Step | Hyp | Ref
| Expression |
1 | | hoidmvlelem1.s |
. . . . . 6
⊢ 𝑆 = sup(𝑈, ℝ, < ) |
2 | 1 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝑆 = sup(𝑈, ℝ, < )) |
3 | | hoidmvlelem1.a |
. . . . . . 7
⊢ (𝜑 → 𝐴:𝑊⟶ℝ) |
4 | | hoidmvlelem1.z |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ∈ (𝑋 ∖ 𝑌)) |
5 | | snidg 4595 |
. . . . . . . . . 10
⊢ (𝑍 ∈ (𝑋 ∖ 𝑌) → 𝑍 ∈ {𝑍}) |
6 | 4, 5 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ {𝑍}) |
7 | | elun2 4111 |
. . . . . . . . 9
⊢ (𝑍 ∈ {𝑍} → 𝑍 ∈ (𝑌 ∪ {𝑍})) |
8 | 6, 7 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑍 ∈ (𝑌 ∪ {𝑍})) |
9 | | hoidmvlelem1.w |
. . . . . . . 8
⊢ 𝑊 = (𝑌 ∪ {𝑍}) |
10 | 8, 9 | eleqtrrdi 2850 |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈ 𝑊) |
11 | 3, 10 | ffvelrnd 6962 |
. . . . . 6
⊢ (𝜑 → (𝐴‘𝑍) ∈ ℝ) |
12 | | hoidmvlelem1.b |
. . . . . . 7
⊢ (𝜑 → 𝐵:𝑊⟶ℝ) |
13 | 12, 10 | ffvelrnd 6962 |
. . . . . 6
⊢ (𝜑 → (𝐵‘𝑍) ∈ ℝ) |
14 | | hoidmvlelem1.u |
. . . . . . . 8
⊢ 𝑈 = {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} |
15 | | ssrab2 4013 |
. . . . . . . 8
⊢ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} ⊆ ((𝐴‘𝑍)[,](𝐵‘𝑍)) |
16 | 14, 15 | eqsstri 3955 |
. . . . . . 7
⊢ 𝑈 ⊆ ((𝐴‘𝑍)[,](𝐵‘𝑍)) |
17 | 16 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝑈 ⊆ ((𝐴‘𝑍)[,](𝐵‘𝑍))) |
18 | 11 | leidd 11541 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴‘𝑍) ≤ (𝐴‘𝑍)) |
19 | | hoidmvlelem1.ab |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴‘𝑍) < (𝐵‘𝑍)) |
20 | 11, 13, 19 | ltled 11123 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴‘𝑍) ≤ (𝐵‘𝑍)) |
21 | 11, 13, 11, 18, 20 | eliccd 43042 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴‘𝑍) ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) |
22 | 11 | recnd 11003 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴‘𝑍) ∈ ℂ) |
23 | 22 | subidd 11320 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐴‘𝑍) − (𝐴‘𝑍)) = 0) |
24 | 23 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐺 · ((𝐴‘𝑍) − (𝐴‘𝑍))) = (𝐺 · 0)) |
25 | | rge0ssre 13188 |
. . . . . . . . . . . . . . 15
⊢
(0[,)+∞) ⊆ ℝ |
26 | | hoidmvlelem1.g |
. . . . . . . . . . . . . . . 16
⊢ 𝐺 = ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) |
27 | | hoidmvlelem1.l |
. . . . . . . . . . . . . . . . 17
⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
28 | | hoidmvlelem1.x |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑋 ∈ Fin) |
29 | | hoidmvlelem1.y |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
30 | 28, 29 | ssfid 9042 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑌 ∈ Fin) |
31 | | ssun1 4106 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑌 ⊆ (𝑌 ∪ {𝑍}) |
32 | 31, 9 | sseqtrri 3958 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑌 ⊆ 𝑊 |
33 | 32 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑌 ⊆ 𝑊) |
34 | 3, 33 | fssresd 6641 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐴 ↾ 𝑌):𝑌⟶ℝ) |
35 | 12, 33 | fssresd 6641 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐵 ↾ 𝑌):𝑌⟶ℝ) |
36 | 27, 30, 34, 35 | hoidmvcl 44120 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ∈ (0[,)+∞)) |
37 | 26, 36 | eqeltrid 2843 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐺 ∈ (0[,)+∞)) |
38 | 25, 37 | sselid 3919 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺 ∈ ℝ) |
39 | 38 | recnd 11003 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺 ∈ ℂ) |
40 | 39 | mul01d 11174 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐺 · 0) = 0) |
41 | 24, 40 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺 · ((𝐴‘𝑍) − (𝐴‘𝑍))) = 0) |
42 | | 1red 10976 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 1 ∈
ℝ) |
43 | | hoidmvlelem1.e |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
44 | 43 | rpred 12772 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐸 ∈ ℝ) |
45 | 42, 44 | readdcld 11004 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1 + 𝐸) ∈ ℝ) |
46 | | 0red 10978 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ∈
ℝ) |
47 | | 0lt1 11497 |
. . . . . . . . . . . . . . 15
⊢ 0 <
1 |
48 | 47 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < 1) |
49 | 42, 43 | ltaddrpd 12805 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 < (1 + 𝐸)) |
50 | 46, 42, 45, 48, 49 | lttrd 11136 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 < (1 + 𝐸)) |
51 | 46, 45, 50 | ltled 11123 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ≤ (1 + 𝐸)) |
52 | | nnex 11979 |
. . . . . . . . . . . . . . 15
⊢ ℕ
∈ V |
53 | 52 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ℕ ∈
V) |
54 | | icossicc 13168 |
. . . . . . . . . . . . . . . 16
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
55 | | snfi 8834 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ {𝑍} ∈ Fin |
56 | 55 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → {𝑍} ∈ Fin) |
57 | | unfi 8955 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑌 ∈ Fin ∧ {𝑍} ∈ Fin) → (𝑌 ∪ {𝑍}) ∈ Fin) |
58 | 30, 56, 57 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑌 ∪ {𝑍}) ∈ Fin) |
59 | 9, 58 | eqeltrid 2843 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑊 ∈ Fin) |
60 | 59 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑊 ∈ Fin) |
61 | | hoidmvlelem1.c |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐶:ℕ⟶(ℝ ↑m
𝑊)) |
62 | 61 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗) ∈ (ℝ ↑m 𝑊)) |
63 | | elmapi 8637 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐶‘𝑗) ∈ (ℝ ↑m 𝑊) → (𝐶‘𝑗):𝑊⟶ℝ) |
64 | 62, 63 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗):𝑊⟶ℝ) |
65 | | hoidmvlelem1.h |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))))) |
66 | | eleq1w 2821 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = ℎ → (𝑗 ∈ 𝑌 ↔ ℎ ∈ 𝑌)) |
67 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = ℎ → (𝑐‘𝑗) = (𝑐‘ℎ)) |
68 | 67 | breq1d 5084 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 = ℎ → ((𝑐‘𝑗) ≤ 𝑥 ↔ (𝑐‘ℎ) ≤ 𝑥)) |
69 | 68, 67 | ifbieq1d 4483 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = ℎ → if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥) = if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥)) |
70 | 66, 67, 69 | ifbieq12d 4487 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = ℎ → if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥)) = if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥))) |
71 | 70 | cbvmptv 5187 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))) = (ℎ ∈ 𝑊 ↦ if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥))) |
72 | 71 | mpteq2i 5179 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 ∈ (ℝ
↑m 𝑊)
↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥)))) = (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (ℎ ∈ 𝑊 ↦ if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥)))) |
73 | 72 | mpteq2i 5179 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ
↑m 𝑊)
↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))))) = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (ℎ ∈ 𝑊 ↦ if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥))))) |
74 | 65, 73 | eqtri 2766 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (ℎ ∈ 𝑊 ↦ if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥))))) |
75 | 11 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐴‘𝑍) ∈ ℝ) |
76 | | hoidmvlelem1.d |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐷:ℕ⟶(ℝ ↑m
𝑊)) |
77 | 76 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗) ∈ (ℝ ↑m 𝑊)) |
78 | | elmapi 8637 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐷‘𝑗) ∈ (ℝ ↑m 𝑊) → (𝐷‘𝑗):𝑊⟶ℝ) |
79 | 77, 78 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗):𝑊⟶ℝ) |
80 | 74, 75, 60, 79 | hsphoif 44114 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗)):𝑊⟶ℝ) |
81 | 27, 60, 64, 80 | hoidmvcl 44120 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))) ∈ (0[,)+∞)) |
82 | 54, 81 | sselid 3919 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))) ∈ (0[,]+∞)) |
83 | 82 | fmpttd 6989 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗)))):ℕ⟶(0[,]+∞)) |
84 | 53, 83 | sge0cl 43919 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))) ∈ (0[,]+∞)) |
85 | 53, 83 | sge0xrcl 43923 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))) ∈
ℝ*) |
86 | | pnfxr 11029 |
. . . . . . . . . . . . . . 15
⊢ +∞
∈ ℝ* |
87 | 86 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → +∞ ∈
ℝ*) |
88 | | hoidmvlelem1.r |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) |
89 | 88 | rexrd 11025 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈
ℝ*) |
90 | | nfv 1917 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑗𝜑 |
91 | 27, 60, 64, 79 | hoidmvcl 44120 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)) ∈ (0[,)+∞)) |
92 | 54, 91 | sselid 3919 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)) ∈ (0[,]+∞)) |
93 | 4 | eldifbd 3900 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ¬ 𝑍 ∈ 𝑌) |
94 | 10, 93 | eldifd 3898 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑍 ∈ (𝑊 ∖ 𝑌)) |
95 | 94 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑍 ∈ (𝑊 ∖ 𝑌)) |
96 | 27, 60, 95, 9, 75, 74, 64, 79 | hsphoidmvle 44124 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))) ≤ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))) |
97 | 90, 53, 82, 92, 96 | sge0lempt 43948 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |
98 | 88 | ltpnfd 12857 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) < +∞) |
99 | 85, 89, 87, 97, 98 | xrlelttrd 12894 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))) < +∞) |
100 | 85, 87, 99 | xrltned 42896 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))) ≠ +∞) |
101 | | ge0xrre 43069 |
. . . . . . . . . . . . 13
⊢
(((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))) ∈ (0[,]+∞) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))) ≠ +∞) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))) ∈ ℝ) |
102 | 84, 100, 101 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))) ∈ ℝ) |
103 | 53, 83 | sge0ge0 43922 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗)))))) |
104 | | mulge0 11493 |
. . . . . . . . . . . 12
⊢ ((((1 +
𝐸) ∈ ℝ ∧ 0
≤ (1 + 𝐸)) ∧
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))) ∈ ℝ ∧ 0 ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))))) → 0 ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))))) |
105 | 45, 51, 102, 103, 104 | syl22anc 836 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))))) |
106 | 41, 105 | eqbrtrd 5096 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺 · ((𝐴‘𝑍) − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))))) |
107 | 21, 106 | jca 512 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴‘𝑍) ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∧ (𝐺 · ((𝐴‘𝑍) − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗)))))))) |
108 | | oveq1 7282 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝐴‘𝑍) → (𝑧 − (𝐴‘𝑍)) = ((𝐴‘𝑍) − (𝐴‘𝑍))) |
109 | 108 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝐴‘𝑍) → (𝐺 · (𝑧 − (𝐴‘𝑍))) = (𝐺 · ((𝐴‘𝑍) − (𝐴‘𝑍)))) |
110 | | fveq2 6774 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝐴‘𝑍) → (𝐻‘𝑧) = (𝐻‘(𝐴‘𝑍))) |
111 | 110 | fveq1d 6776 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝐴‘𝑍) → ((𝐻‘𝑧)‘(𝐷‘𝑗)) = ((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))) |
112 | 111 | oveq2d 7291 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝐴‘𝑍) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))) = ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗)))) |
113 | 112 | mpteq2dv 5176 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝐴‘𝑍) → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))) |
114 | 113 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝐴‘𝑍) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗)))))) |
115 | 114 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝐴‘𝑍) → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))))) = ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))))) |
116 | 109, 115 | breq12d 5087 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐴‘𝑍) → ((𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))))) ↔ (𝐺 · ((𝐴‘𝑍) − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗)))))))) |
117 | 116 | elrab 3624 |
. . . . . . . . 9
⊢ ((𝐴‘𝑍) ∈ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} ↔ ((𝐴‘𝑍) ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∧ (𝐺 · ((𝐴‘𝑍) − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗)))))))) |
118 | 107, 117 | sylibr 233 |
. . . . . . . 8
⊢ (𝜑 → (𝐴‘𝑍) ∈ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))}) |
119 | 118, 14 | eleqtrrdi 2850 |
. . . . . . 7
⊢ (𝜑 → (𝐴‘𝑍) ∈ 𝑈) |
120 | | ne0i 4268 |
. . . . . . 7
⊢ ((𝐴‘𝑍) ∈ 𝑈 → 𝑈 ≠ ∅) |
121 | 119, 120 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑈 ≠ ∅) |
122 | 11, 13, 17, 121 | supicc 13233 |
. . . . 5
⊢ (𝜑 → sup(𝑈, ℝ, < ) ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) |
123 | 2, 122 | eqeltrd 2839 |
. . . 4
⊢ (𝜑 → 𝑆 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) |
124 | 2 | oveq1d 7290 |
. . . . . . 7
⊢ (𝜑 → (𝑆 − (𝐴‘𝑍)) = (sup(𝑈, ℝ, < ) − (𝐴‘𝑍))) |
125 | 124 | oveq2d 7291 |
. . . . . 6
⊢ (𝜑 → (𝐺 · (𝑆 − (𝐴‘𝑍))) = (𝐺 · (sup(𝑈, ℝ, < ) − (𝐴‘𝑍)))) |
126 | 11, 13 | iccssred 13166 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴‘𝑍)[,](𝐵‘𝑍)) ⊆ ℝ) |
127 | 17, 126 | sstrd 3931 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ⊆ ℝ) |
128 | 11, 13 | jca 512 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴‘𝑍) ∈ ℝ ∧ (𝐵‘𝑍) ∈ ℝ)) |
129 | | iccsupr 13174 |
. . . . . . . . . 10
⊢ ((((𝐴‘𝑍) ∈ ℝ ∧ (𝐵‘𝑍) ∈ ℝ) ∧ 𝑈 ⊆ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∧ (𝐴‘𝑍) ∈ 𝑈) → (𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝑈 𝑧 ≤ 𝑦)) |
130 | 128, 17, 119, 129 | syl3anc 1370 |
. . . . . . . . 9
⊢ (𝜑 → (𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝑈 𝑧 ≤ 𝑦)) |
131 | 130 | simp3d 1143 |
. . . . . . . 8
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝑈 𝑧 ≤ 𝑦) |
132 | | eqid 2738 |
. . . . . . . 8
⊢ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} = {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} |
133 | 127, 121,
131, 11, 132 | supsubc 42892 |
. . . . . . 7
⊢ (𝜑 → (sup(𝑈, ℝ, < ) − (𝐴‘𝑍)) = sup({𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}, ℝ, < )) |
134 | 133 | oveq2d 7291 |
. . . . . 6
⊢ (𝜑 → (𝐺 · (sup(𝑈, ℝ, < ) − (𝐴‘𝑍))) = (𝐺 · sup({𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}, ℝ, < ))) |
135 | 46 | rexrd 11025 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℝ*) |
136 | | icogelb 13130 |
. . . . . . . 8
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ* ∧
𝐺 ∈ (0[,)+∞))
→ 0 ≤ 𝐺) |
137 | 135, 87, 37, 136 | syl3anc 1370 |
. . . . . . 7
⊢ (𝜑 → 0 ≤ 𝐺) |
138 | | vex 3436 |
. . . . . . . . . . . 12
⊢ 𝑟 ∈ V |
139 | | eqeq1 2742 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑟 → (𝑤 = (𝑢 − (𝐴‘𝑍)) ↔ 𝑟 = (𝑢 − (𝐴‘𝑍)))) |
140 | 139 | rexbidv 3226 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑟 → (∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍)) ↔ ∃𝑢 ∈ 𝑈 𝑟 = (𝑢 − (𝐴‘𝑍)))) |
141 | 138, 140 | elab 3609 |
. . . . . . . . . . 11
⊢ (𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ↔ ∃𝑢 ∈ 𝑈 𝑟 = (𝑢 − (𝐴‘𝑍))) |
142 | 141 | biimpi 215 |
. . . . . . . . . 10
⊢ (𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} → ∃𝑢 ∈ 𝑈 𝑟 = (𝑢 − (𝐴‘𝑍))) |
143 | 142 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) → ∃𝑢 ∈ 𝑈 𝑟 = (𝑢 − (𝐴‘𝑍))) |
144 | | nfv 1917 |
. . . . . . . . . . 11
⊢
Ⅎ𝑢𝜑 |
145 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑢𝑟 |
146 | | nfre1 3239 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑢∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍)) |
147 | 146 | nfab 2913 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑢{𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} |
148 | 145, 147 | nfel 2921 |
. . . . . . . . . . 11
⊢
Ⅎ𝑢 𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} |
149 | 144, 148 | nfan 1902 |
. . . . . . . . . 10
⊢
Ⅎ𝑢(𝜑 ∧ 𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) |
150 | | nfv 1917 |
. . . . . . . . . 10
⊢
Ⅎ𝑢0 ≤ 𝑟 |
151 | 11 | rexrd 11025 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐴‘𝑍) ∈
ℝ*) |
152 | 151 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝐴‘𝑍) ∈
ℝ*) |
153 | 13 | rexrd 11025 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐵‘𝑍) ∈
ℝ*) |
154 | 153 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝐵‘𝑍) ∈
ℝ*) |
155 | 17 | sselda 3921 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) |
156 | | iccgelb 13135 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴‘𝑍) ∈ ℝ* ∧ (𝐵‘𝑍) ∈ ℝ* ∧ 𝑢 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) → (𝐴‘𝑍) ≤ 𝑢) |
157 | 152, 154,
155, 156 | syl3anc 1370 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝐴‘𝑍) ≤ 𝑢) |
158 | 127 | sselda 3921 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ∈ ℝ) |
159 | 11 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝐴‘𝑍) ∈ ℝ) |
160 | 158, 159 | subge0d 11565 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (0 ≤ (𝑢 − (𝐴‘𝑍)) ↔ (𝐴‘𝑍) ≤ 𝑢)) |
161 | 157, 160 | mpbird 256 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 0 ≤ (𝑢 − (𝐴‘𝑍))) |
162 | 161 | 3adant3 1131 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑟 = (𝑢 − (𝐴‘𝑍))) → 0 ≤ (𝑢 − (𝐴‘𝑍))) |
163 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = (𝑢 − (𝐴‘𝑍)) → 𝑟 = (𝑢 − (𝐴‘𝑍))) |
164 | 163 | eqcomd 2744 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = (𝑢 − (𝐴‘𝑍)) → (𝑢 − (𝐴‘𝑍)) = 𝑟) |
165 | 164 | 3ad2ant3 1134 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑟 = (𝑢 − (𝐴‘𝑍))) → (𝑢 − (𝐴‘𝑍)) = 𝑟) |
166 | 162, 165 | breqtrd 5100 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑟 = (𝑢 − (𝐴‘𝑍))) → 0 ≤ 𝑟) |
167 | 166 | 3exp 1118 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑢 ∈ 𝑈 → (𝑟 = (𝑢 − (𝐴‘𝑍)) → 0 ≤ 𝑟))) |
168 | 167 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) → (𝑢 ∈ 𝑈 → (𝑟 = (𝑢 − (𝐴‘𝑍)) → 0 ≤ 𝑟))) |
169 | 149, 150,
168 | rexlimd 3250 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) → (∃𝑢 ∈ 𝑈 𝑟 = (𝑢 − (𝐴‘𝑍)) → 0 ≤ 𝑟)) |
170 | 143, 169 | mpd 15 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) → 0 ≤ 𝑟) |
171 | 170 | ralrimiva 3103 |
. . . . . . 7
⊢ (𝜑 → ∀𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}0 ≤ 𝑟) |
172 | | simp3 1137 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑤 = (𝑢 − (𝐴‘𝑍))) → 𝑤 = (𝑢 − (𝐴‘𝑍))) |
173 | 158, 159 | resubcld 11403 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝑢 − (𝐴‘𝑍)) ∈ ℝ) |
174 | 173 | 3adant3 1131 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑤 = (𝑢 − (𝐴‘𝑍))) → (𝑢 − (𝐴‘𝑍)) ∈ ℝ) |
175 | 172, 174 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑤 = (𝑢 − (𝐴‘𝑍))) → 𝑤 ∈ ℝ) |
176 | 175 | 3exp 1118 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑢 ∈ 𝑈 → (𝑤 = (𝑢 − (𝐴‘𝑍)) → 𝑤 ∈ ℝ))) |
177 | 176 | rexlimdv 3212 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍)) → 𝑤 ∈ ℝ)) |
178 | 177 | alrimiv 1930 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑤(∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍)) → 𝑤 ∈ ℝ)) |
179 | | abss 3994 |
. . . . . . . 8
⊢ ({𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ⊆ ℝ ↔ ∀𝑤(∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍)) → 𝑤 ∈ ℝ)) |
180 | 178, 179 | sylibr 233 |
. . . . . . 7
⊢ (𝜑 → {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ⊆ ℝ) |
181 | 23 | eqcomd 2744 |
. . . . . . . . . 10
⊢ (𝜑 → 0 = ((𝐴‘𝑍) − (𝐴‘𝑍))) |
182 | | oveq1 7282 |
. . . . . . . . . . 11
⊢ (𝑢 = (𝐴‘𝑍) → (𝑢 − (𝐴‘𝑍)) = ((𝐴‘𝑍) − (𝐴‘𝑍))) |
183 | 182 | rspceeqv 3575 |
. . . . . . . . . 10
⊢ (((𝐴‘𝑍) ∈ 𝑈 ∧ 0 = ((𝐴‘𝑍) − (𝐴‘𝑍))) → ∃𝑢 ∈ 𝑈 0 = (𝑢 − (𝐴‘𝑍))) |
184 | 119, 181,
183 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → ∃𝑢 ∈ 𝑈 0 = (𝑢 − (𝐴‘𝑍))) |
185 | | eqeq1 2742 |
. . . . . . . . . 10
⊢ (𝑤 = 0 → (𝑤 = (𝑢 − (𝐴‘𝑍)) ↔ 0 = (𝑢 − (𝐴‘𝑍)))) |
186 | 185 | rexbidv 3226 |
. . . . . . . . 9
⊢ (𝑤 = 0 → (∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍)) ↔ ∃𝑢 ∈ 𝑈 0 = (𝑢 − (𝐴‘𝑍)))) |
187 | 46, 184, 186 | elabd 3612 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) |
188 | | ne0i 4268 |
. . . . . . . 8
⊢ (0 ∈
{𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} → {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ≠ ∅) |
189 | 187, 188 | syl 17 |
. . . . . . 7
⊢ (𝜑 → {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ≠ ∅) |
190 | 13, 11 | resubcld 11403 |
. . . . . . . 8
⊢ (𝜑 → ((𝐵‘𝑍) − (𝐴‘𝑍)) ∈ ℝ) |
191 | | vex 3436 |
. . . . . . . . . . . . 13
⊢ 𝑠 ∈ V |
192 | | eqeq1 2742 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑠 → (𝑤 = (𝑢 − (𝐴‘𝑍)) ↔ 𝑠 = (𝑢 − (𝐴‘𝑍)))) |
193 | 192 | rexbidv 3226 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑠 → (∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍)) ↔ ∃𝑢 ∈ 𝑈 𝑠 = (𝑢 − (𝐴‘𝑍)))) |
194 | 191, 193 | elab 3609 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ↔ ∃𝑢 ∈ 𝑈 𝑠 = (𝑢 − (𝐴‘𝑍))) |
195 | 194 | biimpi 215 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} → ∃𝑢 ∈ 𝑈 𝑠 = (𝑢 − (𝐴‘𝑍))) |
196 | 195 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) → ∃𝑢 ∈ 𝑈 𝑠 = (𝑢 − (𝐴‘𝑍))) |
197 | | nfcv 2907 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑢𝑠 |
198 | 197, 147 | nfel 2921 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑢 𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} |
199 | 144, 198 | nfan 1902 |
. . . . . . . . . . 11
⊢
Ⅎ𝑢(𝜑 ∧ 𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) |
200 | | nfv 1917 |
. . . . . . . . . . 11
⊢
Ⅎ𝑢 𝑠 ≤ ((𝐵‘𝑍) − (𝐴‘𝑍)) |
201 | | simp3 1137 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑠 = (𝑢 − (𝐴‘𝑍))) → 𝑠 = (𝑢 − (𝐴‘𝑍))) |
202 | 159 | 3adant3 1131 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑠 = (𝑢 − (𝐴‘𝑍))) → (𝐴‘𝑍) ∈ ℝ) |
203 | 13 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑠 = (𝑢 − (𝐴‘𝑍))) → (𝐵‘𝑍) ∈ ℝ) |
204 | 155 | 3adant3 1131 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑠 = (𝑢 − (𝐴‘𝑍))) → 𝑢 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) |
205 | 21 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑠 = (𝑢 − (𝐴‘𝑍))) → (𝐴‘𝑍) ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) |
206 | 202, 203,
204, 205 | iccsuble 43057 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑠 = (𝑢 − (𝐴‘𝑍))) → (𝑢 − (𝐴‘𝑍)) ≤ ((𝐵‘𝑍) − (𝐴‘𝑍))) |
207 | 201, 206 | eqbrtrd 5096 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑠 = (𝑢 − (𝐴‘𝑍))) → 𝑠 ≤ ((𝐵‘𝑍) − (𝐴‘𝑍))) |
208 | 207 | 3exp 1118 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑢 ∈ 𝑈 → (𝑠 = (𝑢 − (𝐴‘𝑍)) → 𝑠 ≤ ((𝐵‘𝑍) − (𝐴‘𝑍))))) |
209 | 208 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) → (𝑢 ∈ 𝑈 → (𝑠 = (𝑢 − (𝐴‘𝑍)) → 𝑠 ≤ ((𝐵‘𝑍) − (𝐴‘𝑍))))) |
210 | 199, 200,
209 | rexlimd 3250 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) → (∃𝑢 ∈ 𝑈 𝑠 = (𝑢 − (𝐴‘𝑍)) → 𝑠 ≤ ((𝐵‘𝑍) − (𝐴‘𝑍)))) |
211 | 196, 210 | mpd 15 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) → 𝑠 ≤ ((𝐵‘𝑍) − (𝐴‘𝑍))) |
212 | 211 | ralrimiva 3103 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑠 ≤ ((𝐵‘𝑍) − (𝐴‘𝑍))) |
213 | | brralrspcev 5134 |
. . . . . . . 8
⊢ ((((𝐵‘𝑍) − (𝐴‘𝑍)) ∈ ℝ ∧ ∀𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑠 ≤ ((𝐵‘𝑍) − (𝐴‘𝑍))) → ∃𝑟 ∈ ℝ ∀𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑠 ≤ 𝑟) |
214 | 190, 212,
213 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ∃𝑟 ∈ ℝ ∀𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑠 ≤ 𝑟) |
215 | | eqid 2738 |
. . . . . . . 8
⊢ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} = {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} |
216 | | biid 260 |
. . . . . . . 8
⊢ (((𝐺 ∈ ℝ ∧ 0 ≤
𝐺 ∧ ∀𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}0 ≤ 𝑟) ∧ ({𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ⊆ ℝ ∧ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ≠ ∅ ∧ ∃𝑟 ∈ ℝ ∀𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑠 ≤ 𝑟)) ↔ ((𝐺 ∈ ℝ ∧ 0 ≤ 𝐺 ∧ ∀𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}0 ≤ 𝑟) ∧ ({𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ⊆ ℝ ∧ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ≠ ∅ ∧ ∃𝑟 ∈ ℝ ∀𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑠 ≤ 𝑟))) |
217 | 215, 216 | supmul1 11944 |
. . . . . . 7
⊢ (((𝐺 ∈ ℝ ∧ 0 ≤
𝐺 ∧ ∀𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}0 ≤ 𝑟) ∧ ({𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ⊆ ℝ ∧ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ≠ ∅ ∧ ∃𝑟 ∈ ℝ ∀𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑠 ≤ 𝑟)) → (𝐺 · sup({𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}, ℝ, < )) = sup({𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}, ℝ, < )) |
218 | 38, 137, 171, 180, 189, 214, 217 | syl33anc 1384 |
. . . . . 6
⊢ (𝜑 → (𝐺 · sup({𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}, ℝ, < )) = sup({𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}, ℝ, < )) |
219 | 125, 134,
218 | 3eqtrd 2782 |
. . . . 5
⊢ (𝜑 → (𝐺 · (𝑆 − (𝐴‘𝑍))) = sup({𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}, ℝ, < )) |
220 | | vex 3436 |
. . . . . . . . . . . 12
⊢ 𝑐 ∈ V |
221 | | eqeq1 2742 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑐 → (𝑣 = (𝐺 · 𝑡) ↔ 𝑐 = (𝐺 · 𝑡))) |
222 | 221 | rexbidv 3226 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑐 → (∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡) ↔ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑐 = (𝐺 · 𝑡))) |
223 | 220, 222 | elab 3609 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} ↔ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑐 = (𝐺 · 𝑡)) |
224 | 223 | biimpi 215 |
. . . . . . . . . 10
⊢ (𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} → ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑐 = (𝐺 · 𝑡)) |
225 | | nfv 1917 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑡∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))) |
226 | | vex 3436 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑡 ∈ V |
227 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝑡 → (𝑤 = (𝑢 − (𝐴‘𝑍)) ↔ 𝑡 = (𝑢 − (𝐴‘𝑍)))) |
228 | 227 | rexbidv 3226 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑡 → (∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍)) ↔ ∃𝑢 ∈ 𝑈 𝑡 = (𝑢 − (𝐴‘𝑍)))) |
229 | 226, 228 | elab 3609 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ↔ ∃𝑢 ∈ 𝑈 𝑡 = (𝑢 − (𝐴‘𝑍))) |
230 | 229 | biimpi 215 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} → ∃𝑢 ∈ 𝑈 𝑡 = (𝑢 − (𝐴‘𝑍))) |
231 | 230 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ∧ 𝑐 = (𝐺 · 𝑡)) → ∃𝑢 ∈ 𝑈 𝑡 = (𝑢 − (𝐴‘𝑍))) |
232 | | simpl 483 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑐 = (𝐺 · 𝑡) ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) → 𝑐 = (𝐺 · 𝑡)) |
233 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = (𝑢 − (𝐴‘𝑍)) → (𝐺 · 𝑡) = (𝐺 · (𝑢 − (𝐴‘𝑍)))) |
234 | 233 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑐 = (𝐺 · 𝑡) ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) → (𝐺 · 𝑡) = (𝐺 · (𝑢 − (𝐴‘𝑍)))) |
235 | 232, 234 | eqtrd 2778 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑐 = (𝐺 · 𝑡) ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) → 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍)))) |
236 | 235 | ex 413 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = (𝐺 · 𝑡) → (𝑡 = (𝑢 − (𝐴‘𝑍)) → 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))))) |
237 | 236 | reximdv 3202 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = (𝐺 · 𝑡) → (∃𝑢 ∈ 𝑈 𝑡 = (𝑢 − (𝐴‘𝑍)) → ∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))))) |
238 | 237 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ∧ 𝑐 = (𝐺 · 𝑡)) → (∃𝑢 ∈ 𝑈 𝑡 = (𝑢 − (𝐴‘𝑍)) → ∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))))) |
239 | 231, 238 | mpd 15 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ∧ 𝑐 = (𝐺 · 𝑡)) → ∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍)))) |
240 | 239 | ex 413 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} → (𝑐 = (𝐺 · 𝑡) → ∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))))) |
241 | 225, 240 | rexlimi 3248 |
. . . . . . . . . . 11
⊢
(∃𝑡 ∈
{𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑐 = (𝐺 · 𝑡) → ∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍)))) |
242 | 241 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} → (∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑐 = (𝐺 · 𝑡) → ∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))))) |
243 | 224, 242 | mpd 15 |
. . . . . . . . 9
⊢ (𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} → ∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍)))) |
244 | 243 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}) → ∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍)))) |
245 | | simp3 1137 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍)))) → 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍)))) |
246 | 38 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝐺 ∈ ℝ) |
247 | 246, 173 | remulcld 11005 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝐺 · (𝑢 − (𝐴‘𝑍))) ∈ ℝ) |
248 | 45 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (1 + 𝐸) ∈ ℝ) |
249 | 52 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ℕ ∈ V) |
250 | 60 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → 𝑊 ∈ Fin) |
251 | 64 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗):𝑊⟶ℝ) |
252 | 158 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → 𝑢 ∈ ℝ) |
253 | 79 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗):𝑊⟶ℝ) |
254 | 74, 252, 250, 253 | hsphoif 44114 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐻‘𝑢)‘(𝐷‘𝑗)):𝑊⟶ℝ) |
255 | 27, 250, 251, 254 | hoidmvcl 44120 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))) ∈ (0[,)+∞)) |
256 | 54, 255 | sselid 3919 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))) ∈ (0[,]+∞)) |
257 | 256 | fmpttd 6989 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗)))):ℕ⟶(0[,]+∞)) |
258 | 249, 257 | sge0cl 43919 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))) ∈ (0[,]+∞)) |
259 | 249, 257 | sge0xrcl 43923 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))) ∈
ℝ*) |
260 | 86 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → +∞ ∈
ℝ*) |
261 | 89 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈
ℝ*) |
262 | | nfv 1917 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑗(𝜑 ∧ 𝑢 ∈ 𝑈) |
263 | 92 | adantlr 712 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)) ∈ (0[,]+∞)) |
264 | 95 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → 𝑍 ∈ (𝑊 ∖ 𝑌)) |
265 | 27, 250, 264, 9, 252, 74, 251, 253 | hsphoidmvle 44124 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))) ≤ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))) |
266 | 262, 249,
256, 263, 265 | sge0lempt 43948 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |
267 | 98 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) < +∞) |
268 | 259, 261,
260, 266, 267 | xrlelttrd 12894 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))) < +∞) |
269 | 259, 260,
268 | xrltned 42896 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))) ≠ +∞) |
270 | | ge0xrre 43069 |
. . . . . . . . . . . . . . . 16
⊢
(((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))) ∈ (0[,]+∞) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))) ≠ +∞) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))) ∈ ℝ) |
271 | 258, 269,
270 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))) ∈ ℝ) |
272 | 248, 271 | remulcld 11005 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗)))))) ∈ ℝ) |
273 | 126, 123 | sseldd 3922 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑆 ∈ ℝ) |
274 | 27, 30, 94, 9, 61, 76, 88, 65, 273 | sge0hsphoire 44127 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) ∈ ℝ) |
275 | 45, 274 | remulcld 11005 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) ∈ ℝ) |
276 | 275 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) ∈ ℝ) |
277 | 14 | eleq2i 2830 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 ∈ 𝑈 ↔ 𝑢 ∈ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))}) |
278 | 277 | biimpi 215 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ 𝑈 → 𝑢 ∈ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))}) |
279 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = 𝑢 → (𝑧 − (𝐴‘𝑍)) = (𝑢 − (𝐴‘𝑍))) |
280 | 279 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑢 → (𝐺 · (𝑧 − (𝐴‘𝑍))) = (𝐺 · (𝑢 − (𝐴‘𝑍)))) |
281 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧 = 𝑢 → (𝐻‘𝑧) = (𝐻‘𝑢)) |
282 | 281 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 = 𝑢 → ((𝐻‘𝑧)‘(𝐷‘𝑗)) = ((𝐻‘𝑢)‘(𝐷‘𝑗))) |
283 | 282 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 = 𝑢 → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))) = ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗)))) |
284 | 283 | mpteq2dv 5176 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = 𝑢 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))) |
285 | 284 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = 𝑢 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗)))))) |
286 | 285 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑢 → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))))) = ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))))) |
287 | 280, 286 | breq12d 5087 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑢 → ((𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))))) ↔ (𝐺 · (𝑢 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗)))))))) |
288 | 287 | elrab 3624 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} ↔ (𝑢 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∧ (𝐺 · (𝑢 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗)))))))) |
289 | 278, 288 | sylib 217 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ 𝑈 → (𝑢 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∧ (𝐺 · (𝑢 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗)))))))) |
290 | 289 | simprd 496 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ 𝑈 → (𝐺 · (𝑢 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))))) |
291 | 290 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝐺 · (𝑢 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))))) |
292 | 274 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) ∈ ℝ) |
293 | 51 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 0 ≤ (1 + 𝐸)) |
294 | 273 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑆 ∈ ℝ) |
295 | 74, 294, 60, 79 | hsphoif 44114 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐻‘𝑆)‘(𝐷‘𝑗)):𝑊⟶ℝ) |
296 | 27, 60, 64, 295 | hoidmvcl 44120 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) ∈ (0[,)+∞)) |
297 | 54, 296 | sselid 3919 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) ∈ (0[,]+∞)) |
298 | 297 | adantlr 712 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) ∈ (0[,]+∞)) |
299 | 294 | adantlr 712 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → 𝑆 ∈ ℝ) |
300 | 127 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑈 ⊆ ℝ) |
301 | 121 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑈 ≠ ∅) |
302 | 131 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝑈 𝑧 ≤ 𝑦) |
303 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ∈ 𝑈) |
304 | | suprub 11936 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝑈 𝑧 ≤ 𝑦) ∧ 𝑢 ∈ 𝑈) → 𝑢 ≤ sup(𝑈, ℝ, < )) |
305 | 300, 301,
302, 303, 304 | syl31anc 1372 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ≤ sup(𝑈, ℝ, < )) |
306 | 305, 1 | breqtrrdi 5116 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ≤ 𝑆) |
307 | 306 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → 𝑢 ≤ 𝑆) |
308 | 27, 250, 264, 9, 252, 299, 307, 74, 251, 253 | hsphoidmvle2 44123 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))) ≤ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))) |
309 | 262, 249,
256, 298, 308 | sge0lempt 43948 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) |
310 | 271, 292,
248, 293, 309 | lemul2ad 11915 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗)))))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) |
311 | 247, 272,
276, 291, 310 | letrd 11132 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝐺 · (𝑢 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) |
312 | 311 | 3adant3 1131 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍)))) → (𝐺 · (𝑢 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) |
313 | 245, 312 | eqbrtrd 5096 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍)))) → 𝑐 ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) |
314 | 313 | 3exp 1118 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑢 ∈ 𝑈 → (𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))) → 𝑐 ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))))) |
315 | 314 | rexlimdv 3212 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))) → 𝑐 ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))))) |
316 | 315 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}) → (∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))) → 𝑐 ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))))) |
317 | 244, 316 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}) → 𝑐 ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) |
318 | 317 | ralrimiva 3103 |
. . . . . 6
⊢ (𝜑 → ∀𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}𝑐 ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) |
319 | 224 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}) → ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑐 = (𝐺 · 𝑡)) |
320 | | nfv 1917 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑡𝜑 |
321 | | nfcv 2907 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑡𝑐 |
322 | | nfre1 3239 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑡∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡) |
323 | 322 | nfab 2913 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑡{𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} |
324 | 321, 323 | nfel 2921 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑡 𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} |
325 | 320, 324 | nfan 1902 |
. . . . . . . . . . 11
⊢
Ⅎ𝑡(𝜑 ∧ 𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}) |
326 | | nfv 1917 |
. . . . . . . . . . 11
⊢
Ⅎ𝑡 𝑐 ∈ ℝ |
327 | 230 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) → ∃𝑢 ∈ 𝑈 𝑡 = (𝑢 − (𝐴‘𝑍))) |
328 | | simpr 485 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) ∧ 𝑐 = (𝐺 · 𝑡)) → 𝑐 = (𝐺 · 𝑡)) |
329 | 246 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) → 𝐺 ∈ ℝ) |
330 | | simp3 1137 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) → 𝑡 = (𝑢 − (𝐴‘𝑍))) |
331 | 173 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) → (𝑢 − (𝐴‘𝑍)) ∈ ℝ) |
332 | 330, 331 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) → 𝑡 ∈ ℝ) |
333 | 329, 332 | remulcld 11005 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) → (𝐺 · 𝑡) ∈ ℝ) |
334 | 333 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) ∧ 𝑐 = (𝐺 · 𝑡)) → (𝐺 · 𝑡) ∈ ℝ) |
335 | 328, 334 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) ∧ 𝑐 = (𝐺 · 𝑡)) → 𝑐 ∈ ℝ) |
336 | 335 | ex 413 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) → (𝑐 = (𝐺 · 𝑡) → 𝑐 ∈ ℝ)) |
337 | 336 | 3exp 1118 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑢 ∈ 𝑈 → (𝑡 = (𝑢 − (𝐴‘𝑍)) → (𝑐 = (𝐺 · 𝑡) → 𝑐 ∈ ℝ)))) |
338 | 337 | rexlimdv 3212 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (∃𝑢 ∈ 𝑈 𝑡 = (𝑢 − (𝐴‘𝑍)) → (𝑐 = (𝐺 · 𝑡) → 𝑐 ∈ ℝ))) |
339 | 338 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) → (∃𝑢 ∈ 𝑈 𝑡 = (𝑢 − (𝐴‘𝑍)) → (𝑐 = (𝐺 · 𝑡) → 𝑐 ∈ ℝ))) |
340 | 327, 339 | mpd 15 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) → (𝑐 = (𝐺 · 𝑡) → 𝑐 ∈ ℝ)) |
341 | 340 | ex 413 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} → (𝑐 = (𝐺 · 𝑡) → 𝑐 ∈ ℝ))) |
342 | 341 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}) → (𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} → (𝑐 = (𝐺 · 𝑡) → 𝑐 ∈ ℝ))) |
343 | 325, 326,
342 | rexlimd 3250 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}) → (∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑐 = (𝐺 · 𝑡) → 𝑐 ∈ ℝ)) |
344 | 319, 343 | mpd 15 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}) → 𝑐 ∈ ℝ) |
345 | 344 | ralrimiva 3103 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}𝑐 ∈ ℝ) |
346 | | dfss3 3909 |
. . . . . . . 8
⊢ ({𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} ⊆ ℝ ↔ ∀𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}𝑐 ∈ ℝ) |
347 | 345, 346 | sylibr 233 |
. . . . . . 7
⊢ (𝜑 → {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} ⊆ ℝ) |
348 | 40 | eqcomd 2744 |
. . . . . . . . . 10
⊢ (𝜑 → 0 = (𝐺 · 0)) |
349 | | oveq2 7283 |
. . . . . . . . . . 11
⊢ (𝑡 = 0 → (𝐺 · 𝑡) = (𝐺 · 0)) |
350 | 349 | rspceeqv 3575 |
. . . . . . . . . 10
⊢ ((0
∈ {𝑤 ∣
∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ∧ 0 = (𝐺 · 0)) → ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}0 = (𝐺 · 𝑡)) |
351 | 187, 348,
350 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}0 = (𝐺 · 𝑡)) |
352 | | eqeq1 2742 |
. . . . . . . . . 10
⊢ (𝑣 = 0 → (𝑣 = (𝐺 · 𝑡) ↔ 0 = (𝐺 · 𝑡))) |
353 | 352 | rexbidv 3226 |
. . . . . . . . 9
⊢ (𝑣 = 0 → (∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡) ↔ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}0 = (𝐺 · 𝑡))) |
354 | 46, 351, 353 | elabd 3612 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}) |
355 | | ne0i 4268 |
. . . . . . . 8
⊢ (0 ∈
{𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} → {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} ≠ ∅) |
356 | 354, 355 | syl 17 |
. . . . . . 7
⊢ (𝜑 → {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} ≠ ∅) |
357 | 38, 190 | remulcld 11005 |
. . . . . . . 8
⊢ (𝜑 → (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍))) ∈ ℝ) |
358 | 190 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ((𝐵‘𝑍) − (𝐴‘𝑍)) ∈ ℝ) |
359 | 137 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 0 ≤ 𝐺) |
360 | 13 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝐵‘𝑍) ∈ ℝ) |
361 | | iccleub 13134 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴‘𝑍) ∈ ℝ* ∧ (𝐵‘𝑍) ∈ ℝ* ∧ 𝑢 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) → 𝑢 ≤ (𝐵‘𝑍)) |
362 | 152, 154,
155, 361 | syl3anc 1370 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ≤ (𝐵‘𝑍)) |
363 | 158, 360,
159, 362 | lesub1dd 11591 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝑢 − (𝐴‘𝑍)) ≤ ((𝐵‘𝑍) − (𝐴‘𝑍))) |
364 | 173, 358,
246, 359, 363 | lemul2ad 11915 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝐺 · (𝑢 − (𝐴‘𝑍))) ≤ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍)))) |
365 | 364 | 3adant3 1131 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍)))) → (𝐺 · (𝑢 − (𝐴‘𝑍))) ≤ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍)))) |
366 | 245, 365 | eqbrtrd 5096 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍)))) → 𝑐 ≤ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍)))) |
367 | 366 | 3exp 1118 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑢 ∈ 𝑈 → (𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))) → 𝑐 ≤ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍)))))) |
368 | 367 | rexlimdv 3212 |
. . . . . . . . . . 11
⊢ (𝜑 → (∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))) → 𝑐 ≤ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍))))) |
369 | 368 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}) → (∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))) → 𝑐 ≤ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍))))) |
370 | 244, 369 | mpd 15 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}) → 𝑐 ≤ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍)))) |
371 | 370 | ralrimiva 3103 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}𝑐 ≤ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍)))) |
372 | | brralrspcev 5134 |
. . . . . . . 8
⊢ (((𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍))) ∈ ℝ ∧ ∀𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}𝑐 ≤ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍)))) → ∃𝑦 ∈ ℝ ∀𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}𝑐 ≤ 𝑦) |
373 | 357, 371,
372 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}𝑐 ≤ 𝑦) |
374 | | suprleub 11941 |
. . . . . . 7
⊢ ((({𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} ⊆ ℝ ∧ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}𝑐 ≤ 𝑦) ∧ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) ∈ ℝ) → (sup({𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}, ℝ, < ) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) ↔ ∀𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}𝑐 ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))))) |
375 | 347, 356,
373, 275, 374 | syl31anc 1372 |
. . . . . 6
⊢ (𝜑 → (sup({𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}, ℝ, < ) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) ↔ ∀𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}𝑐 ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))))) |
376 | 318, 375 | mpbird 256 |
. . . . 5
⊢ (𝜑 → sup({𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}, ℝ, < ) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) |
377 | 219, 376 | eqbrtrd 5096 |
. . . 4
⊢ (𝜑 → (𝐺 · (𝑆 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) |
378 | 123, 377 | jca 512 |
. . 3
⊢ (𝜑 → (𝑆 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∧ (𝐺 · (𝑆 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))))) |
379 | | oveq1 7282 |
. . . . . 6
⊢ (𝑧 = 𝑆 → (𝑧 − (𝐴‘𝑍)) = (𝑆 − (𝐴‘𝑍))) |
380 | 379 | oveq2d 7291 |
. . . . 5
⊢ (𝑧 = 𝑆 → (𝐺 · (𝑧 − (𝐴‘𝑍))) = (𝐺 · (𝑆 − (𝐴‘𝑍)))) |
381 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑆 → (𝐻‘𝑧) = (𝐻‘𝑆)) |
382 | 381 | fveq1d 6776 |
. . . . . . . . 9
⊢ (𝑧 = 𝑆 → ((𝐻‘𝑧)‘(𝐷‘𝑗)) = ((𝐻‘𝑆)‘(𝐷‘𝑗))) |
383 | 382 | oveq2d 7291 |
. . . . . . . 8
⊢ (𝑧 = 𝑆 → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))) = ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))) |
384 | 383 | mpteq2dv 5176 |
. . . . . . 7
⊢ (𝑧 = 𝑆 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) |
385 | 384 | fveq2d 6778 |
. . . . . 6
⊢ (𝑧 = 𝑆 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) |
386 | 385 | oveq2d 7291 |
. . . . 5
⊢ (𝑧 = 𝑆 → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))))) = ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) |
387 | 380, 386 | breq12d 5087 |
. . . 4
⊢ (𝑧 = 𝑆 → ((𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))))) ↔ (𝐺 · (𝑆 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))))) |
388 | 387 | elrab 3624 |
. . 3
⊢ (𝑆 ∈ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} ↔ (𝑆 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∧ (𝐺 · (𝑆 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))))) |
389 | 378, 388 | sylibr 233 |
. 2
⊢ (𝜑 → 𝑆 ∈ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))}) |
390 | 389, 14 | eleqtrrdi 2850 |
1
⊢ (𝜑 → 𝑆 ∈ 𝑈) |