| Step | Hyp | Ref
| Expression |
| 1 | | glbval.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
| 2 | | glbval.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
| 3 | | glbval.g |
. . . . 5
⊢ 𝐺 = (glb‘𝐾) |
| 4 | | biid 261 |
. . . . 5
⊢
((∀𝑦 ∈
𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
| 5 | | glbva.k |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| 6 | 5 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑆 ∈ dom 𝐺) → 𝐾 ∈ 𝑉) |
| 7 | 1, 2, 3, 4, 6 | glbfval 18408 |
. . . 4
⊢ ((𝜑 ∧ 𝑆 ∈ dom 𝐺) → 𝐺 = ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))})) |
| 8 | 7 | fveq1d 6908 |
. . 3
⊢ ((𝜑 ∧ 𝑆 ∈ dom 𝐺) → (𝐺‘𝑆) = (((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))})‘𝑆)) |
| 9 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑆 ∈ dom 𝐺) → 𝑆 ∈ dom 𝐺) |
| 10 | | glbval.p |
. . . . . 6
⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
| 11 | 1, 2, 3, 10, 6, 9 | glbeu 18413 |
. . . . 5
⊢ ((𝜑 ∧ 𝑆 ∈ dom 𝐺) → ∃!𝑥 ∈ 𝐵 𝜓) |
| 12 | | raleq 3323 |
. . . . . . . 8
⊢ (𝑠 = 𝑆 → (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦)) |
| 13 | | raleq 3323 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑆 → (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦)) |
| 14 | 13 | imbi1d 341 |
. . . . . . . . 9
⊢ (𝑠 = 𝑆 → ((∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥) ↔ (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
| 15 | 14 | ralbidv 3178 |
. . . . . . . 8
⊢ (𝑠 = 𝑆 → (∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥) ↔ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) |
| 16 | 12, 15 | anbi12d 632 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → ((∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) |
| 17 | 16, 10 | bitr4di 289 |
. . . . . 6
⊢ (𝑠 = 𝑆 → ((∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ 𝜓)) |
| 18 | 17 | reubidv 3398 |
. . . . 5
⊢ (𝑠 = 𝑆 → (∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ ∃!𝑥 ∈ 𝐵 𝜓)) |
| 19 | 9, 11, 18 | elabd 3681 |
. . . 4
⊢ ((𝜑 ∧ 𝑆 ∈ dom 𝐺) → 𝑆 ∈ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))}) |
| 20 | 19 | fvresd 6926 |
. . 3
⊢ ((𝜑 ∧ 𝑆 ∈ dom 𝐺) → (((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))})‘𝑆) = ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))))‘𝑆)) |
| 21 | | glbval.ss |
. . . . . 6
⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| 22 | 21 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑆 ∈ dom 𝐺) → 𝑆 ⊆ 𝐵) |
| 23 | 1 | fvexi 6920 |
. . . . . 6
⊢ 𝐵 ∈ V |
| 24 | 23 | elpw2 5334 |
. . . . 5
⊢ (𝑆 ∈ 𝒫 𝐵 ↔ 𝑆 ⊆ 𝐵) |
| 25 | 22, 24 | sylibr 234 |
. . . 4
⊢ ((𝜑 ∧ 𝑆 ∈ dom 𝐺) → 𝑆 ∈ 𝒫 𝐵) |
| 26 | 17 | riotabidv 7390 |
. . . . 5
⊢ (𝑠 = 𝑆 → (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) = (℩𝑥 ∈ 𝐵 𝜓)) |
| 27 | | eqid 2737 |
. . . . 5
⊢ (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) = (𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)))) |
| 28 | | riotaex 7392 |
. . . . 5
⊢
(℩𝑥
∈ 𝐵 𝜓) ∈ V |
| 29 | 26, 27, 28 | fvmpt 7016 |
. . . 4
⊢ (𝑆 ∈ 𝒫 𝐵 → ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))))‘𝑆) = (℩𝑥 ∈ 𝐵 𝜓)) |
| 30 | 25, 29 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑆 ∈ dom 𝐺) → ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))))‘𝑆) = (℩𝑥 ∈ 𝐵 𝜓)) |
| 31 | 8, 20, 30 | 3eqtrd 2781 |
. 2
⊢ ((𝜑 ∧ 𝑆 ∈ dom 𝐺) → (𝐺‘𝑆) = (℩𝑥 ∈ 𝐵 𝜓)) |
| 32 | | ndmfv 6941 |
. . . 4
⊢ (¬
𝑆 ∈ dom 𝐺 → (𝐺‘𝑆) = ∅) |
| 33 | 32 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝐺) → (𝐺‘𝑆) = ∅) |
| 34 | 1, 2, 3, 10, 5 | glbeldm 18411 |
. . . . . . 7
⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓))) |
| 35 | 34 | biimprd 248 |
. . . . . 6
⊢ (𝜑 → ((𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓) → 𝑆 ∈ dom 𝐺)) |
| 36 | 21, 35 | mpand 695 |
. . . . 5
⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 → 𝑆 ∈ dom 𝐺)) |
| 37 | 36 | con3dimp 408 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝐺) → ¬ ∃!𝑥 ∈ 𝐵 𝜓) |
| 38 | | riotaund 7427 |
. . . 4
⊢ (¬
∃!𝑥 ∈ 𝐵 𝜓 → (℩𝑥 ∈ 𝐵 𝜓) = ∅) |
| 39 | 37, 38 | syl 17 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝐺) → (℩𝑥 ∈ 𝐵 𝜓) = ∅) |
| 40 | 33, 39 | eqtr4d 2780 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝐺) → (𝐺‘𝑆) = (℩𝑥 ∈ 𝐵 𝜓)) |
| 41 | 31, 40 | pm2.61dan 813 |
1
⊢ (𝜑 → (𝐺‘𝑆) = (℩𝑥 ∈ 𝐵 𝜓)) |