MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  glbval Structured version   Visualization version   GIF version

Theorem glbval 18002
Description: Value of the greatest lower bound function of a poset. Out-of-domain arguments (those not satisfying 𝑆 ∈ dom 𝑈) are allowed for convenience, evaluating to the empty set on both sides of the equality. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.)
Hypotheses
Ref Expression
glbval.b 𝐵 = (Base‘𝐾)
glbval.l = (le‘𝐾)
glbval.g 𝐺 = (glb‘𝐾)
glbval.p (𝜓 ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
glbva.k (𝜑𝐾𝑉)
glbval.ss (𝜑𝑆𝐵)
Assertion
Ref Expression
glbval (𝜑 → (𝐺𝑆) = (𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝑦,𝐾,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝐵(𝑦)   𝐺(𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem glbval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 glbval.b . . . . 5 𝐵 = (Base‘𝐾)
2 glbval.l . . . . 5 = (le‘𝐾)
3 glbval.g . . . . 5 𝐺 = (glb‘𝐾)
4 biid 260 . . . . 5 ((∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)) ↔ (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))
5 glbva.k . . . . . 6 (𝜑𝐾𝑉)
65adantr 480 . . . . 5 ((𝜑𝑆 ∈ dom 𝐺) → 𝐾𝑉)
71, 2, 3, 4, 6glbfval 17996 . . . 4 ((𝜑𝑆 ∈ dom 𝐺) → 𝐺 = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))}))
87fveq1d 6758 . . 3 ((𝜑𝑆 ∈ dom 𝐺) → (𝐺𝑆) = (((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))})‘𝑆))
9 simpr 484 . . . . 5 ((𝜑𝑆 ∈ dom 𝐺) → 𝑆 ∈ dom 𝐺)
10 glbval.p . . . . . 6 (𝜓 ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
111, 2, 3, 10, 6, 9glbeu 18001 . . . . 5 ((𝜑𝑆 ∈ dom 𝐺) → ∃!𝑥𝐵 𝜓)
12 raleq 3333 . . . . . . . 8 (𝑠 = 𝑆 → (∀𝑦𝑠 𝑥 𝑦 ↔ ∀𝑦𝑆 𝑥 𝑦))
13 raleq 3333 . . . . . . . . . 10 (𝑠 = 𝑆 → (∀𝑦𝑠 𝑧 𝑦 ↔ ∀𝑦𝑆 𝑧 𝑦))
1413imbi1d 341 . . . . . . . . 9 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑧 𝑦𝑧 𝑥) ↔ (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
1514ralbidv 3120 . . . . . . . 8 (𝑠 = 𝑆 → (∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥) ↔ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
1612, 15anbi12d 630 . . . . . . 7 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)) ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥))))
1716, 10bitr4di 288 . . . . . 6 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)) ↔ 𝜓))
1817reubidv 3315 . . . . 5 (𝑠 = 𝑆 → (∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)) ↔ ∃!𝑥𝐵 𝜓))
199, 11, 18elabd 3605 . . . 4 ((𝜑𝑆 ∈ dom 𝐺) → 𝑆 ∈ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))})
2019fvresd 6776 . . 3 ((𝜑𝑆 ∈ dom 𝐺) → (((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))})‘𝑆) = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))‘𝑆))
21 glbval.ss . . . . . 6 (𝜑𝑆𝐵)
2221adantr 480 . . . . 5 ((𝜑𝑆 ∈ dom 𝐺) → 𝑆𝐵)
231fvexi 6770 . . . . . 6 𝐵 ∈ V
2423elpw2 5264 . . . . 5 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
2522, 24sylibr 233 . . . 4 ((𝜑𝑆 ∈ dom 𝐺) → 𝑆 ∈ 𝒫 𝐵)
2617riotabidv 7214 . . . . 5 (𝑠 = 𝑆 → (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))) = (𝑥𝐵 𝜓))
27 eqid 2738 . . . . 5 (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))
28 riotaex 7216 . . . . 5 (𝑥𝐵 𝜓) ∈ V
2926, 27, 28fvmpt 6857 . . . 4 (𝑆 ∈ 𝒫 𝐵 → ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))‘𝑆) = (𝑥𝐵 𝜓))
3025, 29syl 17 . . 3 ((𝜑𝑆 ∈ dom 𝐺) → ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))‘𝑆) = (𝑥𝐵 𝜓))
318, 20, 303eqtrd 2782 . 2 ((𝜑𝑆 ∈ dom 𝐺) → (𝐺𝑆) = (𝑥𝐵 𝜓))
32 ndmfv 6786 . . . 4 𝑆 ∈ dom 𝐺 → (𝐺𝑆) = ∅)
3332adantl 481 . . 3 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝐺) → (𝐺𝑆) = ∅)
341, 2, 3, 10, 5glbeldm 17999 . . . . . . 7 (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓)))
3534biimprd 247 . . . . . 6 (𝜑 → ((𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓) → 𝑆 ∈ dom 𝐺))
3621, 35mpand 691 . . . . 5 (𝜑 → (∃!𝑥𝐵 𝜓𝑆 ∈ dom 𝐺))
3736con3dimp 408 . . . 4 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝐺) → ¬ ∃!𝑥𝐵 𝜓)
38 riotaund 7252 . . . 4 (¬ ∃!𝑥𝐵 𝜓 → (𝑥𝐵 𝜓) = ∅)
3937, 38syl 17 . . 3 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝐺) → (𝑥𝐵 𝜓) = ∅)
4033, 39eqtr4d 2781 . 2 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝐺) → (𝐺𝑆) = (𝑥𝐵 𝜓))
4131, 40pm2.61dan 809 1 (𝜑 → (𝐺𝑆) = (𝑥𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  wral 3063  ∃!wreu 3065  wss 3883  c0 4253  𝒫 cpw 4530   class class class wbr 5070  cmpt 5153  dom cdm 5580  cres 5582  cfv 6418  crio 7211  Basecbs 16840  lecple 16895  glbcglb 17943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-glb 17980
This theorem is referenced by:  glbcl  18003  glbprop  18004  meetval2  18028  isglbd  18142  tosglb  31155  glb0N  37134  glbconN  37318
  Copyright terms: Public domain W3C validator