| Step | Hyp | Ref
| Expression |
| 1 | | hoidmvlelem1.s |
. . . . . 6
⊢ 𝑆 = sup(𝑈, ℝ, < ) |
| 2 | 1 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝑆 = sup(𝑈, ℝ, < )) |
| 3 | | hoidmvlelem1.a |
. . . . . . 7
⊢ (𝜑 → 𝐴:𝑊⟶ℝ) |
| 4 | | hoidmvlelem1.z |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ∈ (𝑋 ∖ 𝑌)) |
| 5 | | snidg 4660 |
. . . . . . . . . 10
⊢ (𝑍 ∈ (𝑋 ∖ 𝑌) → 𝑍 ∈ {𝑍}) |
| 6 | 4, 5 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ {𝑍}) |
| 7 | | elun2 4183 |
. . . . . . . . 9
⊢ (𝑍 ∈ {𝑍} → 𝑍 ∈ (𝑌 ∪ {𝑍})) |
| 8 | 6, 7 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑍 ∈ (𝑌 ∪ {𝑍})) |
| 9 | | hoidmvlelem1.w |
. . . . . . . 8
⊢ 𝑊 = (𝑌 ∪ {𝑍}) |
| 10 | 8, 9 | eleqtrrdi 2852 |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈ 𝑊) |
| 11 | 3, 10 | ffvelcdmd 7105 |
. . . . . 6
⊢ (𝜑 → (𝐴‘𝑍) ∈ ℝ) |
| 12 | | hoidmvlelem1.b |
. . . . . . 7
⊢ (𝜑 → 𝐵:𝑊⟶ℝ) |
| 13 | 12, 10 | ffvelcdmd 7105 |
. . . . . 6
⊢ (𝜑 → (𝐵‘𝑍) ∈ ℝ) |
| 14 | | hoidmvlelem1.u |
. . . . . . . 8
⊢ 𝑈 = {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} |
| 15 | | ssrab2 4080 |
. . . . . . . 8
⊢ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} ⊆ ((𝐴‘𝑍)[,](𝐵‘𝑍)) |
| 16 | 14, 15 | eqsstri 4030 |
. . . . . . 7
⊢ 𝑈 ⊆ ((𝐴‘𝑍)[,](𝐵‘𝑍)) |
| 17 | 16 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝑈 ⊆ ((𝐴‘𝑍)[,](𝐵‘𝑍))) |
| 18 | 11 | leidd 11829 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴‘𝑍) ≤ (𝐴‘𝑍)) |
| 19 | | hoidmvlelem1.ab |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴‘𝑍) < (𝐵‘𝑍)) |
| 20 | 11, 13, 19 | ltled 11409 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴‘𝑍) ≤ (𝐵‘𝑍)) |
| 21 | 11, 13, 11, 18, 20 | eliccd 45517 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴‘𝑍) ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) |
| 22 | 11 | recnd 11289 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴‘𝑍) ∈ ℂ) |
| 23 | 22 | subidd 11608 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐴‘𝑍) − (𝐴‘𝑍)) = 0) |
| 24 | 23 | oveq2d 7447 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐺 · ((𝐴‘𝑍) − (𝐴‘𝑍))) = (𝐺 · 0)) |
| 25 | | rge0ssre 13496 |
. . . . . . . . . . . . . . 15
⊢
(0[,)+∞) ⊆ ℝ |
| 26 | | hoidmvlelem1.g |
. . . . . . . . . . . . . . . 16
⊢ 𝐺 = ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) |
| 27 | | hoidmvlelem1.l |
. . . . . . . . . . . . . . . . 17
⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
| 28 | | hoidmvlelem1.x |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑋 ∈ Fin) |
| 29 | | hoidmvlelem1.y |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| 30 | 28, 29 | ssfid 9301 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑌 ∈ Fin) |
| 31 | | ssun1 4178 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑌 ⊆ (𝑌 ∪ {𝑍}) |
| 32 | 31, 9 | sseqtrri 4033 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑌 ⊆ 𝑊 |
| 33 | 32 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑌 ⊆ 𝑊) |
| 34 | 3, 33 | fssresd 6775 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐴 ↾ 𝑌):𝑌⟶ℝ) |
| 35 | 12, 33 | fssresd 6775 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐵 ↾ 𝑌):𝑌⟶ℝ) |
| 36 | 27, 30, 34, 35 | hoidmvcl 46597 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ∈ (0[,)+∞)) |
| 37 | 26, 36 | eqeltrid 2845 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐺 ∈ (0[,)+∞)) |
| 38 | 25, 37 | sselid 3981 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺 ∈ ℝ) |
| 39 | 38 | recnd 11289 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺 ∈ ℂ) |
| 40 | 39 | mul01d 11460 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐺 · 0) = 0) |
| 41 | 24, 40 | eqtrd 2777 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺 · ((𝐴‘𝑍) − (𝐴‘𝑍))) = 0) |
| 42 | | 1red 11262 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 1 ∈
ℝ) |
| 43 | | hoidmvlelem1.e |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
| 44 | 43 | rpred 13077 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐸 ∈ ℝ) |
| 45 | 42, 44 | readdcld 11290 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1 + 𝐸) ∈ ℝ) |
| 46 | | 0red 11264 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ∈
ℝ) |
| 47 | | 0lt1 11785 |
. . . . . . . . . . . . . . 15
⊢ 0 <
1 |
| 48 | 47 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < 1) |
| 49 | 42, 43 | ltaddrpd 13110 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 < (1 + 𝐸)) |
| 50 | 46, 42, 45, 48, 49 | lttrd 11422 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 < (1 + 𝐸)) |
| 51 | 46, 45, 50 | ltled 11409 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ≤ (1 + 𝐸)) |
| 52 | | nnex 12272 |
. . . . . . . . . . . . . . 15
⊢ ℕ
∈ V |
| 53 | 52 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ℕ ∈
V) |
| 54 | | icossicc 13476 |
. . . . . . . . . . . . . . . 16
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
| 55 | | snfi 9083 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ {𝑍} ∈ Fin |
| 56 | 55 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → {𝑍} ∈ Fin) |
| 57 | | unfi 9211 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑌 ∈ Fin ∧ {𝑍} ∈ Fin) → (𝑌 ∪ {𝑍}) ∈ Fin) |
| 58 | 30, 56, 57 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑌 ∪ {𝑍}) ∈ Fin) |
| 59 | 9, 58 | eqeltrid 2845 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑊 ∈ Fin) |
| 60 | 59 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑊 ∈ Fin) |
| 61 | | hoidmvlelem1.c |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐶:ℕ⟶(ℝ ↑m
𝑊)) |
| 62 | 61 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗) ∈ (ℝ ↑m 𝑊)) |
| 63 | | elmapi 8889 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐶‘𝑗) ∈ (ℝ ↑m 𝑊) → (𝐶‘𝑗):𝑊⟶ℝ) |
| 64 | 62, 63 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗):𝑊⟶ℝ) |
| 65 | | hoidmvlelem1.h |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))))) |
| 66 | | eleq1w 2824 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = ℎ → (𝑗 ∈ 𝑌 ↔ ℎ ∈ 𝑌)) |
| 67 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = ℎ → (𝑐‘𝑗) = (𝑐‘ℎ)) |
| 68 | 67 | breq1d 5153 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 = ℎ → ((𝑐‘𝑗) ≤ 𝑥 ↔ (𝑐‘ℎ) ≤ 𝑥)) |
| 69 | 68, 67 | ifbieq1d 4550 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = ℎ → if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥) = if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥)) |
| 70 | 66, 67, 69 | ifbieq12d 4554 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = ℎ → if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥)) = if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥))) |
| 71 | 70 | cbvmptv 5255 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))) = (ℎ ∈ 𝑊 ↦ if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥))) |
| 72 | 71 | mpteq2i 5247 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 ∈ (ℝ
↑m 𝑊)
↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥)))) = (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (ℎ ∈ 𝑊 ↦ if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥)))) |
| 73 | 72 | mpteq2i 5247 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ
↑m 𝑊)
↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))))) = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (ℎ ∈ 𝑊 ↦ if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥))))) |
| 74 | 65, 73 | eqtri 2765 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (ℎ ∈ 𝑊 ↦ if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥))))) |
| 75 | 11 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐴‘𝑍) ∈ ℝ) |
| 76 | | hoidmvlelem1.d |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐷:ℕ⟶(ℝ ↑m
𝑊)) |
| 77 | 76 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗) ∈ (ℝ ↑m 𝑊)) |
| 78 | | elmapi 8889 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐷‘𝑗) ∈ (ℝ ↑m 𝑊) → (𝐷‘𝑗):𝑊⟶ℝ) |
| 79 | 77, 78 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗):𝑊⟶ℝ) |
| 80 | 74, 75, 60, 79 | hsphoif 46591 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗)):𝑊⟶ℝ) |
| 81 | 27, 60, 64, 80 | hoidmvcl 46597 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))) ∈ (0[,)+∞)) |
| 82 | 54, 81 | sselid 3981 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))) ∈ (0[,]+∞)) |
| 83 | 82 | fmpttd 7135 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗)))):ℕ⟶(0[,]+∞)) |
| 84 | 53, 83 | sge0cl 46396 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))) ∈ (0[,]+∞)) |
| 85 | 53, 83 | sge0xrcl 46400 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))) ∈
ℝ*) |
| 86 | | pnfxr 11315 |
. . . . . . . . . . . . . . 15
⊢ +∞
∈ ℝ* |
| 87 | 86 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → +∞ ∈
ℝ*) |
| 88 | | hoidmvlelem1.r |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) |
| 89 | 88 | rexrd 11311 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈
ℝ*) |
| 90 | | nfv 1914 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑗𝜑 |
| 91 | 27, 60, 64, 79 | hoidmvcl 46597 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)) ∈ (0[,)+∞)) |
| 92 | 54, 91 | sselid 3981 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)) ∈ (0[,]+∞)) |
| 93 | 4 | eldifbd 3964 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ¬ 𝑍 ∈ 𝑌) |
| 94 | 10, 93 | eldifd 3962 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑍 ∈ (𝑊 ∖ 𝑌)) |
| 95 | 94 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑍 ∈ (𝑊 ∖ 𝑌)) |
| 96 | 27, 60, 95, 9, 75, 74, 64, 79 | hsphoidmvle 46601 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))) ≤ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))) |
| 97 | 90, 53, 82, 92, 96 | sge0lempt 46425 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |
| 98 | 88 | ltpnfd 13163 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) < +∞) |
| 99 | 85, 89, 87, 97, 98 | xrlelttrd 13202 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))) < +∞) |
| 100 | 85, 87, 99 | xrltned 45368 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))) ≠ +∞) |
| 101 | | ge0xrre 45544 |
. . . . . . . . . . . . 13
⊢
(((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))) ∈ (0[,]+∞) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))) ≠ +∞) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))) ∈ ℝ) |
| 102 | 84, 100, 101 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))) ∈ ℝ) |
| 103 | 53, 83 | sge0ge0 46399 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗)))))) |
| 104 | | mulge0 11781 |
. . . . . . . . . . . 12
⊢ ((((1 +
𝐸) ∈ ℝ ∧ 0
≤ (1 + 𝐸)) ∧
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))) ∈ ℝ ∧ 0 ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))))) → 0 ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))))) |
| 105 | 45, 51, 102, 103, 104 | syl22anc 839 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))))) |
| 106 | 41, 105 | eqbrtrd 5165 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺 · ((𝐴‘𝑍) − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))))) |
| 107 | 21, 106 | jca 511 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴‘𝑍) ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∧ (𝐺 · ((𝐴‘𝑍) − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗)))))))) |
| 108 | | oveq1 7438 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝐴‘𝑍) → (𝑧 − (𝐴‘𝑍)) = ((𝐴‘𝑍) − (𝐴‘𝑍))) |
| 109 | 108 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝐴‘𝑍) → (𝐺 · (𝑧 − (𝐴‘𝑍))) = (𝐺 · ((𝐴‘𝑍) − (𝐴‘𝑍)))) |
| 110 | | fveq2 6906 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝐴‘𝑍) → (𝐻‘𝑧) = (𝐻‘(𝐴‘𝑍))) |
| 111 | 110 | fveq1d 6908 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝐴‘𝑍) → ((𝐻‘𝑧)‘(𝐷‘𝑗)) = ((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))) |
| 112 | 111 | oveq2d 7447 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝐴‘𝑍) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))) = ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗)))) |
| 113 | 112 | mpteq2dv 5244 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝐴‘𝑍) → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))) |
| 114 | 113 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝐴‘𝑍) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗)))))) |
| 115 | 114 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝐴‘𝑍) → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))))) = ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))))) |
| 116 | 109, 115 | breq12d 5156 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐴‘𝑍) → ((𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))))) ↔ (𝐺 · ((𝐴‘𝑍) − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗)))))))) |
| 117 | 116 | elrab 3692 |
. . . . . . . . 9
⊢ ((𝐴‘𝑍) ∈ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} ↔ ((𝐴‘𝑍) ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∧ (𝐺 · ((𝐴‘𝑍) − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗)))))))) |
| 118 | 107, 117 | sylibr 234 |
. . . . . . . 8
⊢ (𝜑 → (𝐴‘𝑍) ∈ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))}) |
| 119 | 118, 14 | eleqtrrdi 2852 |
. . . . . . 7
⊢ (𝜑 → (𝐴‘𝑍) ∈ 𝑈) |
| 120 | | ne0i 4341 |
. . . . . . 7
⊢ ((𝐴‘𝑍) ∈ 𝑈 → 𝑈 ≠ ∅) |
| 121 | 119, 120 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑈 ≠ ∅) |
| 122 | 11, 13, 17, 121 | supicc 13541 |
. . . . 5
⊢ (𝜑 → sup(𝑈, ℝ, < ) ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) |
| 123 | 2, 122 | eqeltrd 2841 |
. . . 4
⊢ (𝜑 → 𝑆 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) |
| 124 | 2 | oveq1d 7446 |
. . . . . . 7
⊢ (𝜑 → (𝑆 − (𝐴‘𝑍)) = (sup(𝑈, ℝ, < ) − (𝐴‘𝑍))) |
| 125 | 124 | oveq2d 7447 |
. . . . . 6
⊢ (𝜑 → (𝐺 · (𝑆 − (𝐴‘𝑍))) = (𝐺 · (sup(𝑈, ℝ, < ) − (𝐴‘𝑍)))) |
| 126 | 11, 13 | iccssred 13474 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴‘𝑍)[,](𝐵‘𝑍)) ⊆ ℝ) |
| 127 | 17, 126 | sstrd 3994 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ⊆ ℝ) |
| 128 | 11, 13 | jca 511 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴‘𝑍) ∈ ℝ ∧ (𝐵‘𝑍) ∈ ℝ)) |
| 129 | | iccsupr 13482 |
. . . . . . . . . 10
⊢ ((((𝐴‘𝑍) ∈ ℝ ∧ (𝐵‘𝑍) ∈ ℝ) ∧ 𝑈 ⊆ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∧ (𝐴‘𝑍) ∈ 𝑈) → (𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝑈 𝑧 ≤ 𝑦)) |
| 130 | 128, 17, 119, 129 | syl3anc 1373 |
. . . . . . . . 9
⊢ (𝜑 → (𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝑈 𝑧 ≤ 𝑦)) |
| 131 | 130 | simp3d 1145 |
. . . . . . . 8
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝑈 𝑧 ≤ 𝑦) |
| 132 | | eqid 2737 |
. . . . . . . 8
⊢ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} = {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} |
| 133 | 127, 121,
131, 11, 132 | supsubc 45364 |
. . . . . . 7
⊢ (𝜑 → (sup(𝑈, ℝ, < ) − (𝐴‘𝑍)) = sup({𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}, ℝ, < )) |
| 134 | 133 | oveq2d 7447 |
. . . . . 6
⊢ (𝜑 → (𝐺 · (sup(𝑈, ℝ, < ) − (𝐴‘𝑍))) = (𝐺 · sup({𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}, ℝ, < ))) |
| 135 | 46 | rexrd 11311 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℝ*) |
| 136 | | icogelb 13438 |
. . . . . . . 8
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ* ∧
𝐺 ∈ (0[,)+∞))
→ 0 ≤ 𝐺) |
| 137 | 135, 87, 37, 136 | syl3anc 1373 |
. . . . . . 7
⊢ (𝜑 → 0 ≤ 𝐺) |
| 138 | | vex 3484 |
. . . . . . . . . . . 12
⊢ 𝑟 ∈ V |
| 139 | | eqeq1 2741 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑟 → (𝑤 = (𝑢 − (𝐴‘𝑍)) ↔ 𝑟 = (𝑢 − (𝐴‘𝑍)))) |
| 140 | 139 | rexbidv 3179 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑟 → (∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍)) ↔ ∃𝑢 ∈ 𝑈 𝑟 = (𝑢 − (𝐴‘𝑍)))) |
| 141 | 138, 140 | elab 3679 |
. . . . . . . . . . 11
⊢ (𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ↔ ∃𝑢 ∈ 𝑈 𝑟 = (𝑢 − (𝐴‘𝑍))) |
| 142 | 141 | biimpi 216 |
. . . . . . . . . 10
⊢ (𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} → ∃𝑢 ∈ 𝑈 𝑟 = (𝑢 − (𝐴‘𝑍))) |
| 143 | 142 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) → ∃𝑢 ∈ 𝑈 𝑟 = (𝑢 − (𝐴‘𝑍))) |
| 144 | | nfv 1914 |
. . . . . . . . . . 11
⊢
Ⅎ𝑢𝜑 |
| 145 | | nfcv 2905 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑢𝑟 |
| 146 | | nfre1 3285 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑢∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍)) |
| 147 | 146 | nfab 2911 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑢{𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} |
| 148 | 145, 147 | nfel 2920 |
. . . . . . . . . . 11
⊢
Ⅎ𝑢 𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} |
| 149 | 144, 148 | nfan 1899 |
. . . . . . . . . 10
⊢
Ⅎ𝑢(𝜑 ∧ 𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) |
| 150 | | nfv 1914 |
. . . . . . . . . 10
⊢
Ⅎ𝑢0 ≤ 𝑟 |
| 151 | 11 | rexrd 11311 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐴‘𝑍) ∈
ℝ*) |
| 152 | 151 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝐴‘𝑍) ∈
ℝ*) |
| 153 | 13 | rexrd 11311 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐵‘𝑍) ∈
ℝ*) |
| 154 | 153 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝐵‘𝑍) ∈
ℝ*) |
| 155 | 17 | sselda 3983 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) |
| 156 | | iccgelb 13443 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴‘𝑍) ∈ ℝ* ∧ (𝐵‘𝑍) ∈ ℝ* ∧ 𝑢 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) → (𝐴‘𝑍) ≤ 𝑢) |
| 157 | 152, 154,
155, 156 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝐴‘𝑍) ≤ 𝑢) |
| 158 | 127 | sselda 3983 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ∈ ℝ) |
| 159 | 11 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝐴‘𝑍) ∈ ℝ) |
| 160 | 158, 159 | subge0d 11853 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (0 ≤ (𝑢 − (𝐴‘𝑍)) ↔ (𝐴‘𝑍) ≤ 𝑢)) |
| 161 | 157, 160 | mpbird 257 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 0 ≤ (𝑢 − (𝐴‘𝑍))) |
| 162 | 161 | 3adant3 1133 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑟 = (𝑢 − (𝐴‘𝑍))) → 0 ≤ (𝑢 − (𝐴‘𝑍))) |
| 163 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = (𝑢 − (𝐴‘𝑍)) → 𝑟 = (𝑢 − (𝐴‘𝑍))) |
| 164 | 163 | eqcomd 2743 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = (𝑢 − (𝐴‘𝑍)) → (𝑢 − (𝐴‘𝑍)) = 𝑟) |
| 165 | 164 | 3ad2ant3 1136 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑟 = (𝑢 − (𝐴‘𝑍))) → (𝑢 − (𝐴‘𝑍)) = 𝑟) |
| 166 | 162, 165 | breqtrd 5169 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑟 = (𝑢 − (𝐴‘𝑍))) → 0 ≤ 𝑟) |
| 167 | 166 | 3exp 1120 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑢 ∈ 𝑈 → (𝑟 = (𝑢 − (𝐴‘𝑍)) → 0 ≤ 𝑟))) |
| 168 | 167 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) → (𝑢 ∈ 𝑈 → (𝑟 = (𝑢 − (𝐴‘𝑍)) → 0 ≤ 𝑟))) |
| 169 | 149, 150,
168 | rexlimd 3266 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) → (∃𝑢 ∈ 𝑈 𝑟 = (𝑢 − (𝐴‘𝑍)) → 0 ≤ 𝑟)) |
| 170 | 143, 169 | mpd 15 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) → 0 ≤ 𝑟) |
| 171 | 170 | ralrimiva 3146 |
. . . . . . 7
⊢ (𝜑 → ∀𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}0 ≤ 𝑟) |
| 172 | | simp3 1139 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑤 = (𝑢 − (𝐴‘𝑍))) → 𝑤 = (𝑢 − (𝐴‘𝑍))) |
| 173 | 158, 159 | resubcld 11691 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝑢 − (𝐴‘𝑍)) ∈ ℝ) |
| 174 | 173 | 3adant3 1133 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑤 = (𝑢 − (𝐴‘𝑍))) → (𝑢 − (𝐴‘𝑍)) ∈ ℝ) |
| 175 | 172, 174 | eqeltrd 2841 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑤 = (𝑢 − (𝐴‘𝑍))) → 𝑤 ∈ ℝ) |
| 176 | 175 | 3exp 1120 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑢 ∈ 𝑈 → (𝑤 = (𝑢 − (𝐴‘𝑍)) → 𝑤 ∈ ℝ))) |
| 177 | 176 | rexlimdv 3153 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍)) → 𝑤 ∈ ℝ)) |
| 178 | 177 | alrimiv 1927 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑤(∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍)) → 𝑤 ∈ ℝ)) |
| 179 | | abss 4063 |
. . . . . . . 8
⊢ ({𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ⊆ ℝ ↔ ∀𝑤(∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍)) → 𝑤 ∈ ℝ)) |
| 180 | 178, 179 | sylibr 234 |
. . . . . . 7
⊢ (𝜑 → {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ⊆ ℝ) |
| 181 | 23 | eqcomd 2743 |
. . . . . . . . . 10
⊢ (𝜑 → 0 = ((𝐴‘𝑍) − (𝐴‘𝑍))) |
| 182 | | oveq1 7438 |
. . . . . . . . . . 11
⊢ (𝑢 = (𝐴‘𝑍) → (𝑢 − (𝐴‘𝑍)) = ((𝐴‘𝑍) − (𝐴‘𝑍))) |
| 183 | 182 | rspceeqv 3645 |
. . . . . . . . . 10
⊢ (((𝐴‘𝑍) ∈ 𝑈 ∧ 0 = ((𝐴‘𝑍) − (𝐴‘𝑍))) → ∃𝑢 ∈ 𝑈 0 = (𝑢 − (𝐴‘𝑍))) |
| 184 | 119, 181,
183 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → ∃𝑢 ∈ 𝑈 0 = (𝑢 − (𝐴‘𝑍))) |
| 185 | | eqeq1 2741 |
. . . . . . . . . 10
⊢ (𝑤 = 0 → (𝑤 = (𝑢 − (𝐴‘𝑍)) ↔ 0 = (𝑢 − (𝐴‘𝑍)))) |
| 186 | 185 | rexbidv 3179 |
. . . . . . . . 9
⊢ (𝑤 = 0 → (∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍)) ↔ ∃𝑢 ∈ 𝑈 0 = (𝑢 − (𝐴‘𝑍)))) |
| 187 | 46, 184, 186 | elabd 3681 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) |
| 188 | | ne0i 4341 |
. . . . . . . 8
⊢ (0 ∈
{𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} → {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ≠ ∅) |
| 189 | 187, 188 | syl 17 |
. . . . . . 7
⊢ (𝜑 → {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ≠ ∅) |
| 190 | 13, 11 | resubcld 11691 |
. . . . . . . 8
⊢ (𝜑 → ((𝐵‘𝑍) − (𝐴‘𝑍)) ∈ ℝ) |
| 191 | | vex 3484 |
. . . . . . . . . . . . 13
⊢ 𝑠 ∈ V |
| 192 | | eqeq1 2741 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑠 → (𝑤 = (𝑢 − (𝐴‘𝑍)) ↔ 𝑠 = (𝑢 − (𝐴‘𝑍)))) |
| 193 | 192 | rexbidv 3179 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑠 → (∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍)) ↔ ∃𝑢 ∈ 𝑈 𝑠 = (𝑢 − (𝐴‘𝑍)))) |
| 194 | 191, 193 | elab 3679 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ↔ ∃𝑢 ∈ 𝑈 𝑠 = (𝑢 − (𝐴‘𝑍))) |
| 195 | 194 | biimpi 216 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} → ∃𝑢 ∈ 𝑈 𝑠 = (𝑢 − (𝐴‘𝑍))) |
| 196 | 195 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) → ∃𝑢 ∈ 𝑈 𝑠 = (𝑢 − (𝐴‘𝑍))) |
| 197 | | nfcv 2905 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑢𝑠 |
| 198 | 197, 147 | nfel 2920 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑢 𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} |
| 199 | 144, 198 | nfan 1899 |
. . . . . . . . . . 11
⊢
Ⅎ𝑢(𝜑 ∧ 𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) |
| 200 | | nfv 1914 |
. . . . . . . . . . 11
⊢
Ⅎ𝑢 𝑠 ≤ ((𝐵‘𝑍) − (𝐴‘𝑍)) |
| 201 | | simp3 1139 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑠 = (𝑢 − (𝐴‘𝑍))) → 𝑠 = (𝑢 − (𝐴‘𝑍))) |
| 202 | 159 | 3adant3 1133 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑠 = (𝑢 − (𝐴‘𝑍))) → (𝐴‘𝑍) ∈ ℝ) |
| 203 | 13 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑠 = (𝑢 − (𝐴‘𝑍))) → (𝐵‘𝑍) ∈ ℝ) |
| 204 | 155 | 3adant3 1133 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑠 = (𝑢 − (𝐴‘𝑍))) → 𝑢 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) |
| 205 | 21 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑠 = (𝑢 − (𝐴‘𝑍))) → (𝐴‘𝑍) ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) |
| 206 | 202, 203,
204, 205 | iccsuble 45532 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑠 = (𝑢 − (𝐴‘𝑍))) → (𝑢 − (𝐴‘𝑍)) ≤ ((𝐵‘𝑍) − (𝐴‘𝑍))) |
| 207 | 201, 206 | eqbrtrd 5165 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑠 = (𝑢 − (𝐴‘𝑍))) → 𝑠 ≤ ((𝐵‘𝑍) − (𝐴‘𝑍))) |
| 208 | 207 | 3exp 1120 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑢 ∈ 𝑈 → (𝑠 = (𝑢 − (𝐴‘𝑍)) → 𝑠 ≤ ((𝐵‘𝑍) − (𝐴‘𝑍))))) |
| 209 | 208 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) → (𝑢 ∈ 𝑈 → (𝑠 = (𝑢 − (𝐴‘𝑍)) → 𝑠 ≤ ((𝐵‘𝑍) − (𝐴‘𝑍))))) |
| 210 | 199, 200,
209 | rexlimd 3266 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) → (∃𝑢 ∈ 𝑈 𝑠 = (𝑢 − (𝐴‘𝑍)) → 𝑠 ≤ ((𝐵‘𝑍) − (𝐴‘𝑍)))) |
| 211 | 196, 210 | mpd 15 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) → 𝑠 ≤ ((𝐵‘𝑍) − (𝐴‘𝑍))) |
| 212 | 211 | ralrimiva 3146 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑠 ≤ ((𝐵‘𝑍) − (𝐴‘𝑍))) |
| 213 | | brralrspcev 5203 |
. . . . . . . 8
⊢ ((((𝐵‘𝑍) − (𝐴‘𝑍)) ∈ ℝ ∧ ∀𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑠 ≤ ((𝐵‘𝑍) − (𝐴‘𝑍))) → ∃𝑟 ∈ ℝ ∀𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑠 ≤ 𝑟) |
| 214 | 190, 212,
213 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ∃𝑟 ∈ ℝ ∀𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑠 ≤ 𝑟) |
| 215 | | eqid 2737 |
. . . . . . . 8
⊢ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} = {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} |
| 216 | | biid 261 |
. . . . . . . 8
⊢ (((𝐺 ∈ ℝ ∧ 0 ≤
𝐺 ∧ ∀𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}0 ≤ 𝑟) ∧ ({𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ⊆ ℝ ∧ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ≠ ∅ ∧ ∃𝑟 ∈ ℝ ∀𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑠 ≤ 𝑟)) ↔ ((𝐺 ∈ ℝ ∧ 0 ≤ 𝐺 ∧ ∀𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}0 ≤ 𝑟) ∧ ({𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ⊆ ℝ ∧ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ≠ ∅ ∧ ∃𝑟 ∈ ℝ ∀𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑠 ≤ 𝑟))) |
| 217 | 215, 216 | supmul1 12237 |
. . . . . . 7
⊢ (((𝐺 ∈ ℝ ∧ 0 ≤
𝐺 ∧ ∀𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}0 ≤ 𝑟) ∧ ({𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ⊆ ℝ ∧ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ≠ ∅ ∧ ∃𝑟 ∈ ℝ ∀𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑠 ≤ 𝑟)) → (𝐺 · sup({𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}, ℝ, < )) = sup({𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}, ℝ, < )) |
| 218 | 38, 137, 171, 180, 189, 214, 217 | syl33anc 1387 |
. . . . . 6
⊢ (𝜑 → (𝐺 · sup({𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}, ℝ, < )) = sup({𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}, ℝ, < )) |
| 219 | 125, 134,
218 | 3eqtrd 2781 |
. . . . 5
⊢ (𝜑 → (𝐺 · (𝑆 − (𝐴‘𝑍))) = sup({𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}, ℝ, < )) |
| 220 | | vex 3484 |
. . . . . . . . . . . 12
⊢ 𝑐 ∈ V |
| 221 | | eqeq1 2741 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑐 → (𝑣 = (𝐺 · 𝑡) ↔ 𝑐 = (𝐺 · 𝑡))) |
| 222 | 221 | rexbidv 3179 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑐 → (∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡) ↔ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑐 = (𝐺 · 𝑡))) |
| 223 | 220, 222 | elab 3679 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} ↔ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑐 = (𝐺 · 𝑡)) |
| 224 | 223 | biimpi 216 |
. . . . . . . . . 10
⊢ (𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} → ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑐 = (𝐺 · 𝑡)) |
| 225 | | nfv 1914 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑡∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))) |
| 226 | | vex 3484 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑡 ∈ V |
| 227 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝑡 → (𝑤 = (𝑢 − (𝐴‘𝑍)) ↔ 𝑡 = (𝑢 − (𝐴‘𝑍)))) |
| 228 | 227 | rexbidv 3179 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑡 → (∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍)) ↔ ∃𝑢 ∈ 𝑈 𝑡 = (𝑢 − (𝐴‘𝑍)))) |
| 229 | 226, 228 | elab 3679 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ↔ ∃𝑢 ∈ 𝑈 𝑡 = (𝑢 − (𝐴‘𝑍))) |
| 230 | 229 | biimpi 216 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} → ∃𝑢 ∈ 𝑈 𝑡 = (𝑢 − (𝐴‘𝑍))) |
| 231 | 230 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ∧ 𝑐 = (𝐺 · 𝑡)) → ∃𝑢 ∈ 𝑈 𝑡 = (𝑢 − (𝐴‘𝑍))) |
| 232 | | simpl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑐 = (𝐺 · 𝑡) ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) → 𝑐 = (𝐺 · 𝑡)) |
| 233 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = (𝑢 − (𝐴‘𝑍)) → (𝐺 · 𝑡) = (𝐺 · (𝑢 − (𝐴‘𝑍)))) |
| 234 | 233 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑐 = (𝐺 · 𝑡) ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) → (𝐺 · 𝑡) = (𝐺 · (𝑢 − (𝐴‘𝑍)))) |
| 235 | 232, 234 | eqtrd 2777 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑐 = (𝐺 · 𝑡) ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) → 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍)))) |
| 236 | 235 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = (𝐺 · 𝑡) → (𝑡 = (𝑢 − (𝐴‘𝑍)) → 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))))) |
| 237 | 236 | reximdv 3170 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = (𝐺 · 𝑡) → (∃𝑢 ∈ 𝑈 𝑡 = (𝑢 − (𝐴‘𝑍)) → ∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))))) |
| 238 | 237 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ∧ 𝑐 = (𝐺 · 𝑡)) → (∃𝑢 ∈ 𝑈 𝑡 = (𝑢 − (𝐴‘𝑍)) → ∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))))) |
| 239 | 231, 238 | mpd 15 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ∧ 𝑐 = (𝐺 · 𝑡)) → ∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍)))) |
| 240 | 239 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} → (𝑐 = (𝐺 · 𝑡) → ∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))))) |
| 241 | 225, 240 | rexlimi 3259 |
. . . . . . . . . . 11
⊢
(∃𝑡 ∈
{𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑐 = (𝐺 · 𝑡) → ∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍)))) |
| 242 | 241 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} → (∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑐 = (𝐺 · 𝑡) → ∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))))) |
| 243 | 224, 242 | mpd 15 |
. . . . . . . . 9
⊢ (𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} → ∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍)))) |
| 244 | 243 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}) → ∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍)))) |
| 245 | | simp3 1139 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍)))) → 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍)))) |
| 246 | 38 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝐺 ∈ ℝ) |
| 247 | 246, 173 | remulcld 11291 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝐺 · (𝑢 − (𝐴‘𝑍))) ∈ ℝ) |
| 248 | 45 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (1 + 𝐸) ∈ ℝ) |
| 249 | 52 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ℕ ∈ V) |
| 250 | 60 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → 𝑊 ∈ Fin) |
| 251 | 64 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗):𝑊⟶ℝ) |
| 252 | 158 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → 𝑢 ∈ ℝ) |
| 253 | 79 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗):𝑊⟶ℝ) |
| 254 | 74, 252, 250, 253 | hsphoif 46591 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐻‘𝑢)‘(𝐷‘𝑗)):𝑊⟶ℝ) |
| 255 | 27, 250, 251, 254 | hoidmvcl 46597 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))) ∈ (0[,)+∞)) |
| 256 | 54, 255 | sselid 3981 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))) ∈ (0[,]+∞)) |
| 257 | 256 | fmpttd 7135 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗)))):ℕ⟶(0[,]+∞)) |
| 258 | 249, 257 | sge0cl 46396 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))) ∈ (0[,]+∞)) |
| 259 | 249, 257 | sge0xrcl 46400 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))) ∈
ℝ*) |
| 260 | 86 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → +∞ ∈
ℝ*) |
| 261 | 89 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈
ℝ*) |
| 262 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑗(𝜑 ∧ 𝑢 ∈ 𝑈) |
| 263 | 92 | adantlr 715 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)) ∈ (0[,]+∞)) |
| 264 | 95 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → 𝑍 ∈ (𝑊 ∖ 𝑌)) |
| 265 | 27, 250, 264, 9, 252, 74, 251, 253 | hsphoidmvle 46601 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))) ≤ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))) |
| 266 | 262, 249,
256, 263, 265 | sge0lempt 46425 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |
| 267 | 98 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) < +∞) |
| 268 | 259, 261,
260, 266, 267 | xrlelttrd 13202 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))) < +∞) |
| 269 | 259, 260,
268 | xrltned 45368 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))) ≠ +∞) |
| 270 | | ge0xrre 45544 |
. . . . . . . . . . . . . . . 16
⊢
(((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))) ∈ (0[,]+∞) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))) ≠ +∞) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))) ∈ ℝ) |
| 271 | 258, 269,
270 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))) ∈ ℝ) |
| 272 | 248, 271 | remulcld 11291 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗)))))) ∈ ℝ) |
| 273 | 126, 123 | sseldd 3984 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑆 ∈ ℝ) |
| 274 | 27, 30, 94, 9, 61, 76, 88, 65, 273 | sge0hsphoire 46604 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) ∈ ℝ) |
| 275 | 45, 274 | remulcld 11291 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) ∈ ℝ) |
| 276 | 275 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) ∈ ℝ) |
| 277 | 14 | eleq2i 2833 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 ∈ 𝑈 ↔ 𝑢 ∈ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))}) |
| 278 | 277 | biimpi 216 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ 𝑈 → 𝑢 ∈ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))}) |
| 279 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = 𝑢 → (𝑧 − (𝐴‘𝑍)) = (𝑢 − (𝐴‘𝑍))) |
| 280 | 279 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑢 → (𝐺 · (𝑧 − (𝐴‘𝑍))) = (𝐺 · (𝑢 − (𝐴‘𝑍)))) |
| 281 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧 = 𝑢 → (𝐻‘𝑧) = (𝐻‘𝑢)) |
| 282 | 281 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 = 𝑢 → ((𝐻‘𝑧)‘(𝐷‘𝑗)) = ((𝐻‘𝑢)‘(𝐷‘𝑗))) |
| 283 | 282 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 = 𝑢 → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))) = ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗)))) |
| 284 | 283 | mpteq2dv 5244 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = 𝑢 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))) |
| 285 | 284 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = 𝑢 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗)))))) |
| 286 | 285 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑢 → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))))) = ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))))) |
| 287 | 280, 286 | breq12d 5156 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑢 → ((𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))))) ↔ (𝐺 · (𝑢 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗)))))))) |
| 288 | 287 | elrab 3692 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} ↔ (𝑢 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∧ (𝐺 · (𝑢 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗)))))))) |
| 289 | 278, 288 | sylib 218 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ 𝑈 → (𝑢 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∧ (𝐺 · (𝑢 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗)))))))) |
| 290 | 289 | simprd 495 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ 𝑈 → (𝐺 · (𝑢 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))))) |
| 291 | 290 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝐺 · (𝑢 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))))) |
| 292 | 274 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) ∈ ℝ) |
| 293 | 51 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 0 ≤ (1 + 𝐸)) |
| 294 | 273 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑆 ∈ ℝ) |
| 295 | 74, 294, 60, 79 | hsphoif 46591 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐻‘𝑆)‘(𝐷‘𝑗)):𝑊⟶ℝ) |
| 296 | 27, 60, 64, 295 | hoidmvcl 46597 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) ∈ (0[,)+∞)) |
| 297 | 54, 296 | sselid 3981 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) ∈ (0[,]+∞)) |
| 298 | 297 | adantlr 715 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) ∈ (0[,]+∞)) |
| 299 | 294 | adantlr 715 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → 𝑆 ∈ ℝ) |
| 300 | 127 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑈 ⊆ ℝ) |
| 301 | 121 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑈 ≠ ∅) |
| 302 | 131 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝑈 𝑧 ≤ 𝑦) |
| 303 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ∈ 𝑈) |
| 304 | | suprub 12229 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝑈 𝑧 ≤ 𝑦) ∧ 𝑢 ∈ 𝑈) → 𝑢 ≤ sup(𝑈, ℝ, < )) |
| 305 | 300, 301,
302, 303, 304 | syl31anc 1375 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ≤ sup(𝑈, ℝ, < )) |
| 306 | 305, 1 | breqtrrdi 5185 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ≤ 𝑆) |
| 307 | 306 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → 𝑢 ≤ 𝑆) |
| 308 | 27, 250, 264, 9, 252, 299, 307, 74, 251, 253 | hsphoidmvle2 46600 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))) ≤ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))) |
| 309 | 262, 249,
256, 298, 308 | sge0lempt 46425 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) |
| 310 | 271, 292,
248, 293, 309 | lemul2ad 12208 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗)))))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) |
| 311 | 247, 272,
276, 291, 310 | letrd 11418 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝐺 · (𝑢 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) |
| 312 | 311 | 3adant3 1133 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍)))) → (𝐺 · (𝑢 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) |
| 313 | 245, 312 | eqbrtrd 5165 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍)))) → 𝑐 ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) |
| 314 | 313 | 3exp 1120 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑢 ∈ 𝑈 → (𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))) → 𝑐 ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))))) |
| 315 | 314 | rexlimdv 3153 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))) → 𝑐 ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))))) |
| 316 | 315 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}) → (∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))) → 𝑐 ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))))) |
| 317 | 244, 316 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}) → 𝑐 ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) |
| 318 | 317 | ralrimiva 3146 |
. . . . . 6
⊢ (𝜑 → ∀𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}𝑐 ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) |
| 319 | 224 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}) → ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑐 = (𝐺 · 𝑡)) |
| 320 | | nfv 1914 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑡𝜑 |
| 321 | | nfcv 2905 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑡𝑐 |
| 322 | | nfre1 3285 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑡∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡) |
| 323 | 322 | nfab 2911 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑡{𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} |
| 324 | 321, 323 | nfel 2920 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑡 𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} |
| 325 | 320, 324 | nfan 1899 |
. . . . . . . . . . 11
⊢
Ⅎ𝑡(𝜑 ∧ 𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}) |
| 326 | | nfv 1914 |
. . . . . . . . . . 11
⊢
Ⅎ𝑡 𝑐 ∈ ℝ |
| 327 | 230 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) → ∃𝑢 ∈ 𝑈 𝑡 = (𝑢 − (𝐴‘𝑍))) |
| 328 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) ∧ 𝑐 = (𝐺 · 𝑡)) → 𝑐 = (𝐺 · 𝑡)) |
| 329 | 246 | 3adant3 1133 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) → 𝐺 ∈ ℝ) |
| 330 | | simp3 1139 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) → 𝑡 = (𝑢 − (𝐴‘𝑍))) |
| 331 | 173 | 3adant3 1133 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) → (𝑢 − (𝐴‘𝑍)) ∈ ℝ) |
| 332 | 330, 331 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) → 𝑡 ∈ ℝ) |
| 333 | 329, 332 | remulcld 11291 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) → (𝐺 · 𝑡) ∈ ℝ) |
| 334 | 333 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) ∧ 𝑐 = (𝐺 · 𝑡)) → (𝐺 · 𝑡) ∈ ℝ) |
| 335 | 328, 334 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) ∧ 𝑐 = (𝐺 · 𝑡)) → 𝑐 ∈ ℝ) |
| 336 | 335 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) → (𝑐 = (𝐺 · 𝑡) → 𝑐 ∈ ℝ)) |
| 337 | 336 | 3exp 1120 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑢 ∈ 𝑈 → (𝑡 = (𝑢 − (𝐴‘𝑍)) → (𝑐 = (𝐺 · 𝑡) → 𝑐 ∈ ℝ)))) |
| 338 | 337 | rexlimdv 3153 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (∃𝑢 ∈ 𝑈 𝑡 = (𝑢 − (𝐴‘𝑍)) → (𝑐 = (𝐺 · 𝑡) → 𝑐 ∈ ℝ))) |
| 339 | 338 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) → (∃𝑢 ∈ 𝑈 𝑡 = (𝑢 − (𝐴‘𝑍)) → (𝑐 = (𝐺 · 𝑡) → 𝑐 ∈ ℝ))) |
| 340 | 327, 339 | mpd 15 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) → (𝑐 = (𝐺 · 𝑡) → 𝑐 ∈ ℝ)) |
| 341 | 340 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} → (𝑐 = (𝐺 · 𝑡) → 𝑐 ∈ ℝ))) |
| 342 | 341 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}) → (𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} → (𝑐 = (𝐺 · 𝑡) → 𝑐 ∈ ℝ))) |
| 343 | 325, 326,
342 | rexlimd 3266 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}) → (∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑐 = (𝐺 · 𝑡) → 𝑐 ∈ ℝ)) |
| 344 | 319, 343 | mpd 15 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}) → 𝑐 ∈ ℝ) |
| 345 | 344 | ralrimiva 3146 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}𝑐 ∈ ℝ) |
| 346 | | dfss3 3972 |
. . . . . . . 8
⊢ ({𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} ⊆ ℝ ↔ ∀𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}𝑐 ∈ ℝ) |
| 347 | 345, 346 | sylibr 234 |
. . . . . . 7
⊢ (𝜑 → {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} ⊆ ℝ) |
| 348 | 40 | eqcomd 2743 |
. . . . . . . . . 10
⊢ (𝜑 → 0 = (𝐺 · 0)) |
| 349 | | oveq2 7439 |
. . . . . . . . . . 11
⊢ (𝑡 = 0 → (𝐺 · 𝑡) = (𝐺 · 0)) |
| 350 | 349 | rspceeqv 3645 |
. . . . . . . . . 10
⊢ ((0
∈ {𝑤 ∣
∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ∧ 0 = (𝐺 · 0)) → ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}0 = (𝐺 · 𝑡)) |
| 351 | 187, 348,
350 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}0 = (𝐺 · 𝑡)) |
| 352 | | eqeq1 2741 |
. . . . . . . . . 10
⊢ (𝑣 = 0 → (𝑣 = (𝐺 · 𝑡) ↔ 0 = (𝐺 · 𝑡))) |
| 353 | 352 | rexbidv 3179 |
. . . . . . . . 9
⊢ (𝑣 = 0 → (∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡) ↔ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}0 = (𝐺 · 𝑡))) |
| 354 | 46, 351, 353 | elabd 3681 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}) |
| 355 | | ne0i 4341 |
. . . . . . . 8
⊢ (0 ∈
{𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} → {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} ≠ ∅) |
| 356 | 354, 355 | syl 17 |
. . . . . . 7
⊢ (𝜑 → {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} ≠ ∅) |
| 357 | 38, 190 | remulcld 11291 |
. . . . . . . 8
⊢ (𝜑 → (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍))) ∈ ℝ) |
| 358 | 190 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ((𝐵‘𝑍) − (𝐴‘𝑍)) ∈ ℝ) |
| 359 | 137 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 0 ≤ 𝐺) |
| 360 | 13 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝐵‘𝑍) ∈ ℝ) |
| 361 | | iccleub 13442 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴‘𝑍) ∈ ℝ* ∧ (𝐵‘𝑍) ∈ ℝ* ∧ 𝑢 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) → 𝑢 ≤ (𝐵‘𝑍)) |
| 362 | 152, 154,
155, 361 | syl3anc 1373 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ≤ (𝐵‘𝑍)) |
| 363 | 158, 360,
159, 362 | lesub1dd 11879 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝑢 − (𝐴‘𝑍)) ≤ ((𝐵‘𝑍) − (𝐴‘𝑍))) |
| 364 | 173, 358,
246, 359, 363 | lemul2ad 12208 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝐺 · (𝑢 − (𝐴‘𝑍))) ≤ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍)))) |
| 365 | 364 | 3adant3 1133 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍)))) → (𝐺 · (𝑢 − (𝐴‘𝑍))) ≤ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍)))) |
| 366 | 245, 365 | eqbrtrd 5165 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍)))) → 𝑐 ≤ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍)))) |
| 367 | 366 | 3exp 1120 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑢 ∈ 𝑈 → (𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))) → 𝑐 ≤ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍)))))) |
| 368 | 367 | rexlimdv 3153 |
. . . . . . . . . . 11
⊢ (𝜑 → (∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))) → 𝑐 ≤ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍))))) |
| 369 | 368 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}) → (∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))) → 𝑐 ≤ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍))))) |
| 370 | 244, 369 | mpd 15 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}) → 𝑐 ≤ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍)))) |
| 371 | 370 | ralrimiva 3146 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}𝑐 ≤ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍)))) |
| 372 | | brralrspcev 5203 |
. . . . . . . 8
⊢ (((𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍))) ∈ ℝ ∧ ∀𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}𝑐 ≤ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍)))) → ∃𝑦 ∈ ℝ ∀𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}𝑐 ≤ 𝑦) |
| 373 | 357, 371,
372 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}𝑐 ≤ 𝑦) |
| 374 | | suprleub 12234 |
. . . . . . 7
⊢ ((({𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} ⊆ ℝ ∧ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}𝑐 ≤ 𝑦) ∧ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) ∈ ℝ) → (sup({𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}, ℝ, < ) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) ↔ ∀𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}𝑐 ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))))) |
| 375 | 347, 356,
373, 275, 374 | syl31anc 1375 |
. . . . . 6
⊢ (𝜑 → (sup({𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}, ℝ, < ) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) ↔ ∀𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}𝑐 ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))))) |
| 376 | 318, 375 | mpbird 257 |
. . . . 5
⊢ (𝜑 → sup({𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}, ℝ, < ) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) |
| 377 | 219, 376 | eqbrtrd 5165 |
. . . 4
⊢ (𝜑 → (𝐺 · (𝑆 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) |
| 378 | 123, 377 | jca 511 |
. . 3
⊢ (𝜑 → (𝑆 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∧ (𝐺 · (𝑆 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))))) |
| 379 | | oveq1 7438 |
. . . . . 6
⊢ (𝑧 = 𝑆 → (𝑧 − (𝐴‘𝑍)) = (𝑆 − (𝐴‘𝑍))) |
| 380 | 379 | oveq2d 7447 |
. . . . 5
⊢ (𝑧 = 𝑆 → (𝐺 · (𝑧 − (𝐴‘𝑍))) = (𝐺 · (𝑆 − (𝐴‘𝑍)))) |
| 381 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑆 → (𝐻‘𝑧) = (𝐻‘𝑆)) |
| 382 | 381 | fveq1d 6908 |
. . . . . . . . 9
⊢ (𝑧 = 𝑆 → ((𝐻‘𝑧)‘(𝐷‘𝑗)) = ((𝐻‘𝑆)‘(𝐷‘𝑗))) |
| 383 | 382 | oveq2d 7447 |
. . . . . . . 8
⊢ (𝑧 = 𝑆 → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))) = ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))) |
| 384 | 383 | mpteq2dv 5244 |
. . . . . . 7
⊢ (𝑧 = 𝑆 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) |
| 385 | 384 | fveq2d 6910 |
. . . . . 6
⊢ (𝑧 = 𝑆 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) |
| 386 | 385 | oveq2d 7447 |
. . . . 5
⊢ (𝑧 = 𝑆 → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))))) = ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) |
| 387 | 380, 386 | breq12d 5156 |
. . . 4
⊢ (𝑧 = 𝑆 → ((𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))))) ↔ (𝐺 · (𝑆 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))))) |
| 388 | 387 | elrab 3692 |
. . 3
⊢ (𝑆 ∈ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} ↔ (𝑆 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∧ (𝐺 · (𝑆 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))))) |
| 389 | 378, 388 | sylibr 234 |
. 2
⊢ (𝜑 → 𝑆 ∈ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))}) |
| 390 | 389, 14 | eleqtrrdi 2852 |
1
⊢ (𝜑 → 𝑆 ∈ 𝑈) |