Step | Hyp | Ref
| Expression |
1 | | glbval.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
2 | | glbval.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
3 | | glbval.g |
. . . . 5
⊢ 𝐺 = (glb‘𝐾) |
4 | | biid 260 |
. . . . 5
⊢
((∀𝑦 ∈
𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
5 | | glbva.k |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ 𝑉) |
6 | 5 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑆 ∈ dom 𝐺) → 𝐾 ∈ 𝑉) |
7 | 1, 2, 3, 4, 6 | glbfval 17996 |
. . . 4
⊢ ((𝜑 ∧ 𝑆 ∈ dom 𝐺) → 𝐺 = ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))})) |
8 | 7 | fveq1d 6758 |
. . 3
⊢ ((𝜑 ∧ 𝑆 ∈ dom 𝐺) → (𝐺‘𝑆) = (((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))})‘𝑆)) |
9 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑆 ∈ dom 𝐺) → 𝑆 ∈ dom 𝐺) |
10 | | glbval.p |
. . . . . 6
⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
11 | 1, 2, 3, 10, 6, 9 | glbeu 18001 |
. . . . 5
⊢ ((𝜑 ∧ 𝑆 ∈ dom 𝐺) → ∃!𝑥 ∈ 𝐵 𝜓) |
12 | | raleq 3333 |
. . . . . . . 8
⊢ (𝑠 = 𝑆 → (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦)) |
13 | | raleq 3333 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑆 → (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦)) |
14 | 13 | imbi1d 341 |
. . . . . . . . 9
⊢ (𝑠 = 𝑆 → ((∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥) ↔ (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
15 | 14 | ralbidv 3120 |
. . . . . . . 8
⊢ (𝑠 = 𝑆 → (∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥) ↔ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
16 | 12, 15 | anbi12d 630 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → ((∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) |
17 | 16, 10 | bitr4di 288 |
. . . . . 6
⊢ (𝑠 = 𝑆 → ((∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ 𝜓)) |
18 | 17 | reubidv 3315 |
. . . . 5
⊢ (𝑠 = 𝑆 → (∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ ∃!𝑥 ∈ 𝐵 𝜓)) |
19 | 9, 11, 18 | elabd 3605 |
. . . 4
⊢ ((𝜑 ∧ 𝑆 ∈ dom 𝐺) → 𝑆 ∈ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))}) |
20 | 19 | fvresd 6776 |
. . 3
⊢ ((𝜑 ∧ 𝑆 ∈ dom 𝐺) → (((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))})‘𝑆) = ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))))‘𝑆)) |
21 | | glbval.ss |
. . . . . 6
⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
22 | 21 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑆 ∈ dom 𝐺) → 𝑆 ⊆ 𝐵) |
23 | 1 | fvexi 6770 |
. . . . . 6
⊢ 𝐵 ∈ V |
24 | 23 | elpw2 5264 |
. . . . 5
⊢ (𝑆 ∈ 𝒫 𝐵 ↔ 𝑆 ⊆ 𝐵) |
25 | 22, 24 | sylibr 233 |
. . . 4
⊢ ((𝜑 ∧ 𝑆 ∈ dom 𝐺) → 𝑆 ∈ 𝒫 𝐵) |
26 | 17 | riotabidv 7214 |
. . . . 5
⊢ (𝑠 = 𝑆 → (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) = (℩𝑥 ∈ 𝐵 𝜓)) |
27 | | eqid 2738 |
. . . . 5
⊢ (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) = (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) |
28 | | riotaex 7216 |
. . . . 5
⊢
(℩𝑥
∈ 𝐵 𝜓) ∈ V |
29 | 26, 27, 28 | fvmpt 6857 |
. . . 4
⊢ (𝑆 ∈ 𝒫 𝐵 → ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))))‘𝑆) = (℩𝑥 ∈ 𝐵 𝜓)) |
30 | 25, 29 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑆 ∈ dom 𝐺) → ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))))‘𝑆) = (℩𝑥 ∈ 𝐵 𝜓)) |
31 | 8, 20, 30 | 3eqtrd 2782 |
. 2
⊢ ((𝜑 ∧ 𝑆 ∈ dom 𝐺) → (𝐺‘𝑆) = (℩𝑥 ∈ 𝐵 𝜓)) |
32 | | ndmfv 6786 |
. . . 4
⊢ (¬
𝑆 ∈ dom 𝐺 → (𝐺‘𝑆) = ∅) |
33 | 32 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝐺) → (𝐺‘𝑆) = ∅) |
34 | 1, 2, 3, 10, 5 | glbeldm 17999 |
. . . . . . 7
⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓))) |
35 | 34 | biimprd 247 |
. . . . . 6
⊢ (𝜑 → ((𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓) → 𝑆 ∈ dom 𝐺)) |
36 | 21, 35 | mpand 691 |
. . . . 5
⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 → 𝑆 ∈ dom 𝐺)) |
37 | 36 | con3dimp 408 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝐺) → ¬ ∃!𝑥 ∈ 𝐵 𝜓) |
38 | | riotaund 7252 |
. . . 4
⊢ (¬
∃!𝑥 ∈ 𝐵 𝜓 → (℩𝑥 ∈ 𝐵 𝜓) = ∅) |
39 | 37, 38 | syl 17 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝐺) → (℩𝑥 ∈ 𝐵 𝜓) = ∅) |
40 | 33, 39 | eqtr4d 2781 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝐺) → (𝐺‘𝑆) = (℩𝑥 ∈ 𝐵 𝜓)) |
41 | 31, 40 | pm2.61dan 809 |
1
⊢ (𝜑 → (𝐺‘𝑆) = (℩𝑥 ∈ 𝐵 𝜓)) |