MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  injsubmefmnd Structured version   Visualization version   GIF version

Theorem injsubmefmnd 18536
Description: The set of injective endofunctions on a set 𝐴 is a submonoid of the monoid of endofunctions on 𝐴. (Contributed by AV, 25-Feb-2024.)
Hypothesis
Ref Expression
sursubmefmnd.m 𝑀 = (EndoFMnd‘𝐴)
Assertion
Ref Expression
injsubmefmnd (𝐴𝑉 → {:𝐴1-1𝐴} ∈ (SubMnd‘𝑀))
Distinct variable group:   𝐴,
Allowed substitution hints:   𝑀()   𝑉()

Proof of Theorem injsubmefmnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3436 . . . . 5 𝑥 ∈ V
2 f1eq1 6665 . . . . 5 ( = 𝑥 → (:𝐴1-1𝐴𝑥:𝐴1-1𝐴))
31, 2elab 3609 . . . 4 (𝑥 ∈ {:𝐴1-1𝐴} ↔ 𝑥:𝐴1-1𝐴)
4 f1f 6670 . . . . 5 (𝑥:𝐴1-1𝐴𝑥:𝐴𝐴)
5 sursubmefmnd.m . . . . . 6 𝑀 = (EndoFMnd‘𝐴)
6 eqid 2738 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
75, 6elefmndbas 18512 . . . . 5 (𝐴𝑉 → (𝑥 ∈ (Base‘𝑀) ↔ 𝑥:𝐴𝐴))
84, 7syl5ibr 245 . . . 4 (𝐴𝑉 → (𝑥:𝐴1-1𝐴𝑥 ∈ (Base‘𝑀)))
93, 8syl5bi 241 . . 3 (𝐴𝑉 → (𝑥 ∈ {:𝐴1-1𝐴} → 𝑥 ∈ (Base‘𝑀)))
109ssrdv 3927 . 2 (𝐴𝑉 → {:𝐴1-1𝐴} ⊆ (Base‘𝑀))
115efmndid 18527 . . 3 (𝐴𝑉 → ( I ↾ 𝐴) = (0g𝑀))
12 resiexg 7761 . . . 4 (𝐴𝑉 → ( I ↾ 𝐴) ∈ V)
13 f1oi 6754 . . . . 5 ( I ↾ 𝐴):𝐴1-1-onto𝐴
14 f1of1 6715 . . . . 5 (( I ↾ 𝐴):𝐴1-1-onto𝐴 → ( I ↾ 𝐴):𝐴1-1𝐴)
1513, 14mp1i 13 . . . 4 (𝐴𝑉 → ( I ↾ 𝐴):𝐴1-1𝐴)
16 f1eq1 6665 . . . 4 ( = ( I ↾ 𝐴) → (:𝐴1-1𝐴 ↔ ( I ↾ 𝐴):𝐴1-1𝐴))
1712, 15, 16elabd 3612 . . 3 (𝐴𝑉 → ( I ↾ 𝐴) ∈ {:𝐴1-1𝐴})
1811, 17eqeltrrd 2840 . 2 (𝐴𝑉 → (0g𝑀) ∈ {:𝐴1-1𝐴})
19 vex 3436 . . . . . 6 𝑦 ∈ V
20 f1eq1 6665 . . . . . 6 ( = 𝑦 → (:𝐴1-1𝐴𝑦:𝐴1-1𝐴))
2119, 20elab 3609 . . . . 5 (𝑦 ∈ {:𝐴1-1𝐴} ↔ 𝑦:𝐴1-1𝐴)
223, 21anbi12i 627 . . . 4 ((𝑥 ∈ {:𝐴1-1𝐴} ∧ 𝑦 ∈ {:𝐴1-1𝐴}) ↔ (𝑥:𝐴1-1𝐴𝑦:𝐴1-1𝐴))
23 f1co 6682 . . . . . . 7 ((𝑥:𝐴1-1𝐴𝑦:𝐴1-1𝐴) → (𝑥𝑦):𝐴1-1𝐴)
2423adantl 482 . . . . . 6 ((𝐴𝑉 ∧ (𝑥:𝐴1-1𝐴𝑦:𝐴1-1𝐴)) → (𝑥𝑦):𝐴1-1𝐴)
25 f1f 6670 . . . . . . . . . . . 12 (𝑦:𝐴1-1𝐴𝑦:𝐴𝐴)
264, 25anim12i 613 . . . . . . . . . . 11 ((𝑥:𝐴1-1𝐴𝑦:𝐴1-1𝐴) → (𝑥:𝐴𝐴𝑦:𝐴𝐴))
275, 6elefmndbas 18512 . . . . . . . . . . . 12 (𝐴𝑉 → (𝑦 ∈ (Base‘𝑀) ↔ 𝑦:𝐴𝐴))
287, 27anbi12d 631 . . . . . . . . . . 11 (𝐴𝑉 → ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) ↔ (𝑥:𝐴𝐴𝑦:𝐴𝐴)))
2926, 28syl5ibr 245 . . . . . . . . . 10 (𝐴𝑉 → ((𝑥:𝐴1-1𝐴𝑦:𝐴1-1𝐴) → (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))))
3029imp 407 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑥:𝐴1-1𝐴𝑦:𝐴1-1𝐴)) → (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)))
31 eqid 2738 . . . . . . . . . 10 (+g𝑀) = (+g𝑀)
325, 6, 31efmndov 18520 . . . . . . . . 9 ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) = (𝑥𝑦))
3330, 32syl 17 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑥:𝐴1-1𝐴𝑦:𝐴1-1𝐴)) → (𝑥(+g𝑀)𝑦) = (𝑥𝑦))
3433eleq1d 2823 . . . . . . 7 ((𝐴𝑉 ∧ (𝑥:𝐴1-1𝐴𝑦:𝐴1-1𝐴)) → ((𝑥(+g𝑀)𝑦) ∈ {:𝐴1-1𝐴} ↔ (𝑥𝑦) ∈ {:𝐴1-1𝐴}))
351, 19coex 7777 . . . . . . . 8 (𝑥𝑦) ∈ V
36 f1eq1 6665 . . . . . . . 8 ( = (𝑥𝑦) → (:𝐴1-1𝐴 ↔ (𝑥𝑦):𝐴1-1𝐴))
3735, 36elab 3609 . . . . . . 7 ((𝑥𝑦) ∈ {:𝐴1-1𝐴} ↔ (𝑥𝑦):𝐴1-1𝐴)
3834, 37bitrdi 287 . . . . . 6 ((𝐴𝑉 ∧ (𝑥:𝐴1-1𝐴𝑦:𝐴1-1𝐴)) → ((𝑥(+g𝑀)𝑦) ∈ {:𝐴1-1𝐴} ↔ (𝑥𝑦):𝐴1-1𝐴))
3924, 38mpbird 256 . . . . 5 ((𝐴𝑉 ∧ (𝑥:𝐴1-1𝐴𝑦:𝐴1-1𝐴)) → (𝑥(+g𝑀)𝑦) ∈ {:𝐴1-1𝐴})
4039ex 413 . . . 4 (𝐴𝑉 → ((𝑥:𝐴1-1𝐴𝑦:𝐴1-1𝐴) → (𝑥(+g𝑀)𝑦) ∈ {:𝐴1-1𝐴}))
4122, 40syl5bi 241 . . 3 (𝐴𝑉 → ((𝑥 ∈ {:𝐴1-1𝐴} ∧ 𝑦 ∈ {:𝐴1-1𝐴}) → (𝑥(+g𝑀)𝑦) ∈ {:𝐴1-1𝐴}))
4241ralrimivv 3122 . 2 (𝐴𝑉 → ∀𝑥 ∈ {:𝐴1-1𝐴}∀𝑦 ∈ {:𝐴1-1𝐴} (𝑥(+g𝑀)𝑦) ∈ {:𝐴1-1𝐴})
435efmndmnd 18528 . . 3 (𝐴𝑉𝑀 ∈ Mnd)
44 eqid 2738 . . . 4 (0g𝑀) = (0g𝑀)
456, 44, 31issubm 18442 . . 3 (𝑀 ∈ Mnd → ({:𝐴1-1𝐴} ∈ (SubMnd‘𝑀) ↔ ({:𝐴1-1𝐴} ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ {:𝐴1-1𝐴} ∧ ∀𝑥 ∈ {:𝐴1-1𝐴}∀𝑦 ∈ {:𝐴1-1𝐴} (𝑥(+g𝑀)𝑦) ∈ {:𝐴1-1𝐴})))
4643, 45syl 17 . 2 (𝐴𝑉 → ({:𝐴1-1𝐴} ∈ (SubMnd‘𝑀) ↔ ({:𝐴1-1𝐴} ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ {:𝐴1-1𝐴} ∧ ∀𝑥 ∈ {:𝐴1-1𝐴}∀𝑦 ∈ {:𝐴1-1𝐴} (𝑥(+g𝑀)𝑦) ∈ {:𝐴1-1𝐴})))
4710, 18, 42, 46mpbir3and 1341 1 (𝐴𝑉 → {:𝐴1-1𝐴} ∈ (SubMnd‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  {cab 2715  wral 3064  Vcvv 3432  wss 3887   I cid 5488  cres 5591  ccom 5593  wf 6429  1-1wf1 6430  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  0gc0g 17150  Mndcmnd 18385  SubMndcsubmnd 18429  EndoFMndcefmnd 18507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-tset 16981  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-efmnd 18508
This theorem is referenced by:  symgsubmefmnd  19006
  Copyright terms: Public domain W3C validator