MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubval Structured version   Visualization version   GIF version

Theorem lubval 17586
Description: Value of the least upper bound function of a poset. Out-of-domain arguments (those not satisfying 𝑆 ∈ dom 𝑈) are allowed for convenience, evaluating to the empty set. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.)
Hypotheses
Ref Expression
lubval.b 𝐵 = (Base‘𝐾)
lubval.l = (le‘𝐾)
lubval.u 𝑈 = (lub‘𝐾)
lubval.p (𝜓 ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
lubval.k (𝜑𝐾𝑉)
lubval.s (𝜑𝑆𝐵)
Assertion
Ref Expression
lubval (𝜑 → (𝑈𝑆) = (𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝑦,𝐾,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝐵(𝑦)   𝑈(𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem lubval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 lubval.b . . . . 5 𝐵 = (Base‘𝐾)
2 lubval.l . . . . 5 = (le‘𝐾)
3 lubval.u . . . . 5 𝑈 = (lub‘𝐾)
4 biid 262 . . . . 5 ((∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)) ↔ (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))
5 lubval.k . . . . . 6 (𝜑𝐾𝑉)
65adantr 481 . . . . 5 ((𝜑𝑆 ∈ dom 𝑈) → 𝐾𝑉)
71, 2, 3, 4, 6lubfval 17580 . . . 4 ((𝜑𝑆 ∈ dom 𝑈) → 𝑈 = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))}))
87fveq1d 6668 . . 3 ((𝜑𝑆 ∈ dom 𝑈) → (𝑈𝑆) = (((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))})‘𝑆))
9 lubval.p . . . . . 6 (𝜓 ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
10 simpr 485 . . . . . 6 ((𝜑𝑆 ∈ dom 𝑈) → 𝑆 ∈ dom 𝑈)
111, 2, 3, 9, 6, 10lubeu 17585 . . . . 5 ((𝜑𝑆 ∈ dom 𝑈) → ∃!𝑥𝐵 𝜓)
12 raleq 3410 . . . . . . . . . 10 (𝑠 = 𝑆 → (∀𝑦𝑠 𝑦 𝑥 ↔ ∀𝑦𝑆 𝑦 𝑥))
13 raleq 3410 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (∀𝑦𝑠 𝑦 𝑧 ↔ ∀𝑦𝑆 𝑦 𝑧))
1413imbi1d 343 . . . . . . . . . . 11 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑦 𝑧𝑥 𝑧) ↔ (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
1514ralbidv 3201 . . . . . . . . . 10 (𝑠 = 𝑆 → (∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧) ↔ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
1612, 15anbi12d 630 . . . . . . . . 9 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)) ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧))))
1716, 9syl6bbr 290 . . . . . . . 8 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)) ↔ 𝜓))
1817reubidv 3394 . . . . . . 7 (𝑠 = 𝑆 → (∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)) ↔ ∃!𝑥𝐵 𝜓))
1918elabg 3669 . . . . . 6 (𝑆 ∈ dom 𝑈 → (𝑆 ∈ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))} ↔ ∃!𝑥𝐵 𝜓))
2019adantl 482 . . . . 5 ((𝜑𝑆 ∈ dom 𝑈) → (𝑆 ∈ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))} ↔ ∃!𝑥𝐵 𝜓))
2111, 20mpbird 258 . . . 4 ((𝜑𝑆 ∈ dom 𝑈) → 𝑆 ∈ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))})
2221fvresd 6686 . . 3 ((𝜑𝑆 ∈ dom 𝑈) → (((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))})‘𝑆) = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))‘𝑆))
23 lubval.s . . . . . 6 (𝜑𝑆𝐵)
2423adantr 481 . . . . 5 ((𝜑𝑆 ∈ dom 𝑈) → 𝑆𝐵)
251fvexi 6680 . . . . . 6 𝐵 ∈ V
2625elpw2 5244 . . . . 5 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
2724, 26sylibr 235 . . . 4 ((𝜑𝑆 ∈ dom 𝑈) → 𝑆 ∈ 𝒫 𝐵)
2817riotabidv 7111 . . . . 5 (𝑠 = 𝑆 → (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))) = (𝑥𝐵 𝜓))
29 eqid 2825 . . . . 5 (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))
30 riotaex 7113 . . . . 5 (𝑥𝐵 𝜓) ∈ V
3128, 29, 30fvmpt 6764 . . . 4 (𝑆 ∈ 𝒫 𝐵 → ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))‘𝑆) = (𝑥𝐵 𝜓))
3227, 31syl 17 . . 3 ((𝜑𝑆 ∈ dom 𝑈) → ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))‘𝑆) = (𝑥𝐵 𝜓))
338, 22, 323eqtrd 2864 . 2 ((𝜑𝑆 ∈ dom 𝑈) → (𝑈𝑆) = (𝑥𝐵 𝜓))
34 ndmfv 6696 . . . 4 𝑆 ∈ dom 𝑈 → (𝑈𝑆) = ∅)
3534adantl 482 . . 3 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝑈) → (𝑈𝑆) = ∅)
361, 2, 3, 9, 5lubeldm 17583 . . . . . . 7 (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓)))
3736biimprd 249 . . . . . 6 (𝜑 → ((𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓) → 𝑆 ∈ dom 𝑈))
3823, 37mpand 691 . . . . 5 (𝜑 → (∃!𝑥𝐵 𝜓𝑆 ∈ dom 𝑈))
3938con3dimp 409 . . . 4 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝑈) → ¬ ∃!𝑥𝐵 𝜓)
40 riotaund 7148 . . . 4 (¬ ∃!𝑥𝐵 𝜓 → (𝑥𝐵 𝜓) = ∅)
4139, 40syl 17 . . 3 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝑈) → (𝑥𝐵 𝜓) = ∅)
4235, 41eqtr4d 2863 . 2 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝑈) → (𝑈𝑆) = (𝑥𝐵 𝜓))
4333, 42pm2.61dan 809 1 (𝜑 → (𝑈𝑆) = (𝑥𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  {cab 2803  wral 3142  ∃!wreu 3144  wss 3939  c0 4294  𝒫 cpw 4541   class class class wbr 5062  cmpt 5142  dom cdm 5553  cres 5555  cfv 6351  crio 7108  Basecbs 16475  lecple 16564  lubclub 17544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-lub 17576
This theorem is referenced by:  lubcl  17587  lubprop  17588  lubid  17592  joinval2  17611  lubun  17725  poslubd  17750  toslub  30569  lub0N  36192  glbconN  36380
  Copyright terms: Public domain W3C validator