MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  injsubmefmnd Structured version   Visualization version   GIF version

Theorem injsubmefmnd 18807
Description: The set of injective endofunctions on a set 𝐴 is a submonoid of the monoid of endofunctions on 𝐴. (Contributed by AV, 25-Feb-2024.)
Hypothesis
Ref Expression
sursubmefmnd.m 𝑀 = (EndoFMnd‘𝐴)
Assertion
Ref Expression
injsubmefmnd (𝐴𝑉 → {:𝐴1-1𝐴} ∈ (SubMnd‘𝑀))
Distinct variable group:   𝐴,
Allowed substitution hints:   𝑀()   𝑉()

Proof of Theorem injsubmefmnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3441 . . . . 5 𝑥 ∈ V
2 f1eq1 6719 . . . . 5 ( = 𝑥 → (:𝐴1-1𝐴𝑥:𝐴1-1𝐴))
31, 2elab 3631 . . . 4 (𝑥 ∈ {:𝐴1-1𝐴} ↔ 𝑥:𝐴1-1𝐴)
4 f1f 6724 . . . . 5 (𝑥:𝐴1-1𝐴𝑥:𝐴𝐴)
5 sursubmefmnd.m . . . . . 6 𝑀 = (EndoFMnd‘𝐴)
6 eqid 2733 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
75, 6elefmndbas 18783 . . . . 5 (𝐴𝑉 → (𝑥 ∈ (Base‘𝑀) ↔ 𝑥:𝐴𝐴))
84, 7imbitrrid 246 . . . 4 (𝐴𝑉 → (𝑥:𝐴1-1𝐴𝑥 ∈ (Base‘𝑀)))
93, 8biimtrid 242 . . 3 (𝐴𝑉 → (𝑥 ∈ {:𝐴1-1𝐴} → 𝑥 ∈ (Base‘𝑀)))
109ssrdv 3936 . 2 (𝐴𝑉 → {:𝐴1-1𝐴} ⊆ (Base‘𝑀))
115efmndid 18798 . . 3 (𝐴𝑉 → ( I ↾ 𝐴) = (0g𝑀))
12 resiexg 7848 . . . 4 (𝐴𝑉 → ( I ↾ 𝐴) ∈ V)
13 f1oi 6806 . . . . 5 ( I ↾ 𝐴):𝐴1-1-onto𝐴
14 f1of1 6767 . . . . 5 (( I ↾ 𝐴):𝐴1-1-onto𝐴 → ( I ↾ 𝐴):𝐴1-1𝐴)
1513, 14mp1i 13 . . . 4 (𝐴𝑉 → ( I ↾ 𝐴):𝐴1-1𝐴)
16 f1eq1 6719 . . . 4 ( = ( I ↾ 𝐴) → (:𝐴1-1𝐴 ↔ ( I ↾ 𝐴):𝐴1-1𝐴))
1712, 15, 16elabd 3633 . . 3 (𝐴𝑉 → ( I ↾ 𝐴) ∈ {:𝐴1-1𝐴})
1811, 17eqeltrrd 2834 . 2 (𝐴𝑉 → (0g𝑀) ∈ {:𝐴1-1𝐴})
19 vex 3441 . . . . . 6 𝑦 ∈ V
20 f1eq1 6719 . . . . . 6 ( = 𝑦 → (:𝐴1-1𝐴𝑦:𝐴1-1𝐴))
2119, 20elab 3631 . . . . 5 (𝑦 ∈ {:𝐴1-1𝐴} ↔ 𝑦:𝐴1-1𝐴)
223, 21anbi12i 628 . . . 4 ((𝑥 ∈ {:𝐴1-1𝐴} ∧ 𝑦 ∈ {:𝐴1-1𝐴}) ↔ (𝑥:𝐴1-1𝐴𝑦:𝐴1-1𝐴))
23 f1co 6735 . . . . . . 7 ((𝑥:𝐴1-1𝐴𝑦:𝐴1-1𝐴) → (𝑥𝑦):𝐴1-1𝐴)
2423adantl 481 . . . . . 6 ((𝐴𝑉 ∧ (𝑥:𝐴1-1𝐴𝑦:𝐴1-1𝐴)) → (𝑥𝑦):𝐴1-1𝐴)
25 f1f 6724 . . . . . . . . . . . 12 (𝑦:𝐴1-1𝐴𝑦:𝐴𝐴)
264, 25anim12i 613 . . . . . . . . . . 11 ((𝑥:𝐴1-1𝐴𝑦:𝐴1-1𝐴) → (𝑥:𝐴𝐴𝑦:𝐴𝐴))
275, 6elefmndbas 18783 . . . . . . . . . . . 12 (𝐴𝑉 → (𝑦 ∈ (Base‘𝑀) ↔ 𝑦:𝐴𝐴))
287, 27anbi12d 632 . . . . . . . . . . 11 (𝐴𝑉 → ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) ↔ (𝑥:𝐴𝐴𝑦:𝐴𝐴)))
2926, 28imbitrrid 246 . . . . . . . . . 10 (𝐴𝑉 → ((𝑥:𝐴1-1𝐴𝑦:𝐴1-1𝐴) → (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))))
3029imp 406 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑥:𝐴1-1𝐴𝑦:𝐴1-1𝐴)) → (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)))
31 eqid 2733 . . . . . . . . . 10 (+g𝑀) = (+g𝑀)
325, 6, 31efmndov 18791 . . . . . . . . 9 ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)𝑦) = (𝑥𝑦))
3330, 32syl 17 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑥:𝐴1-1𝐴𝑦:𝐴1-1𝐴)) → (𝑥(+g𝑀)𝑦) = (𝑥𝑦))
3433eleq1d 2818 . . . . . . 7 ((𝐴𝑉 ∧ (𝑥:𝐴1-1𝐴𝑦:𝐴1-1𝐴)) → ((𝑥(+g𝑀)𝑦) ∈ {:𝐴1-1𝐴} ↔ (𝑥𝑦) ∈ {:𝐴1-1𝐴}))
351, 19coex 7866 . . . . . . . 8 (𝑥𝑦) ∈ V
36 f1eq1 6719 . . . . . . . 8 ( = (𝑥𝑦) → (:𝐴1-1𝐴 ↔ (𝑥𝑦):𝐴1-1𝐴))
3735, 36elab 3631 . . . . . . 7 ((𝑥𝑦) ∈ {:𝐴1-1𝐴} ↔ (𝑥𝑦):𝐴1-1𝐴)
3834, 37bitrdi 287 . . . . . 6 ((𝐴𝑉 ∧ (𝑥:𝐴1-1𝐴𝑦:𝐴1-1𝐴)) → ((𝑥(+g𝑀)𝑦) ∈ {:𝐴1-1𝐴} ↔ (𝑥𝑦):𝐴1-1𝐴))
3924, 38mpbird 257 . . . . 5 ((𝐴𝑉 ∧ (𝑥:𝐴1-1𝐴𝑦:𝐴1-1𝐴)) → (𝑥(+g𝑀)𝑦) ∈ {:𝐴1-1𝐴})
4039ex 412 . . . 4 (𝐴𝑉 → ((𝑥:𝐴1-1𝐴𝑦:𝐴1-1𝐴) → (𝑥(+g𝑀)𝑦) ∈ {:𝐴1-1𝐴}))
4122, 40biimtrid 242 . . 3 (𝐴𝑉 → ((𝑥 ∈ {:𝐴1-1𝐴} ∧ 𝑦 ∈ {:𝐴1-1𝐴}) → (𝑥(+g𝑀)𝑦) ∈ {:𝐴1-1𝐴}))
4241ralrimivv 3174 . 2 (𝐴𝑉 → ∀𝑥 ∈ {:𝐴1-1𝐴}∀𝑦 ∈ {:𝐴1-1𝐴} (𝑥(+g𝑀)𝑦) ∈ {:𝐴1-1𝐴})
435efmndmnd 18799 . . 3 (𝐴𝑉𝑀 ∈ Mnd)
44 eqid 2733 . . . 4 (0g𝑀) = (0g𝑀)
456, 44, 31issubm 18713 . . 3 (𝑀 ∈ Mnd → ({:𝐴1-1𝐴} ∈ (SubMnd‘𝑀) ↔ ({:𝐴1-1𝐴} ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ {:𝐴1-1𝐴} ∧ ∀𝑥 ∈ {:𝐴1-1𝐴}∀𝑦 ∈ {:𝐴1-1𝐴} (𝑥(+g𝑀)𝑦) ∈ {:𝐴1-1𝐴})))
4643, 45syl 17 . 2 (𝐴𝑉 → ({:𝐴1-1𝐴} ∈ (SubMnd‘𝑀) ↔ ({:𝐴1-1𝐴} ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ {:𝐴1-1𝐴} ∧ ∀𝑥 ∈ {:𝐴1-1𝐴}∀𝑦 ∈ {:𝐴1-1𝐴} (𝑥(+g𝑀)𝑦) ∈ {:𝐴1-1𝐴})))
4710, 18, 42, 46mpbir3and 1343 1 (𝐴𝑉 → {:𝐴1-1𝐴} ∈ (SubMnd‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  {cab 2711  wral 3048  Vcvv 3437  wss 3898   I cid 5513  cres 5621  ccom 5623  wf 6482  1-1wf1 6483  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  0gc0g 17345  Mndcmnd 18644  SubMndcsubmnd 18692  EndoFMndcefmnd 18778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-struct 17060  df-slot 17095  df-ndx 17107  df-base 17123  df-plusg 17176  df-tset 17182  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-efmnd 18779
This theorem is referenced by:  symgsubmefmnd  19312
  Copyright terms: Public domain W3C validator