Proof of Theorem wfrlem15OLD
| Step | Hyp | Ref
| Expression |
| 1 | | wfrlem13OLD.1 |
. . . . 5
⊢ 𝑅 We 𝐴 |
| 2 | | wfrlem13OLD.2 |
. . . . 5
⊢ 𝑅 Se 𝐴 |
| 3 | | wfrlem13OLD.3 |
. . . . 5
⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
| 4 | | wfrlem13OLD.4 |
. . . . 5
⊢ 𝐶 = (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) |
| 5 | 1, 2, 3, 4 | wfrlem13OLD 8361 |
. . . 4
⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝐶 Fn (dom 𝐹 ∪ {𝑧})) |
| 6 | 5 | adantr 480 |
. . 3
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝐶 Fn (dom 𝐹 ∪ {𝑧})) |
| 7 | 1, 3 | wfrlem10OLD 8358 |
. . . 4
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → Pred(𝑅, 𝐴, 𝑧) = dom 𝐹) |
| 8 | | eldifi 4131 |
. . . . . 6
⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝑧 ∈ 𝐴) |
| 9 | | setlikespec 6346 |
. . . . . 6
⊢ ((𝑧 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑧) ∈ V) |
| 10 | 8, 2, 9 | sylancl 586 |
. . . . 5
⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → Pred(𝑅, 𝐴, 𝑧) ∈ V) |
| 11 | 10 | adantr 480 |
. . . 4
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → Pred(𝑅, 𝐴, 𝑧) ∈ V) |
| 12 | 7, 11 | eqeltrrd 2842 |
. . 3
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → dom 𝐹 ∈ V) |
| 13 | | snex 5436 |
. . . . 5
⊢ {𝑧} ∈ V |
| 14 | | unexg 7763 |
. . . . 5
⊢ ((dom
𝐹 ∈ V ∧ {𝑧} ∈ V) → (dom 𝐹 ∪ {𝑧}) ∈ V) |
| 15 | 13, 14 | mpan2 691 |
. . . 4
⊢ (dom
𝐹 ∈ V → (dom
𝐹 ∪ {𝑧}) ∈ V) |
| 16 | | fnex 7237 |
. . . 4
⊢ ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ (dom 𝐹 ∪ {𝑧}) ∈ V) → 𝐶 ∈ V) |
| 17 | 15, 16 | sylan2 593 |
. . 3
⊢ ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ dom 𝐹 ∈ V) → 𝐶 ∈ V) |
| 18 | 6, 12, 17 | syl2anc 584 |
. 2
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝐶 ∈ V) |
| 19 | 12, 13, 14 | sylancl 586 |
. . 3
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (dom 𝐹 ∪ {𝑧}) ∈ V) |
| 20 | 3 | wfrdmssOLD 8355 |
. . . . . . 7
⊢ dom 𝐹 ⊆ 𝐴 |
| 21 | 8 | snssd 4809 |
. . . . . . 7
⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → {𝑧} ⊆ 𝐴) |
| 22 | | unss 4190 |
. . . . . . . 8
⊢ ((dom
𝐹 ⊆ 𝐴 ∧ {𝑧} ⊆ 𝐴) ↔ (dom 𝐹 ∪ {𝑧}) ⊆ 𝐴) |
| 23 | 22 | biimpi 216 |
. . . . . . 7
⊢ ((dom
𝐹 ⊆ 𝐴 ∧ {𝑧} ⊆ 𝐴) → (dom 𝐹 ∪ {𝑧}) ⊆ 𝐴) |
| 24 | 20, 21, 23 | sylancr 587 |
. . . . . 6
⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (dom 𝐹 ∪ {𝑧}) ⊆ 𝐴) |
| 25 | 24 | adantr 480 |
. . . . 5
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (dom 𝐹 ∪ {𝑧}) ⊆ 𝐴) |
| 26 | | elun 4153 |
. . . . . . . 8
⊢ (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) ↔ (𝑦 ∈ dom 𝐹 ∨ 𝑦 ∈ {𝑧})) |
| 27 | | velsn 4642 |
. . . . . . . . 9
⊢ (𝑦 ∈ {𝑧} ↔ 𝑦 = 𝑧) |
| 28 | 27 | orbi2i 913 |
. . . . . . . 8
⊢ ((𝑦 ∈ dom 𝐹 ∨ 𝑦 ∈ {𝑧}) ↔ (𝑦 ∈ dom 𝐹 ∨ 𝑦 = 𝑧)) |
| 29 | 26, 28 | bitri 275 |
. . . . . . 7
⊢ (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) ↔ (𝑦 ∈ dom 𝐹 ∨ 𝑦 = 𝑧)) |
| 30 | 3 | wfrdmclOLD 8357 |
. . . . . . . . . 10
⊢ (𝑦 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝐹) |
| 31 | | ssun3 4180 |
. . . . . . . . . 10
⊢
(Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝐹 → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})) |
| 32 | 30, 31 | syl 17 |
. . . . . . . . 9
⊢ (𝑦 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})) |
| 33 | 32 | a1i 11 |
. . . . . . . 8
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (𝑦 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}))) |
| 34 | | ssun1 4178 |
. . . . . . . . . 10
⊢ dom 𝐹 ⊆ (dom 𝐹 ∪ {𝑧}) |
| 35 | 7, 34 | eqsstrdi 4028 |
. . . . . . . . 9
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → Pred(𝑅, 𝐴, 𝑧) ⊆ (dom 𝐹 ∪ {𝑧})) |
| 36 | | predeq3 6325 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑧)) |
| 37 | 36 | sseq1d 4015 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → (Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}) ↔ Pred(𝑅, 𝐴, 𝑧) ⊆ (dom 𝐹 ∪ {𝑧}))) |
| 38 | 35, 37 | syl5ibrcom 247 |
. . . . . . . 8
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (𝑦 = 𝑧 → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}))) |
| 39 | 33, 38 | jaod 860 |
. . . . . . 7
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → ((𝑦 ∈ dom 𝐹 ∨ 𝑦 = 𝑧) → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}))) |
| 40 | 29, 39 | biimtrid 242 |
. . . . . 6
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}))) |
| 41 | 40 | ralrimiv 3145 |
. . . . 5
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})) |
| 42 | 25, 41 | jca 511 |
. . . 4
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → ((dom 𝐹 ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}))) |
| 43 | 1, 2, 3, 4 | wfrlem14OLD 8362 |
. . . . . 6
⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) → (𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
| 44 | 43 | ralrimiv 3145 |
. . . . 5
⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})(𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
| 45 | 44 | adantr 480 |
. . . 4
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})(𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
| 46 | 6, 42, 45 | 3jca 1129 |
. . 3
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ ((dom 𝐹 ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})) ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})(𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
| 47 | | fneq2 6660 |
. . . 4
⊢ (𝑥 = (dom 𝐹 ∪ {𝑧}) → (𝐶 Fn 𝑥 ↔ 𝐶 Fn (dom 𝐹 ∪ {𝑧}))) |
| 48 | | sseq1 4009 |
. . . . 5
⊢ (𝑥 = (dom 𝐹 ∪ {𝑧}) → (𝑥 ⊆ 𝐴 ↔ (dom 𝐹 ∪ {𝑧}) ⊆ 𝐴)) |
| 49 | | sseq2 4010 |
. . . . . 6
⊢ (𝑥 = (dom 𝐹 ∪ {𝑧}) → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}))) |
| 50 | 49 | raleqbi1dv 3338 |
. . . . 5
⊢ (𝑥 = (dom 𝐹 ∪ {𝑧}) → (∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}))) |
| 51 | 48, 50 | anbi12d 632 |
. . . 4
⊢ (𝑥 = (dom 𝐹 ∪ {𝑧}) → ((𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ↔ ((dom 𝐹 ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})))) |
| 52 | | raleq 3323 |
. . . 4
⊢ (𝑥 = (dom 𝐹 ∪ {𝑧}) → (∀𝑦 ∈ 𝑥 (𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})(𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
| 53 | 47, 51, 52 | 3anbi123d 1438 |
. . 3
⊢ (𝑥 = (dom 𝐹 ∪ {𝑧}) → ((𝐶 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ ((dom 𝐹 ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})) ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})(𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))) |
| 54 | 19, 46, 53 | spcedv 3598 |
. 2
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → ∃𝑥(𝐶 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
| 55 | | fneq1 6659 |
. . . 4
⊢ (𝑓 = 𝐶 → (𝑓 Fn 𝑥 ↔ 𝐶 Fn 𝑥)) |
| 56 | | fveq1 6905 |
. . . . . 6
⊢ (𝑓 = 𝐶 → (𝑓‘𝑦) = (𝐶‘𝑦)) |
| 57 | | reseq1 5991 |
. . . . . . 7
⊢ (𝑓 = 𝐶 → (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) |
| 58 | 57 | fveq2d 6910 |
. . . . . 6
⊢ (𝑓 = 𝐶 → (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
| 59 | 56, 58 | eqeq12d 2753 |
. . . . 5
⊢ (𝑓 = 𝐶 → ((𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
| 60 | 59 | ralbidv 3178 |
. . . 4
⊢ (𝑓 = 𝐶 → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦 ∈ 𝑥 (𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
| 61 | 55, 60 | 3anbi13d 1440 |
. . 3
⊢ (𝑓 = 𝐶 → ((𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝐶 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))) |
| 62 | 61 | exbidv 1921 |
. 2
⊢ (𝑓 = 𝐶 → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑥(𝐶 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))) |
| 63 | 18, 54, 62 | elabd 3681 |
1
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝐶 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) |