29841  df-dip 29941  df-ph 30053  df-hnorm 30208  df-hba 30209  df-hvsub 30211  df-nmfn 31085  df-lnfn 31088  df-bra 31090
This theorem is referenced by:  brabn  31346
  Copyright terms: Public domain W3C validator