MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  glbval Structured version   Visualization version   GIF version

Theorem glbval 18258
Description: Value of the greatest lower bound function of a poset. Out-of-domain arguments (those not satisfying 𝑆 ∈ dom 𝑈) are allowed for convenience, evaluating to the empty set on both sides of the equality. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.)
Hypotheses
Ref Expression
glbval.b 𝐵 = (Base‘𝐾)
glbval.l = (le‘𝐾)
glbval.g 𝐺 = (glb‘𝐾)
glbval.p (𝜓 ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
glbva.k (𝜑𝐾𝑉)
glbval.ss (𝜑𝑆𝐵)
Assertion
Ref Expression
glbval (𝜑 → (𝐺𝑆) = (𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝑦,𝐾,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝐵(𝑦)   𝐺(𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem glbval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 glbval.b . . . . 5 𝐵 = (Base‘𝐾)
2 glbval.l . . . . 5 = (le‘𝐾)
3 glbval.g . . . . 5 𝐺 = (glb‘𝐾)
4 biid 260 . . . . 5 ((∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)) ↔ (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))
5 glbva.k . . . . . 6 (𝜑𝐾𝑉)
65adantr 481 . . . . 5 ((𝜑𝑆 ∈ dom 𝐺) → 𝐾𝑉)
71, 2, 3, 4, 6glbfval 18252 . . . 4 ((𝜑𝑆 ∈ dom 𝐺) → 𝐺 = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))}))
87fveq1d 6844 . . 3 ((𝜑𝑆 ∈ dom 𝐺) → (𝐺𝑆) = (((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))})‘𝑆))
9 simpr 485 . . . . 5 ((𝜑𝑆 ∈ dom 𝐺) → 𝑆 ∈ dom 𝐺)
10 glbval.p . . . . . 6 (𝜓 ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
111, 2, 3, 10, 6, 9glbeu 18257 . . . . 5 ((𝜑𝑆 ∈ dom 𝐺) → ∃!𝑥𝐵 𝜓)
12 raleq 3309 . . . . . . . 8 (𝑠 = 𝑆 → (∀𝑦𝑠 𝑥 𝑦 ↔ ∀𝑦𝑆 𝑥 𝑦))
13 raleq 3309 . . . . . . . . . 10 (𝑠 = 𝑆 → (∀𝑦𝑠 𝑧 𝑦 ↔ ∀𝑦𝑆 𝑧 𝑦))
1413imbi1d 341 . . . . . . . . 9 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑧 𝑦𝑧 𝑥) ↔ (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
1514ralbidv 3174 . . . . . . . 8 (𝑠 = 𝑆 → (∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥) ↔ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
1612, 15anbi12d 631 . . . . . . 7 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)) ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥))))
1716, 10bitr4di 288 . . . . . 6 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)) ↔ 𝜓))
1817reubidv 3371 . . . . 5 (𝑠 = 𝑆 → (∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)) ↔ ∃!𝑥𝐵 𝜓))
199, 11, 18elabd 3633 . . . 4 ((𝜑𝑆 ∈ dom 𝐺) → 𝑆 ∈ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))})
2019fvresd 6862 . . 3 ((𝜑𝑆 ∈ dom 𝐺) → (((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))})‘𝑆) = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))‘𝑆))
21 glbval.ss . . . . . 6 (𝜑𝑆𝐵)
2221adantr 481 . . . . 5 ((𝜑𝑆 ∈ dom 𝐺) → 𝑆𝐵)
231fvexi 6856 . . . . . 6 𝐵 ∈ V
2423elpw2 5302 . . . . 5 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
2522, 24sylibr 233 . . . 4 ((𝜑𝑆 ∈ dom 𝐺) → 𝑆 ∈ 𝒫 𝐵)
2617riotabidv 7315 . . . . 5 (𝑠 = 𝑆 → (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))) = (𝑥𝐵 𝜓))
27 eqid 2736 . . . . 5 (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))
28 riotaex 7317 . . . . 5 (𝑥𝐵 𝜓) ∈ V
2926, 27, 28fvmpt 6948 . . . 4 (𝑆 ∈ 𝒫 𝐵 → ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))‘𝑆) = (𝑥𝐵 𝜓))
3025, 29syl 17 . . 3 ((𝜑𝑆 ∈ dom 𝐺) → ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))‘𝑆) = (𝑥𝐵 𝜓))
318, 20, 303eqtrd 2780 . 2 ((𝜑𝑆 ∈ dom 𝐺) → (𝐺𝑆) = (𝑥𝐵 𝜓))
32 ndmfv 6877 . . . 4 𝑆 ∈ dom 𝐺 → (𝐺𝑆) = ∅)
3332adantl 482 . . 3 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝐺) → (𝐺𝑆) = ∅)
341, 2, 3, 10, 5glbeldm 18255 . . . . . . 7 (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓)))
3534biimprd 247 . . . . . 6 (𝜑 → ((𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓) → 𝑆 ∈ dom 𝐺))
3621, 35mpand 693 . . . . 5 (𝜑 → (∃!𝑥𝐵 𝜓𝑆 ∈ dom 𝐺))
3736con3dimp 409 . . . 4 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝐺) → ¬ ∃!𝑥𝐵 𝜓)
38 riotaund 7353 . . . 4 (¬ ∃!𝑥𝐵 𝜓 → (𝑥𝐵 𝜓) = ∅)
3937, 38syl 17 . . 3 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝐺) → (𝑥𝐵 𝜓) = ∅)
4033, 39eqtr4d 2779 . 2 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝐺) → (𝐺𝑆) = (𝑥𝐵 𝜓))
4131, 40pm2.61dan 811 1 (𝜑 → (𝐺𝑆) = (𝑥𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  {cab 2713  wral 3064  ∃!wreu 3351  wss 3910  c0 4282  𝒫 cpw 4560   class class class wbr 5105  cmpt 5188  dom cdm 5633  cres 5635  cfv 6496  crio 7312  Basecbs 17083  lecple 17140  glbcglb 18199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-glb 18236
This theorem is referenced by:  glbcl  18259  glbprop  18260  meetval2  18284  isglbd  18398  tosglb  31835  glb0N  37655  glbconN  37839  glbconNOLD  37840
  Copyright terms: Public domain W3C validator