MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem15OLD Structured version   Visualization version   GIF version

Theorem wfrlem15OLD 8363
Description: Obsolete version as of 18-Nov-2024. Lemma for well-ordered recursion. When 𝑧 is 𝑅 minimal, 𝐶 is an acceptable function. This step is where the Axiom of Replacement becomes required. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.)
Hypotheses
Ref Expression
wfrlem13OLD.1 𝑅 We 𝐴
wfrlem13OLD.2 𝑅 Se 𝐴
wfrlem13OLD.3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
wfrlem13OLD.4 𝐶 = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
Assertion
Ref Expression
wfrlem15OLD ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝐶 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦,𝑧   𝑓,𝐹,𝑥,𝑦,𝑧   𝑓,𝐺,𝑥,𝑦   𝑅,𝑓,𝑥,𝑦,𝑧   𝐶,𝑓,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑧)   𝐺(𝑧)

Proof of Theorem wfrlem15OLD
StepHypRef Expression
1 wfrlem13OLD.1 . . . . 5 𝑅 We 𝐴
2 wfrlem13OLD.2 . . . . 5 𝑅 Se 𝐴
3 wfrlem13OLD.3 . . . . 5 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
4 wfrlem13OLD.4 . . . . 5 𝐶 = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
51, 2, 3, 4wfrlem13OLD 8361 . . . 4 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝐶 Fn (dom 𝐹 ∪ {𝑧}))
65adantr 480 . . 3 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝐶 Fn (dom 𝐹 ∪ {𝑧}))
71, 3wfrlem10OLD 8358 . . . 4 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → Pred(𝑅, 𝐴, 𝑧) = dom 𝐹)
8 eldifi 4131 . . . . . 6 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝑧𝐴)
9 setlikespec 6346 . . . . . 6 ((𝑧𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑧) ∈ V)
108, 2, 9sylancl 586 . . . . 5 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → Pred(𝑅, 𝐴, 𝑧) ∈ V)
1110adantr 480 . . . 4 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → Pred(𝑅, 𝐴, 𝑧) ∈ V)
127, 11eqeltrrd 2842 . . 3 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → dom 𝐹 ∈ V)
13 snex 5436 . . . . 5 {𝑧} ∈ V
14 unexg 7763 . . . . 5 ((dom 𝐹 ∈ V ∧ {𝑧} ∈ V) → (dom 𝐹 ∪ {𝑧}) ∈ V)
1513, 14mpan2 691 . . . 4 (dom 𝐹 ∈ V → (dom 𝐹 ∪ {𝑧}) ∈ V)
16 fnex 7237 . . . 4 ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ (dom 𝐹 ∪ {𝑧}) ∈ V) → 𝐶 ∈ V)
1715, 16sylan2 593 . . 3 ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ dom 𝐹 ∈ V) → 𝐶 ∈ V)
186, 12, 17syl2anc 584 . 2 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝐶 ∈ V)
1912, 13, 14sylancl 586 . . 3 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (dom 𝐹 ∪ {𝑧}) ∈ V)
203wfrdmssOLD 8355 . . . . . . 7 dom 𝐹𝐴
218snssd 4809 . . . . . . 7 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → {𝑧} ⊆ 𝐴)
22 unss 4190 . . . . . . . 8 ((dom 𝐹𝐴 ∧ {𝑧} ⊆ 𝐴) ↔ (dom 𝐹 ∪ {𝑧}) ⊆ 𝐴)
2322biimpi 216 . . . . . . 7 ((dom 𝐹𝐴 ∧ {𝑧} ⊆ 𝐴) → (dom 𝐹 ∪ {𝑧}) ⊆ 𝐴)
2420, 21, 23sylancr 587 . . . . . 6 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (dom 𝐹 ∪ {𝑧}) ⊆ 𝐴)
2524adantr 480 . . . . 5 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (dom 𝐹 ∪ {𝑧}) ⊆ 𝐴)
26 elun 4153 . . . . . . . 8 (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) ↔ (𝑦 ∈ dom 𝐹𝑦 ∈ {𝑧}))
27 velsn 4642 . . . . . . . . 9 (𝑦 ∈ {𝑧} ↔ 𝑦 = 𝑧)
2827orbi2i 913 . . . . . . . 8 ((𝑦 ∈ dom 𝐹𝑦 ∈ {𝑧}) ↔ (𝑦 ∈ dom 𝐹𝑦 = 𝑧))
2926, 28bitri 275 . . . . . . 7 (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) ↔ (𝑦 ∈ dom 𝐹𝑦 = 𝑧))
303wfrdmclOLD 8357 . . . . . . . . . 10 (𝑦 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝐹)
31 ssun3 4180 . . . . . . . . . 10 (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝐹 → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}))
3230, 31syl 17 . . . . . . . . 9 (𝑦 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}))
3332a1i 11 . . . . . . . 8 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (𝑦 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})))
34 ssun1 4178 . . . . . . . . . 10 dom 𝐹 ⊆ (dom 𝐹 ∪ {𝑧})
357, 34eqsstrdi 4028 . . . . . . . . 9 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → Pred(𝑅, 𝐴, 𝑧) ⊆ (dom 𝐹 ∪ {𝑧}))
36 predeq3 6325 . . . . . . . . . 10 (𝑦 = 𝑧 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑧))
3736sseq1d 4015 . . . . . . . . 9 (𝑦 = 𝑧 → (Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}) ↔ Pred(𝑅, 𝐴, 𝑧) ⊆ (dom 𝐹 ∪ {𝑧})))
3835, 37syl5ibrcom 247 . . . . . . . 8 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (𝑦 = 𝑧 → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})))
3933, 38jaod 860 . . . . . . 7 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → ((𝑦 ∈ dom 𝐹𝑦 = 𝑧) → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})))
4029, 39biimtrid 242 . . . . . 6 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})))
4140ralrimiv 3145 . . . . 5 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}))
4225, 41jca 511 . . . 4 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → ((dom 𝐹 ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})))
431, 2, 3, 4wfrlem14OLD 8362 . . . . . 6 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
4443ralrimiv 3145 . . . . 5 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})(𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))
4544adantr 480 . . . 4 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})(𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))
466, 42, 453jca 1129 . . 3 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ ((dom 𝐹 ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})) ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})(𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
47 fneq2 6660 . . . 4 (𝑥 = (dom 𝐹 ∪ {𝑧}) → (𝐶 Fn 𝑥𝐶 Fn (dom 𝐹 ∪ {𝑧})))
48 sseq1 4009 . . . . 5 (𝑥 = (dom 𝐹 ∪ {𝑧}) → (𝑥𝐴 ↔ (dom 𝐹 ∪ {𝑧}) ⊆ 𝐴))
49 sseq2 4010 . . . . . 6 (𝑥 = (dom 𝐹 ∪ {𝑧}) → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})))
5049raleqbi1dv 3338 . . . . 5 (𝑥 = (dom 𝐹 ∪ {𝑧}) → (∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})))
5148, 50anbi12d 632 . . . 4 (𝑥 = (dom 𝐹 ∪ {𝑧}) → ((𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ↔ ((dom 𝐹 ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}))))
52 raleq 3323 . . . 4 (𝑥 = (dom 𝐹 ∪ {𝑧}) → (∀𝑦𝑥 (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})(𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
5347, 51, 523anbi123d 1438 . . 3 (𝑥 = (dom 𝐹 ∪ {𝑧}) → ((𝐶 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ ((dom 𝐹 ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})) ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})(𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))))
5419, 46, 53spcedv 3598 . 2 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → ∃𝑥(𝐶 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
55 fneq1 6659 . . . 4 (𝑓 = 𝐶 → (𝑓 Fn 𝑥𝐶 Fn 𝑥))
56 fveq1 6905 . . . . . 6 (𝑓 = 𝐶 → (𝑓𝑦) = (𝐶𝑦))
57 reseq1 5991 . . . . . . 7 (𝑓 = 𝐶 → (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))
5857fveq2d 6910 . . . . . 6 (𝑓 = 𝐶 → (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))
5956, 58eqeq12d 2753 . . . . 5 (𝑓 = 𝐶 → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
6059ralbidv 3178 . . . 4 (𝑓 = 𝐶 → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦𝑥 (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
6155, 603anbi13d 1440 . . 3 (𝑓 = 𝐶 → ((𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝐶 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))))
6261exbidv 1921 . 2 (𝑓 = 𝐶 → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑥(𝐶 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))))
6318, 54, 62elabd 3681 1 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝐶 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848  w3a 1087   = wceq 1540  wex 1779  wcel 2108  {cab 2714  wral 3061  Vcvv 3480  cdif 3948  cun 3949  wss 3951  c0 4333  {csn 4626  cop 4632   Se wse 5635   We wwe 5636  dom cdm 5685  cres 5687  Predcpred 6320   Fn wfn 6556  cfv 6561  wrecscwrecs 8336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-2nd 8015  df-frecs 8306  df-wrecs 8337
This theorem is referenced by:  wfrlem16OLD  8364
  Copyright terms: Public domain W3C validator