Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubval Structured version   Visualization version   GIF version

Theorem lubval 17344
 Description: Value of the least upper bound function of a poset. Out-of-domain arguments (those not satisfying 𝑆 ∈ dom 𝑈) are allowed for convenience, evaluating to the empty set. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.)
Hypotheses
Ref Expression
lubval.b 𝐵 = (Base‘𝐾)
lubval.l = (le‘𝐾)
lubval.u 𝑈 = (lub‘𝐾)
lubval.p (𝜓 ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
lubval.k (𝜑𝐾𝑉)
lubval.s (𝜑𝑆𝐵)
Assertion
Ref Expression
lubval (𝜑 → (𝑈𝑆) = (𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝑦,𝐾,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝐵(𝑦)   𝑈(𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem lubval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 lubval.b . . . . 5 𝐵 = (Base‘𝐾)
2 lubval.l . . . . 5 = (le‘𝐾)
3 lubval.u . . . . 5 𝑈 = (lub‘𝐾)
4 biid 253 . . . . 5 ((∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)) ↔ (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))
5 lubval.k . . . . . 6 (𝜑𝐾𝑉)
65adantr 474 . . . . 5 ((𝜑𝑆 ∈ dom 𝑈) → 𝐾𝑉)
71, 2, 3, 4, 6lubfval 17338 . . . 4 ((𝜑𝑆 ∈ dom 𝑈) → 𝑈 = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))}))
87fveq1d 6439 . . 3 ((𝜑𝑆 ∈ dom 𝑈) → (𝑈𝑆) = (((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))})‘𝑆))
9 lubval.p . . . . . 6 (𝜓 ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
10 simpr 479 . . . . . 6 ((𝜑𝑆 ∈ dom 𝑈) → 𝑆 ∈ dom 𝑈)
111, 2, 3, 9, 6, 10lubeu 17343 . . . . 5 ((𝜑𝑆 ∈ dom 𝑈) → ∃!𝑥𝐵 𝜓)
12 raleq 3350 . . . . . . . . . 10 (𝑠 = 𝑆 → (∀𝑦𝑠 𝑦 𝑥 ↔ ∀𝑦𝑆 𝑦 𝑥))
13 raleq 3350 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (∀𝑦𝑠 𝑦 𝑧 ↔ ∀𝑦𝑆 𝑦 𝑧))
1413imbi1d 333 . . . . . . . . . . 11 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑦 𝑧𝑥 𝑧) ↔ (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
1514ralbidv 3195 . . . . . . . . . 10 (𝑠 = 𝑆 → (∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧) ↔ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))
1612, 15anbi12d 624 . . . . . . . . 9 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)) ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧))))
1716, 9syl6bbr 281 . . . . . . . 8 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)) ↔ 𝜓))
1817reubidv 3338 . . . . . . 7 (𝑠 = 𝑆 → (∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)) ↔ ∃!𝑥𝐵 𝜓))
1918elabg 3569 . . . . . 6 (𝑆 ∈ dom 𝑈 → (𝑆 ∈ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))} ↔ ∃!𝑥𝐵 𝜓))
2019adantl 475 . . . . 5 ((𝜑𝑆 ∈ dom 𝑈) → (𝑆 ∈ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))} ↔ ∃!𝑥𝐵 𝜓))
2111, 20mpbird 249 . . . 4 ((𝜑𝑆 ∈ dom 𝑈) → 𝑆 ∈ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))})
22 fvres 6456 . . . 4 (𝑆 ∈ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))} → (((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))})‘𝑆) = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))‘𝑆))
2321, 22syl 17 . . 3 ((𝜑𝑆 ∈ dom 𝑈) → (((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))})‘𝑆) = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))‘𝑆))
24 lubval.s . . . . . 6 (𝜑𝑆𝐵)
2524adantr 474 . . . . 5 ((𝜑𝑆 ∈ dom 𝑈) → 𝑆𝐵)
261fvexi 6451 . . . . . 6 𝐵 ∈ V
2726elpw2 5052 . . . . 5 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
2825, 27sylibr 226 . . . 4 ((𝜑𝑆 ∈ dom 𝑈) → 𝑆 ∈ 𝒫 𝐵)
2917riotabidv 6873 . . . . 5 (𝑠 = 𝑆 → (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))) = (𝑥𝐵 𝜓))
30 eqid 2825 . . . . 5 (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧)))) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))
31 riotaex 6875 . . . . 5 (𝑥𝐵 𝜓) ∈ V
3229, 30, 31fvmpt 6533 . . . 4 (𝑆 ∈ 𝒫 𝐵 → ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))‘𝑆) = (𝑥𝐵 𝜓))
3328, 32syl 17 . . 3 ((𝜑𝑆 ∈ dom 𝑈) → ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑦 𝑧𝑥 𝑧))))‘𝑆) = (𝑥𝐵 𝜓))
348, 23, 333eqtrd 2865 . 2 ((𝜑𝑆 ∈ dom 𝑈) → (𝑈𝑆) = (𝑥𝐵 𝜓))
35 ndmfv 6467 . . . 4 𝑆 ∈ dom 𝑈 → (𝑈𝑆) = ∅)
3635adantl 475 . . 3 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝑈) → (𝑈𝑆) = ∅)
371, 2, 3, 9, 5lubeldm 17341 . . . . . . 7 (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓)))
3837biimprd 240 . . . . . 6 (𝜑 → ((𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓) → 𝑆 ∈ dom 𝑈))
3924, 38mpand 686 . . . . 5 (𝜑 → (∃!𝑥𝐵 𝜓𝑆 ∈ dom 𝑈))
4039con3dimp 399 . . . 4 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝑈) → ¬ ∃!𝑥𝐵 𝜓)
41 riotaund 6907 . . . 4 (¬ ∃!𝑥𝐵 𝜓 → (𝑥𝐵 𝜓) = ∅)
4240, 41syl 17 . . 3 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝑈) → (𝑥𝐵 𝜓) = ∅)
4336, 42eqtr4d 2864 . 2 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝑈) → (𝑈𝑆) = (𝑥𝐵 𝜓))
4434, 43pm2.61dan 847 1 (𝜑 → (𝑈𝑆) = (𝑥𝐵 𝜓))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 198   ∧ wa 386   = wceq 1656   ∈ wcel 2164  {cab 2811  ∀wral 3117  ∃!wreu 3119   ⊆ wss 3798  ∅c0 4146  𝒫 cpw 4380   class class class wbr 4875   ↦ cmpt 4954  dom cdm 5346   ↾ cres 5348  ‘cfv 6127  ℩crio 6870  Basecbs 16229  lecple 16319  lubclub 17302 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-lub 17334 This theorem is referenced by:  lubcl  17345  lubprop  17346  lubid  17350  joinval2  17369  lubun  17483  poslubd  17508  toslub  30209  lub0N  35259  glbconN  35447
 Copyright terms: Public domain W3C validator