MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  injsubmefmnd Structured version   Visualization version   GIF version

Theorem injsubmefmnd 18789
Description: The set of injective endofunctions on a set 𝐴 is a submonoid of the monoid of endofunctions on 𝐴. (Contributed by AV, 25-Feb-2024.)
Hypothesis
Ref Expression
sursubmefmnd.m 𝑀 = (EndoFMnd‘𝐴)
Assertion
Ref Expression
injsubmefmnd (𝐴𝑉 → {:𝐴1-1𝐴} ∈ (SubMnd‘𝑀))
Distinct variable group:   𝐴,
Allowed substitution hints:   𝑀()   𝑉()

Proof of Theorem injsubmefmnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3442 . . . . 5 𝑥 ∈ V
2 f1eq1 6719 . . . . 5 ( = 𝑥 → (:𝐴1-1𝐴𝑥:𝐴1-1𝐴))
31, 2elab 3637 . . . 4 (𝑥 ∈ {:𝐴1-1𝐴} ↔ 𝑥:𝐴1-1𝐴)
4 f1f 6724 . . . . 5 (𝑥:𝐴1-1𝐴𝑥:𝐴𝐴)
5 sursubmefmnd.m . . . . . 6 𝑀 = (EndoFMnd‘𝐴)
6 eqid 2729 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
75, 6elefmndbas 18765 . . . . 5 (𝐴𝑉 → (𝑥 ∈ (Base‘𝑀) ↔ 𝑥:𝐴𝐴))
84, 7imbitrrid 246 . . . 4 (𝐴𝑉 → (𝑥:𝐴1-1𝐴𝑥 ∈ (Base‘𝑀)))
93, 8biimtrid 242 . . 3 (𝐴𝑉 → (𝑥 ∈ {:𝐴1-1𝐴} → 𝑥 ∈ (Base‘𝑀)))
109ssrdv 3943 . 2 (𝐴𝑉 → {:𝐴1-1𝐴} ⊆ (Base‘𝑀))
115efmndid 18780 . . 3 (𝐴𝑉 → ( I ↾ 𝐴) = (0g𝑀))
12 resiexg 7852 . . . 4 (𝐴𝑉 → ( I ↾ 𝐴) ∈ V)
13 f1oi 6806 . . . . 5 ( I ↾ 𝐴):𝐴1-1-onto𝐴
14 f1of1 6767 . . . . 5 (( I ↾ 𝐴):𝐴1-1-onto𝐴 → ( I ↾ 𝐴):𝐴1-1𝐴)
1513, 14mp1i 13 . . . 4 (𝐴𝑉 → ( I ↾ 𝐴):𝐴1-1𝐴)
16 f1eq1 6719 . . . 4 ( = ( I ↾ 𝐴) → (:𝐴1-1𝐴 ↔ ( I ↾ 𝐴):𝐴1-1𝐴))
1712, 15, 16elabd 3639 . . 3 (𝐴𝑉 → ( I ↾ 𝐴) ∈ {:𝐴1-1𝐴})
1811, 17eqeltrrd 2829 . 2 (𝐴𝑉 → (0g𝑀) ∈ {:𝐴1-1𝐴})
19 vex 3442 . . . . . 6 𝑦 ∈ V
20 f1eq1 6719 . . . . . 6 ( = 𝑦 → (:𝐴1-1𝐴𝑦:𝐴1-1𝐴))
2119, 20elab 3637 . . . . 5 (𝑦 ∈ {:𝐴1-1𝐴} ↔ 𝑦:𝐴1-1𝐴)
223, 21anbi12i 628 . . . 4 ((𝑥 ∈ {:𝐴1-1𝐴} ∧ 𝑦 ∈ {:𝐴1-1𝐴}) ↔ (𝑥:𝐴1-1𝐴𝑦:𝐴1-1𝐴))
23 f1co 6735 . . . . . . 7 ((𝑥:𝐴1-1𝐴𝑦:𝐴1-1𝐴) → (𝑥𝑦):𝐴1-1𝐴)
2423adantl 481 . . . . . 6 ((𝐴𝑉 ∧ (𝑥:𝐴1-1𝐴𝑦:𝐴1-1𝐴)) → (𝑥𝑦):𝐴1-1𝐴)
25 f1f 6724 . . . . . . . . . . . 12 (𝑦:𝐴1-1𝐴𝑦:𝐴𝐴)
264, 25anim12i 613 . . . . . . . . . . 11 ((𝑥:𝐴1-1𝐴𝑦:𝐴1-1𝐴) → (𝑥:𝐴𝐴𝑦:𝐴𝐴))
275, 6elefmndbas 18765 . . . . . . . . . . . 12 (𝐴𝑉 → (𝑦 ∈ (Base‘𝑀) ↔ 𝑦:𝐴𝐴))
287, 27anbi12d 632 . . . . . . . . . . 11 (𝐴𝑉 → ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) ↔ (𝑥:𝐴𝐴𝑦:𝐴𝐴)))
2926, 28imbitrrid 246 . . . . . . . . . 10 (𝐴𝑉 → ((𝑥:𝐴1-1𝐴𝑦:𝐴1-1𝐴) → (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))))
3029imp 406 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑥:𝐴1-1𝐴𝑦:𝐴1-1𝐴)) → (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)))
31 eqid 2729 . . . . . . . . . 10 (+g𝑀) = (+g𝑀)
325, 6, 31efmndov 18773 . . . . . . . . 9 ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) = (𝑥𝑦))
3330, 32syl 17 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑥:𝐴1-1𝐴𝑦:𝐴1-1𝐴)) → (𝑥(+g𝑀)𝑦) = (𝑥𝑦))
3433eleq1d 2813 . . . . . . 7 ((𝐴𝑉 ∧ (𝑥:𝐴1-1𝐴𝑦:𝐴1-1𝐴)) → ((𝑥(+g𝑀)𝑦) ∈ {:𝐴1-1𝐴} ↔ (𝑥𝑦) ∈ {:𝐴1-1𝐴}))
351, 19coex 7870 . . . . . . . 8 (𝑥𝑦) ∈ V
36 f1eq1 6719 . . . . . . . 8 ( = (𝑥𝑦) → (:𝐴1-1𝐴 ↔ (𝑥𝑦):𝐴1-1𝐴))
3735, 36elab 3637 . . . . . . 7 ((𝑥𝑦) ∈ {:𝐴1-1𝐴} ↔ (𝑥𝑦):𝐴1-1𝐴)
3834, 37bitrdi 287 . . . . . 6 ((𝐴𝑉 ∧ (𝑥:𝐴1-1𝐴𝑦:𝐴1-1𝐴)) → ((𝑥(+g𝑀)𝑦) ∈ {:𝐴1-1𝐴} ↔ (𝑥𝑦):𝐴1-1𝐴))
3924, 38mpbird 257 . . . . 5 ((𝐴𝑉 ∧ (𝑥:𝐴1-1𝐴𝑦:𝐴1-1𝐴)) → (𝑥(+g𝑀)𝑦) ∈ {:𝐴1-1𝐴})
4039ex 412 . . . 4 (𝐴𝑉 → ((𝑥:𝐴1-1𝐴𝑦:𝐴1-1𝐴) → (𝑥(+g𝑀)𝑦) ∈ {:𝐴1-1𝐴}))
4122, 40biimtrid 242 . . 3 (𝐴𝑉 → ((𝑥 ∈ {:𝐴1-1𝐴} ∧ 𝑦 ∈ {:𝐴1-1𝐴}) → (𝑥(+g𝑀)𝑦) ∈ {:𝐴1-1𝐴}))
4241ralrimivv 3170 . 2 (𝐴𝑉 → ∀𝑥 ∈ {:𝐴1-1𝐴}∀𝑦 ∈ {:𝐴1-1𝐴} (𝑥(+g𝑀)𝑦) ∈ {:𝐴1-1𝐴})
435efmndmnd 18781 . . 3 (𝐴𝑉𝑀 ∈ Mnd)
44 eqid 2729 . . . 4 (0g𝑀) = (0g𝑀)
456, 44, 31issubm 18695 . . 3 (𝑀 ∈ Mnd → ({:𝐴1-1𝐴} ∈ (SubMnd‘𝑀) ↔ ({:𝐴1-1𝐴} ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ {:𝐴1-1𝐴} ∧ ∀𝑥 ∈ {:𝐴1-1𝐴}∀𝑦 ∈ {:𝐴1-1𝐴} (𝑥(+g𝑀)𝑦) ∈ {:𝐴1-1𝐴})))
4643, 45syl 17 . 2 (𝐴𝑉 → ({:𝐴1-1𝐴} ∈ (SubMnd‘𝑀) ↔ ({:𝐴1-1𝐴} ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ {:𝐴1-1𝐴} ∧ ∀𝑥 ∈ {:𝐴1-1𝐴}∀𝑦 ∈ {:𝐴1-1𝐴} (𝑥(+g𝑀)𝑦) ∈ {:𝐴1-1𝐴})))
4710, 18, 42, 46mpbir3and 1343 1 (𝐴𝑉 → {:𝐴1-1𝐴} ∈ (SubMnd‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  Vcvv 3438  wss 3905   I cid 5517  cres 5625  ccom 5627  wf 6482  1-1wf1 6483  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  0gc0g 17361  Mndcmnd 18626  SubMndcsubmnd 18674  EndoFMndcefmnd 18760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-tset 17198  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-efmnd 18761
This theorem is referenced by:  symgsubmefmnd  19295
  Copyright terms: Public domain W3C validator