MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  glbval Structured version   Visualization version   GIF version

Theorem glbval 17609
Description: Value of the greatest lower bound function of a poset. Out-of-domain arguments (those not satisfying 𝑆 ∈ dom 𝑈) are allowed for convenience, evaluating to the empty set on both sides of the equality. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.)
Hypotheses
Ref Expression
glbval.b 𝐵 = (Base‘𝐾)
glbval.l = (le‘𝐾)
glbval.g 𝐺 = (glb‘𝐾)
glbval.p (𝜓 ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
glbva.k (𝜑𝐾𝑉)
glbval.ss (𝜑𝑆𝐵)
Assertion
Ref Expression
glbval (𝜑 → (𝐺𝑆) = (𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝑦,𝐾,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝐵(𝑦)   𝐺(𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem glbval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 glbval.b . . . . 5 𝐵 = (Base‘𝐾)
2 glbval.l . . . . 5 = (le‘𝐾)
3 glbval.g . . . . 5 𝐺 = (glb‘𝐾)
4 biid 263 . . . . 5 ((∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)) ↔ (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))
5 glbva.k . . . . . 6 (𝜑𝐾𝑉)
65adantr 483 . . . . 5 ((𝜑𝑆 ∈ dom 𝐺) → 𝐾𝑉)
71, 2, 3, 4, 6glbfval 17603 . . . 4 ((𝜑𝑆 ∈ dom 𝐺) → 𝐺 = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))}))
87fveq1d 6674 . . 3 ((𝜑𝑆 ∈ dom 𝐺) → (𝐺𝑆) = (((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))})‘𝑆))
9 simpr 487 . . . . 5 ((𝜑𝑆 ∈ dom 𝐺) → 𝑆 ∈ dom 𝐺)
10 glbval.p . . . . . 6 (𝜓 ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
111, 2, 3, 10, 6, 9glbeu 17608 . . . . 5 ((𝜑𝑆 ∈ dom 𝐺) → ∃!𝑥𝐵 𝜓)
12 raleq 3407 . . . . . . . 8 (𝑠 = 𝑆 → (∀𝑦𝑠 𝑥 𝑦 ↔ ∀𝑦𝑆 𝑥 𝑦))
13 raleq 3407 . . . . . . . . . 10 (𝑠 = 𝑆 → (∀𝑦𝑠 𝑧 𝑦 ↔ ∀𝑦𝑆 𝑧 𝑦))
1413imbi1d 344 . . . . . . . . 9 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑧 𝑦𝑧 𝑥) ↔ (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
1514ralbidv 3199 . . . . . . . 8 (𝑠 = 𝑆 → (∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥) ↔ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
1612, 15anbi12d 632 . . . . . . 7 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)) ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥))))
1716, 10syl6bbr 291 . . . . . 6 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)) ↔ 𝜓))
1817reubidv 3391 . . . . 5 (𝑠 = 𝑆 → (∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)) ↔ ∃!𝑥𝐵 𝜓))
199, 11, 18elabd 3671 . . . 4 ((𝜑𝑆 ∈ dom 𝐺) → 𝑆 ∈ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))})
2019fvresd 6692 . . 3 ((𝜑𝑆 ∈ dom 𝐺) → (((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))})‘𝑆) = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))‘𝑆))
21 glbval.ss . . . . . 6 (𝜑𝑆𝐵)
2221adantr 483 . . . . 5 ((𝜑𝑆 ∈ dom 𝐺) → 𝑆𝐵)
231fvexi 6686 . . . . . 6 𝐵 ∈ V
2423elpw2 5250 . . . . 5 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
2522, 24sylibr 236 . . . 4 ((𝜑𝑆 ∈ dom 𝐺) → 𝑆 ∈ 𝒫 𝐵)
2617riotabidv 7118 . . . . 5 (𝑠 = 𝑆 → (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))) = (𝑥𝐵 𝜓))
27 eqid 2823 . . . . 5 (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))
28 riotaex 7120 . . . . 5 (𝑥𝐵 𝜓) ∈ V
2926, 27, 28fvmpt 6770 . . . 4 (𝑆 ∈ 𝒫 𝐵 → ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))‘𝑆) = (𝑥𝐵 𝜓))
3025, 29syl 17 . . 3 ((𝜑𝑆 ∈ dom 𝐺) → ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))‘𝑆) = (𝑥𝐵 𝜓))
318, 20, 303eqtrd 2862 . 2 ((𝜑𝑆 ∈ dom 𝐺) → (𝐺𝑆) = (𝑥𝐵 𝜓))
32 ndmfv 6702 . . . 4 𝑆 ∈ dom 𝐺 → (𝐺𝑆) = ∅)
3332adantl 484 . . 3 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝐺) → (𝐺𝑆) = ∅)
341, 2, 3, 10, 5glbeldm 17606 . . . . . . 7 (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓)))
3534biimprd 250 . . . . . 6 (𝜑 → ((𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓) → 𝑆 ∈ dom 𝐺))
3621, 35mpand 693 . . . . 5 (𝜑 → (∃!𝑥𝐵 𝜓𝑆 ∈ dom 𝐺))
3736con3dimp 411 . . . 4 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝐺) → ¬ ∃!𝑥𝐵 𝜓)
38 riotaund 7155 . . . 4 (¬ ∃!𝑥𝐵 𝜓 → (𝑥𝐵 𝜓) = ∅)
3937, 38syl 17 . . 3 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝐺) → (𝑥𝐵 𝜓) = ∅)
4033, 39eqtr4d 2861 . 2 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝐺) → (𝐺𝑆) = (𝑥𝐵 𝜓))
4131, 40pm2.61dan 811 1 (𝜑 → (𝐺𝑆) = (𝑥𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {cab 2801  wral 3140  ∃!wreu 3142  wss 3938  c0 4293  𝒫 cpw 4541   class class class wbr 5068  cmpt 5148  dom cdm 5557  cres 5559  cfv 6357  crio 7115  Basecbs 16485  lecple 16574  glbcglb 17555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-glb 17587
This theorem is referenced by:  glbcl  17610  glbprop  17611  meetval2  17635  isglbd  17729  tosglb  30659  glb0N  36331  glbconN  36515
  Copyright terms: Public domain W3C validator