Step | Hyp | Ref
| Expression |
1 | | hoidmvlelem1.s |
. . . . . 6
⊢ 𝑆 = sup(𝑈, ℝ, < ) |
2 | 1 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝑆 = sup(𝑈, ℝ, < )) |
3 | | hoidmvlelem1.a |
. . . . . . 7
⊢ (𝜑 → 𝐴:𝑊⟶ℝ) |
4 | | hoidmvlelem1.z |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ∈ (𝑋 ∖ 𝑌)) |
5 | | snidg 4510 |
. . . . . . . . . 10
⊢ (𝑍 ∈ (𝑋 ∖ 𝑌) → 𝑍 ∈ {𝑍}) |
6 | 4, 5 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ {𝑍}) |
7 | | elun2 4080 |
. . . . . . . . 9
⊢ (𝑍 ∈ {𝑍} → 𝑍 ∈ (𝑌 ∪ {𝑍})) |
8 | 6, 7 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑍 ∈ (𝑌 ∪ {𝑍})) |
9 | | hoidmvlelem1.w |
. . . . . . . 8
⊢ 𝑊 = (𝑌 ∪ {𝑍}) |
10 | 8, 9 | syl6eleqr 2896 |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈ 𝑊) |
11 | 3, 10 | ffvelrnd 6724 |
. . . . . 6
⊢ (𝜑 → (𝐴‘𝑍) ∈ ℝ) |
12 | | hoidmvlelem1.b |
. . . . . . 7
⊢ (𝜑 → 𝐵:𝑊⟶ℝ) |
13 | 12, 10 | ffvelrnd 6724 |
. . . . . 6
⊢ (𝜑 → (𝐵‘𝑍) ∈ ℝ) |
14 | | hoidmvlelem1.u |
. . . . . . . 8
⊢ 𝑈 = {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} |
15 | | ssrab2 3983 |
. . . . . . . 8
⊢ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} ⊆ ((𝐴‘𝑍)[,](𝐵‘𝑍)) |
16 | 14, 15 | eqsstri 3928 |
. . . . . . 7
⊢ 𝑈 ⊆ ((𝐴‘𝑍)[,](𝐵‘𝑍)) |
17 | 16 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝑈 ⊆ ((𝐴‘𝑍)[,](𝐵‘𝑍))) |
18 | 11 | leidd 11060 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴‘𝑍) ≤ (𝐴‘𝑍)) |
19 | | hoidmvlelem1.ab |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴‘𝑍) < (𝐵‘𝑍)) |
20 | 11, 13, 19 | ltled 10641 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴‘𝑍) ≤ (𝐵‘𝑍)) |
21 | 11, 13, 11, 18, 20 | eliccd 41342 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴‘𝑍) ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) |
22 | 11 | recnd 10522 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴‘𝑍) ∈ ℂ) |
23 | 22 | subidd 10839 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐴‘𝑍) − (𝐴‘𝑍)) = 0) |
24 | 23 | oveq2d 7039 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐺 · ((𝐴‘𝑍) − (𝐴‘𝑍))) = (𝐺 · 0)) |
25 | | rge0ssre 12698 |
. . . . . . . . . . . . . . 15
⊢
(0[,)+∞) ⊆ ℝ |
26 | | hoidmvlelem1.g |
. . . . . . . . . . . . . . . 16
⊢ 𝐺 = ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) |
27 | | hoidmvlelem1.l |
. . . . . . . . . . . . . . . . 17
⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚
𝑥), 𝑏 ∈ (ℝ ↑𝑚
𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
28 | | hoidmvlelem1.x |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑋 ∈ Fin) |
29 | | hoidmvlelem1.y |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
30 | 28, 29 | ssfid 8594 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑌 ∈ Fin) |
31 | | ssun1 4075 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑌 ⊆ (𝑌 ∪ {𝑍}) |
32 | 31, 9 | sseqtr4i 3931 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑌 ⊆ 𝑊 |
33 | 32 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑌 ⊆ 𝑊) |
34 | 3, 33 | fssresd 6420 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐴 ↾ 𝑌):𝑌⟶ℝ) |
35 | 12, 33 | fssresd 6420 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐵 ↾ 𝑌):𝑌⟶ℝ) |
36 | 27, 30, 34, 35 | hoidmvcl 42428 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) ∈ (0[,)+∞)) |
37 | 26, 36 | syl5eqel 2889 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐺 ∈ (0[,)+∞)) |
38 | 25, 37 | sseldi 3893 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺 ∈ ℝ) |
39 | 38 | recnd 10522 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺 ∈ ℂ) |
40 | 39 | mul01d 10692 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐺 · 0) = 0) |
41 | 24, 40 | eqtrd 2833 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺 · ((𝐴‘𝑍) − (𝐴‘𝑍))) = 0) |
42 | | 1red 10495 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 1 ∈
ℝ) |
43 | | hoidmvlelem1.e |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
44 | 43 | rpred 12285 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐸 ∈ ℝ) |
45 | 42, 44 | readdcld 10523 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1 + 𝐸) ∈ ℝ) |
46 | | 0red 10497 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ∈
ℝ) |
47 | | 0lt1 11016 |
. . . . . . . . . . . . . . 15
⊢ 0 <
1 |
48 | 47 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < 1) |
49 | 42, 43 | ltaddrpd 12318 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 < (1 + 𝐸)) |
50 | 46, 42, 45, 48, 49 | lttrd 10654 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 < (1 + 𝐸)) |
51 | 46, 45, 50 | ltled 10641 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ≤ (1 + 𝐸)) |
52 | | nnex 11498 |
. . . . . . . . . . . . . . 15
⊢ ℕ
∈ V |
53 | 52 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ℕ ∈
V) |
54 | | icossicc 12678 |
. . . . . . . . . . . . . . . 16
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
55 | | snfi 8449 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ {𝑍} ∈ Fin |
56 | 55 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → {𝑍} ∈ Fin) |
57 | | unfi 8638 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑌 ∈ Fin ∧ {𝑍} ∈ Fin) → (𝑌 ∪ {𝑍}) ∈ Fin) |
58 | 30, 56, 57 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑌 ∪ {𝑍}) ∈ Fin) |
59 | 9, 58 | syl5eqel 2889 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑊 ∈ Fin) |
60 | 59 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑊 ∈ Fin) |
61 | | hoidmvlelem1.c |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐶:ℕ⟶(ℝ
↑𝑚 𝑊)) |
62 | 61 | ffvelrnda 6723 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗) ∈ (ℝ ↑𝑚
𝑊)) |
63 | | elmapi 8285 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐶‘𝑗) ∈ (ℝ ↑𝑚
𝑊) → (𝐶‘𝑗):𝑊⟶ℝ) |
64 | 62, 63 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗):𝑊⟶ℝ) |
65 | | hoidmvlelem1.h |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))))) |
66 | | eleq1w 2867 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = ℎ → (𝑗 ∈ 𝑌 ↔ ℎ ∈ 𝑌)) |
67 | | fveq2 6545 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = ℎ → (𝑐‘𝑗) = (𝑐‘ℎ)) |
68 | 67 | breq1d 4978 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 = ℎ → ((𝑐‘𝑗) ≤ 𝑥 ↔ (𝑐‘ℎ) ≤ 𝑥)) |
69 | 68, 67 | ifbieq1d 4410 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = ℎ → if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥) = if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥)) |
70 | 66, 67, 69 | ifbieq12d 4414 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = ℎ → if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥)) = if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥))) |
71 | 70 | cbvmptv 5068 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))) = (ℎ ∈ 𝑊 ↦ if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥))) |
72 | 71 | mpteq2i 5059 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 ∈ (ℝ
↑𝑚 𝑊) ↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥)))) = (𝑐 ∈ (ℝ ↑𝑚
𝑊) ↦ (ℎ ∈ 𝑊 ↦ if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥)))) |
73 | 72 | mpteq2i 5059 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ
↑𝑚 𝑊) ↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))))) = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚
𝑊) ↦ (ℎ ∈ 𝑊 ↦ if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥))))) |
74 | 65, 73 | eqtri 2821 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚
𝑊) ↦ (ℎ ∈ 𝑊 ↦ if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥))))) |
75 | 11 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐴‘𝑍) ∈ ℝ) |
76 | | hoidmvlelem1.d |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐷:ℕ⟶(ℝ
↑𝑚 𝑊)) |
77 | 76 | ffvelrnda 6723 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗) ∈ (ℝ ↑𝑚
𝑊)) |
78 | | elmapi 8285 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐷‘𝑗) ∈ (ℝ ↑𝑚
𝑊) → (𝐷‘𝑗):𝑊⟶ℝ) |
79 | 77, 78 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗):𝑊⟶ℝ) |
80 | 74, 75, 60, 79 | hsphoif 42422 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗)):𝑊⟶ℝ) |
81 | 27, 60, 64, 80 | hoidmvcl 42428 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))) ∈ (0[,)+∞)) |
82 | 54, 81 | sseldi 3893 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))) ∈ (0[,]+∞)) |
83 | 82 | fmpttd 6749 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗)))):ℕ⟶(0[,]+∞)) |
84 | 53, 83 | sge0cl 42227 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))) ∈ (0[,]+∞)) |
85 | 53, 83 | sge0xrcl 42231 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))) ∈
ℝ*) |
86 | | pnfxr 10548 |
. . . . . . . . . . . . . . 15
⊢ +∞
∈ ℝ* |
87 | 86 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → +∞ ∈
ℝ*) |
88 | | hoidmvlelem1.r |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) |
89 | 88 | rexrd 10544 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈
ℝ*) |
90 | | nfv 1896 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑗𝜑 |
91 | 27, 60, 64, 79 | hoidmvcl 42428 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)) ∈ (0[,)+∞)) |
92 | 54, 91 | sseldi 3893 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)) ∈ (0[,]+∞)) |
93 | 4 | eldifbd 3878 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ¬ 𝑍 ∈ 𝑌) |
94 | 10, 93 | eldifd 3876 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑍 ∈ (𝑊 ∖ 𝑌)) |
95 | 94 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑍 ∈ (𝑊 ∖ 𝑌)) |
96 | 27, 60, 95, 9, 75, 74, 64, 79 | hsphoidmvle 42432 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))) ≤ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))) |
97 | 90, 53, 82, 92, 96 | sge0lempt 42256 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |
98 | 88 | ltpnfd 12370 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) < +∞) |
99 | 85, 89, 87, 97, 98 | xrlelttrd 12407 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))) < +∞) |
100 | 85, 87, 99 | xrltned 41187 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))) ≠ +∞) |
101 | | ge0xrre 41370 |
. . . . . . . . . . . . 13
⊢
(((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))) ∈ (0[,]+∞) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))) ≠ +∞) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))) ∈ ℝ) |
102 | 84, 100, 101 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))) ∈ ℝ) |
103 | 53, 83 | sge0ge0 42230 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗)))))) |
104 | | mulge0 11012 |
. . . . . . . . . . . 12
⊢ ((((1 +
𝐸) ∈ ℝ ∧ 0
≤ (1 + 𝐸)) ∧
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))) ∈ ℝ ∧ 0 ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))))) → 0 ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))))) |
105 | 45, 51, 102, 103, 104 | syl22anc 835 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))))) |
106 | 41, 105 | eqbrtrd 4990 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺 · ((𝐴‘𝑍) − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))))) |
107 | 21, 106 | jca 512 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴‘𝑍) ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∧ (𝐺 · ((𝐴‘𝑍) − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗)))))))) |
108 | | oveq1 7030 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝐴‘𝑍) → (𝑧 − (𝐴‘𝑍)) = ((𝐴‘𝑍) − (𝐴‘𝑍))) |
109 | 108 | oveq2d 7039 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝐴‘𝑍) → (𝐺 · (𝑧 − (𝐴‘𝑍))) = (𝐺 · ((𝐴‘𝑍) − (𝐴‘𝑍)))) |
110 | | fveq2 6545 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝐴‘𝑍) → (𝐻‘𝑧) = (𝐻‘(𝐴‘𝑍))) |
111 | 110 | fveq1d 6547 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝐴‘𝑍) → ((𝐻‘𝑧)‘(𝐷‘𝑗)) = ((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))) |
112 | 111 | oveq2d 7039 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝐴‘𝑍) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))) = ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗)))) |
113 | 112 | mpteq2dv 5063 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝐴‘𝑍) → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))) |
114 | 113 | fveq2d 6549 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝐴‘𝑍) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗)))))) |
115 | 114 | oveq2d 7039 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝐴‘𝑍) → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))))) = ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗))))))) |
116 | 109, 115 | breq12d 4981 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐴‘𝑍) → ((𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))))) ↔ (𝐺 · ((𝐴‘𝑍) − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗)))))))) |
117 | 116 | elrab 3621 |
. . . . . . . . 9
⊢ ((𝐴‘𝑍) ∈ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} ↔ ((𝐴‘𝑍) ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∧ (𝐺 · ((𝐴‘𝑍) − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘(𝐴‘𝑍))‘(𝐷‘𝑗)))))))) |
118 | 107, 117 | sylibr 235 |
. . . . . . . 8
⊢ (𝜑 → (𝐴‘𝑍) ∈ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))}) |
119 | 118, 14 | syl6eleqr 2896 |
. . . . . . 7
⊢ (𝜑 → (𝐴‘𝑍) ∈ 𝑈) |
120 | | ne0i 4226 |
. . . . . . 7
⊢ ((𝐴‘𝑍) ∈ 𝑈 → 𝑈 ≠ ∅) |
121 | 119, 120 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑈 ≠ ∅) |
122 | 11, 13, 17, 121 | supicc 12740 |
. . . . 5
⊢ (𝜑 → sup(𝑈, ℝ, < ) ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) |
123 | 2, 122 | eqeltrd 2885 |
. . . 4
⊢ (𝜑 → 𝑆 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) |
124 | 2 | oveq1d 7038 |
. . . . . . 7
⊢ (𝜑 → (𝑆 − (𝐴‘𝑍)) = (sup(𝑈, ℝ, < ) − (𝐴‘𝑍))) |
125 | 124 | oveq2d 7039 |
. . . . . 6
⊢ (𝜑 → (𝐺 · (𝑆 − (𝐴‘𝑍))) = (𝐺 · (sup(𝑈, ℝ, < ) − (𝐴‘𝑍)))) |
126 | 11, 13 | iccssred 41343 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴‘𝑍)[,](𝐵‘𝑍)) ⊆ ℝ) |
127 | 17, 126 | sstrd 3905 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ⊆ ℝ) |
128 | 11, 13 | jca 512 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴‘𝑍) ∈ ℝ ∧ (𝐵‘𝑍) ∈ ℝ)) |
129 | | iccsupr 12684 |
. . . . . . . . . 10
⊢ ((((𝐴‘𝑍) ∈ ℝ ∧ (𝐵‘𝑍) ∈ ℝ) ∧ 𝑈 ⊆ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∧ (𝐴‘𝑍) ∈ 𝑈) → (𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝑈 𝑧 ≤ 𝑦)) |
130 | 128, 17, 119, 129 | syl3anc 1364 |
. . . . . . . . 9
⊢ (𝜑 → (𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝑈 𝑧 ≤ 𝑦)) |
131 | 130 | simp3d 1137 |
. . . . . . . 8
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝑈 𝑧 ≤ 𝑦) |
132 | | eqid 2797 |
. . . . . . . 8
⊢ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} = {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} |
133 | 127, 121,
131, 11, 132 | supsubc 41183 |
. . . . . . 7
⊢ (𝜑 → (sup(𝑈, ℝ, < ) − (𝐴‘𝑍)) = sup({𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}, ℝ, < )) |
134 | 133 | oveq2d 7039 |
. . . . . 6
⊢ (𝜑 → (𝐺 · (sup(𝑈, ℝ, < ) − (𝐴‘𝑍))) = (𝐺 · sup({𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}, ℝ, < ))) |
135 | 46 | rexrd 10544 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℝ*) |
136 | | icogelb 12642 |
. . . . . . . 8
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ* ∧
𝐺 ∈ (0[,)+∞))
→ 0 ≤ 𝐺) |
137 | 135, 87, 37, 136 | syl3anc 1364 |
. . . . . . 7
⊢ (𝜑 → 0 ≤ 𝐺) |
138 | | vex 3443 |
. . . . . . . . . . . 12
⊢ 𝑟 ∈ V |
139 | | eqeq1 2801 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑟 → (𝑤 = (𝑢 − (𝐴‘𝑍)) ↔ 𝑟 = (𝑢 − (𝐴‘𝑍)))) |
140 | 139 | rexbidv 3262 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑟 → (∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍)) ↔ ∃𝑢 ∈ 𝑈 𝑟 = (𝑢 − (𝐴‘𝑍)))) |
141 | 138, 140 | elab 3608 |
. . . . . . . . . . 11
⊢ (𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ↔ ∃𝑢 ∈ 𝑈 𝑟 = (𝑢 − (𝐴‘𝑍))) |
142 | 141 | biimpi 217 |
. . . . . . . . . 10
⊢ (𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} → ∃𝑢 ∈ 𝑈 𝑟 = (𝑢 − (𝐴‘𝑍))) |
143 | 142 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) → ∃𝑢 ∈ 𝑈 𝑟 = (𝑢 − (𝐴‘𝑍))) |
144 | | nfv 1896 |
. . . . . . . . . . 11
⊢
Ⅎ𝑢𝜑 |
145 | | nfcv 2951 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑢𝑟 |
146 | | nfre1 3271 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑢∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍)) |
147 | 146 | nfab 2957 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑢{𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} |
148 | 145, 147 | nfel 2963 |
. . . . . . . . . . 11
⊢
Ⅎ𝑢 𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} |
149 | 144, 148 | nfan 1885 |
. . . . . . . . . 10
⊢
Ⅎ𝑢(𝜑 ∧ 𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) |
150 | | nfv 1896 |
. . . . . . . . . 10
⊢
Ⅎ𝑢0 ≤ 𝑟 |
151 | 11 | rexrd 10544 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐴‘𝑍) ∈
ℝ*) |
152 | 151 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝐴‘𝑍) ∈
ℝ*) |
153 | 13 | rexrd 10544 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐵‘𝑍) ∈
ℝ*) |
154 | 153 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝐵‘𝑍) ∈
ℝ*) |
155 | 17 | sselda 3895 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) |
156 | | iccgelb 12647 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴‘𝑍) ∈ ℝ* ∧ (𝐵‘𝑍) ∈ ℝ* ∧ 𝑢 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) → (𝐴‘𝑍) ≤ 𝑢) |
157 | 152, 154,
155, 156 | syl3anc 1364 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝐴‘𝑍) ≤ 𝑢) |
158 | 127 | sselda 3895 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ∈ ℝ) |
159 | 11 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝐴‘𝑍) ∈ ℝ) |
160 | 158, 159 | subge0d 11084 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (0 ≤ (𝑢 − (𝐴‘𝑍)) ↔ (𝐴‘𝑍) ≤ 𝑢)) |
161 | 157, 160 | mpbird 258 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 0 ≤ (𝑢 − (𝐴‘𝑍))) |
162 | 161 | 3adant3 1125 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑟 = (𝑢 − (𝐴‘𝑍))) → 0 ≤ (𝑢 − (𝐴‘𝑍))) |
163 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = (𝑢 − (𝐴‘𝑍)) → 𝑟 = (𝑢 − (𝐴‘𝑍))) |
164 | 163 | eqcomd 2803 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = (𝑢 − (𝐴‘𝑍)) → (𝑢 − (𝐴‘𝑍)) = 𝑟) |
165 | 164 | 3ad2ant3 1128 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑟 = (𝑢 − (𝐴‘𝑍))) → (𝑢 − (𝐴‘𝑍)) = 𝑟) |
166 | 162, 165 | breqtrd 4994 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑟 = (𝑢 − (𝐴‘𝑍))) → 0 ≤ 𝑟) |
167 | 166 | 3exp 1112 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑢 ∈ 𝑈 → (𝑟 = (𝑢 − (𝐴‘𝑍)) → 0 ≤ 𝑟))) |
168 | 167 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) → (𝑢 ∈ 𝑈 → (𝑟 = (𝑢 − (𝐴‘𝑍)) → 0 ≤ 𝑟))) |
169 | 149, 150,
168 | rexlimd 3280 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) → (∃𝑢 ∈ 𝑈 𝑟 = (𝑢 − (𝐴‘𝑍)) → 0 ≤ 𝑟)) |
170 | 143, 169 | mpd 15 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) → 0 ≤ 𝑟) |
171 | 170 | ralrimiva 3151 |
. . . . . . 7
⊢ (𝜑 → ∀𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}0 ≤ 𝑟) |
172 | | simp3 1131 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑤 = (𝑢 − (𝐴‘𝑍))) → 𝑤 = (𝑢 − (𝐴‘𝑍))) |
173 | 158, 159 | resubcld 10922 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝑢 − (𝐴‘𝑍)) ∈ ℝ) |
174 | 173 | 3adant3 1125 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑤 = (𝑢 − (𝐴‘𝑍))) → (𝑢 − (𝐴‘𝑍)) ∈ ℝ) |
175 | 172, 174 | eqeltrd 2885 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑤 = (𝑢 − (𝐴‘𝑍))) → 𝑤 ∈ ℝ) |
176 | 175 | 3exp 1112 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑢 ∈ 𝑈 → (𝑤 = (𝑢 − (𝐴‘𝑍)) → 𝑤 ∈ ℝ))) |
177 | 176 | rexlimdv 3248 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍)) → 𝑤 ∈ ℝ)) |
178 | 177 | alrimiv 1909 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑤(∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍)) → 𝑤 ∈ ℝ)) |
179 | | abss 3967 |
. . . . . . . 8
⊢ ({𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ⊆ ℝ ↔ ∀𝑤(∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍)) → 𝑤 ∈ ℝ)) |
180 | 178, 179 | sylibr 235 |
. . . . . . 7
⊢ (𝜑 → {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ⊆ ℝ) |
181 | 23 | eqcomd 2803 |
. . . . . . . . . 10
⊢ (𝜑 → 0 = ((𝐴‘𝑍) − (𝐴‘𝑍))) |
182 | | oveq1 7030 |
. . . . . . . . . . 11
⊢ (𝑢 = (𝐴‘𝑍) → (𝑢 − (𝐴‘𝑍)) = ((𝐴‘𝑍) − (𝐴‘𝑍))) |
183 | 182 | rspceeqv 3579 |
. . . . . . . . . 10
⊢ (((𝐴‘𝑍) ∈ 𝑈 ∧ 0 = ((𝐴‘𝑍) − (𝐴‘𝑍))) → ∃𝑢 ∈ 𝑈 0 = (𝑢 − (𝐴‘𝑍))) |
184 | 119, 181,
183 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → ∃𝑢 ∈ 𝑈 0 = (𝑢 − (𝐴‘𝑍))) |
185 | | c0ex 10488 |
. . . . . . . . . 10
⊢ 0 ∈
V |
186 | | eqeq1 2801 |
. . . . . . . . . . 11
⊢ (𝑤 = 0 → (𝑤 = (𝑢 − (𝐴‘𝑍)) ↔ 0 = (𝑢 − (𝐴‘𝑍)))) |
187 | 186 | rexbidv 3262 |
. . . . . . . . . 10
⊢ (𝑤 = 0 → (∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍)) ↔ ∃𝑢 ∈ 𝑈 0 = (𝑢 − (𝐴‘𝑍)))) |
188 | 185, 187 | elab 3608 |
. . . . . . . . 9
⊢ (0 ∈
{𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ↔ ∃𝑢 ∈ 𝑈 0 = (𝑢 − (𝐴‘𝑍))) |
189 | 184, 188 | sylibr 235 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) |
190 | | ne0i 4226 |
. . . . . . . 8
⊢ (0 ∈
{𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} → {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ≠ ∅) |
191 | 189, 190 | syl 17 |
. . . . . . 7
⊢ (𝜑 → {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ≠ ∅) |
192 | 13, 11 | resubcld 10922 |
. . . . . . . 8
⊢ (𝜑 → ((𝐵‘𝑍) − (𝐴‘𝑍)) ∈ ℝ) |
193 | | vex 3443 |
. . . . . . . . . . . . 13
⊢ 𝑠 ∈ V |
194 | | eqeq1 2801 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑠 → (𝑤 = (𝑢 − (𝐴‘𝑍)) ↔ 𝑠 = (𝑢 − (𝐴‘𝑍)))) |
195 | 194 | rexbidv 3262 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑠 → (∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍)) ↔ ∃𝑢 ∈ 𝑈 𝑠 = (𝑢 − (𝐴‘𝑍)))) |
196 | 193, 195 | elab 3608 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ↔ ∃𝑢 ∈ 𝑈 𝑠 = (𝑢 − (𝐴‘𝑍))) |
197 | 196 | biimpi 217 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} → ∃𝑢 ∈ 𝑈 𝑠 = (𝑢 − (𝐴‘𝑍))) |
198 | 197 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) → ∃𝑢 ∈ 𝑈 𝑠 = (𝑢 − (𝐴‘𝑍))) |
199 | | nfcv 2951 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑢𝑠 |
200 | 199, 147 | nfel 2963 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑢 𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} |
201 | 144, 200 | nfan 1885 |
. . . . . . . . . . 11
⊢
Ⅎ𝑢(𝜑 ∧ 𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) |
202 | | nfv 1896 |
. . . . . . . . . . 11
⊢
Ⅎ𝑢 𝑠 ≤ ((𝐵‘𝑍) − (𝐴‘𝑍)) |
203 | | simp3 1131 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑠 = (𝑢 − (𝐴‘𝑍))) → 𝑠 = (𝑢 − (𝐴‘𝑍))) |
204 | 159 | 3adant3 1125 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑠 = (𝑢 − (𝐴‘𝑍))) → (𝐴‘𝑍) ∈ ℝ) |
205 | 13 | 3ad2ant1 1126 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑠 = (𝑢 − (𝐴‘𝑍))) → (𝐵‘𝑍) ∈ ℝ) |
206 | 155 | 3adant3 1125 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑠 = (𝑢 − (𝐴‘𝑍))) → 𝑢 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) |
207 | 21 | 3ad2ant1 1126 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑠 = (𝑢 − (𝐴‘𝑍))) → (𝐴‘𝑍) ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) |
208 | 204, 205,
206, 207 | iccsuble 41358 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑠 = (𝑢 − (𝐴‘𝑍))) → (𝑢 − (𝐴‘𝑍)) ≤ ((𝐵‘𝑍) − (𝐴‘𝑍))) |
209 | 203, 208 | eqbrtrd 4990 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑠 = (𝑢 − (𝐴‘𝑍))) → 𝑠 ≤ ((𝐵‘𝑍) − (𝐴‘𝑍))) |
210 | 209 | 3exp 1112 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑢 ∈ 𝑈 → (𝑠 = (𝑢 − (𝐴‘𝑍)) → 𝑠 ≤ ((𝐵‘𝑍) − (𝐴‘𝑍))))) |
211 | 210 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) → (𝑢 ∈ 𝑈 → (𝑠 = (𝑢 − (𝐴‘𝑍)) → 𝑠 ≤ ((𝐵‘𝑍) − (𝐴‘𝑍))))) |
212 | 201, 202,
211 | rexlimd 3280 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) → (∃𝑢 ∈ 𝑈 𝑠 = (𝑢 − (𝐴‘𝑍)) → 𝑠 ≤ ((𝐵‘𝑍) − (𝐴‘𝑍)))) |
213 | 198, 212 | mpd 15 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) → 𝑠 ≤ ((𝐵‘𝑍) − (𝐴‘𝑍))) |
214 | 213 | ralrimiva 3151 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑠 ≤ ((𝐵‘𝑍) − (𝐴‘𝑍))) |
215 | | brralrspcev 5028 |
. . . . . . . 8
⊢ ((((𝐵‘𝑍) − (𝐴‘𝑍)) ∈ ℝ ∧ ∀𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑠 ≤ ((𝐵‘𝑍) − (𝐴‘𝑍))) → ∃𝑟 ∈ ℝ ∀𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑠 ≤ 𝑟) |
216 | 192, 214,
215 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ∃𝑟 ∈ ℝ ∀𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑠 ≤ 𝑟) |
217 | | eqid 2797 |
. . . . . . . 8
⊢ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} = {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} |
218 | | biid 262 |
. . . . . . . 8
⊢ (((𝐺 ∈ ℝ ∧ 0 ≤
𝐺 ∧ ∀𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}0 ≤ 𝑟) ∧ ({𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ⊆ ℝ ∧ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ≠ ∅ ∧ ∃𝑟 ∈ ℝ ∀𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑠 ≤ 𝑟)) ↔ ((𝐺 ∈ ℝ ∧ 0 ≤ 𝐺 ∧ ∀𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}0 ≤ 𝑟) ∧ ({𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ⊆ ℝ ∧ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ≠ ∅ ∧ ∃𝑟 ∈ ℝ ∀𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑠 ≤ 𝑟))) |
219 | 217, 218 | supmul1 11464 |
. . . . . . 7
⊢ (((𝐺 ∈ ℝ ∧ 0 ≤
𝐺 ∧ ∀𝑟 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}0 ≤ 𝑟) ∧ ({𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ⊆ ℝ ∧ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ≠ ∅ ∧ ∃𝑟 ∈ ℝ ∀𝑠 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑠 ≤ 𝑟)) → (𝐺 · sup({𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}, ℝ, < )) = sup({𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}, ℝ, < )) |
220 | 38, 137, 171, 180, 191, 216, 219 | syl33anc 1378 |
. . . . . 6
⊢ (𝜑 → (𝐺 · sup({𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}, ℝ, < )) = sup({𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}, ℝ, < )) |
221 | 125, 134,
220 | 3eqtrd 2837 |
. . . . 5
⊢ (𝜑 → (𝐺 · (𝑆 − (𝐴‘𝑍))) = sup({𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}, ℝ, < )) |
222 | | vex 3443 |
. . . . . . . . . . . 12
⊢ 𝑐 ∈ V |
223 | | eqeq1 2801 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑐 → (𝑣 = (𝐺 · 𝑡) ↔ 𝑐 = (𝐺 · 𝑡))) |
224 | 223 | rexbidv 3262 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑐 → (∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡) ↔ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑐 = (𝐺 · 𝑡))) |
225 | 222, 224 | elab 3608 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} ↔ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑐 = (𝐺 · 𝑡)) |
226 | 225 | biimpi 217 |
. . . . . . . . . 10
⊢ (𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} → ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑐 = (𝐺 · 𝑡)) |
227 | | nfv 1896 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑡∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))) |
228 | | vex 3443 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑡 ∈ V |
229 | | eqeq1 2801 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝑡 → (𝑤 = (𝑢 − (𝐴‘𝑍)) ↔ 𝑡 = (𝑢 − (𝐴‘𝑍)))) |
230 | 229 | rexbidv 3262 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑡 → (∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍)) ↔ ∃𝑢 ∈ 𝑈 𝑡 = (𝑢 − (𝐴‘𝑍)))) |
231 | 228, 230 | elab 3608 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ↔ ∃𝑢 ∈ 𝑈 𝑡 = (𝑢 − (𝐴‘𝑍))) |
232 | 231 | biimpi 217 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} → ∃𝑢 ∈ 𝑈 𝑡 = (𝑢 − (𝐴‘𝑍))) |
233 | 232 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ∧ 𝑐 = (𝐺 · 𝑡)) → ∃𝑢 ∈ 𝑈 𝑡 = (𝑢 − (𝐴‘𝑍))) |
234 | | simpl 483 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑐 = (𝐺 · 𝑡) ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) → 𝑐 = (𝐺 · 𝑡)) |
235 | | oveq2 7031 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = (𝑢 − (𝐴‘𝑍)) → (𝐺 · 𝑡) = (𝐺 · (𝑢 − (𝐴‘𝑍)))) |
236 | 235 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑐 = (𝐺 · 𝑡) ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) → (𝐺 · 𝑡) = (𝐺 · (𝑢 − (𝐴‘𝑍)))) |
237 | 234, 236 | eqtrd 2833 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑐 = (𝐺 · 𝑡) ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) → 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍)))) |
238 | 237 | ex 413 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = (𝐺 · 𝑡) → (𝑡 = (𝑢 − (𝐴‘𝑍)) → 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))))) |
239 | 238 | reximdv 3238 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = (𝐺 · 𝑡) → (∃𝑢 ∈ 𝑈 𝑡 = (𝑢 − (𝐴‘𝑍)) → ∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))))) |
240 | 239 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ∧ 𝑐 = (𝐺 · 𝑡)) → (∃𝑢 ∈ 𝑈 𝑡 = (𝑢 − (𝐴‘𝑍)) → ∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))))) |
241 | 233, 240 | mpd 15 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ∧ 𝑐 = (𝐺 · 𝑡)) → ∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍)))) |
242 | 241 | ex 413 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} → (𝑐 = (𝐺 · 𝑡) → ∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))))) |
243 | 227, 242 | rexlimi 3278 |
. . . . . . . . . . 11
⊢
(∃𝑡 ∈
{𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑐 = (𝐺 · 𝑡) → ∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍)))) |
244 | 243 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} → (∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑐 = (𝐺 · 𝑡) → ∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))))) |
245 | 226, 244 | mpd 15 |
. . . . . . . . 9
⊢ (𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} → ∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍)))) |
246 | 245 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}) → ∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍)))) |
247 | | simp3 1131 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍)))) → 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍)))) |
248 | 38 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝐺 ∈ ℝ) |
249 | 248, 173 | remulcld 10524 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝐺 · (𝑢 − (𝐴‘𝑍))) ∈ ℝ) |
250 | 45 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (1 + 𝐸) ∈ ℝ) |
251 | 52 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ℕ ∈ V) |
252 | 60 | adantlr 711 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → 𝑊 ∈ Fin) |
253 | 64 | adantlr 711 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗):𝑊⟶ℝ) |
254 | 158 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → 𝑢 ∈ ℝ) |
255 | 79 | adantlr 711 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗):𝑊⟶ℝ) |
256 | 74, 254, 252, 255 | hsphoif 42422 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐻‘𝑢)‘(𝐷‘𝑗)):𝑊⟶ℝ) |
257 | 27, 252, 253, 256 | hoidmvcl 42428 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))) ∈ (0[,)+∞)) |
258 | 54, 257 | sseldi 3893 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))) ∈ (0[,]+∞)) |
259 | 258 | fmpttd 6749 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗)))):ℕ⟶(0[,]+∞)) |
260 | 251, 259 | sge0cl 42227 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))) ∈ (0[,]+∞)) |
261 | 251, 259 | sge0xrcl 42231 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))) ∈
ℝ*) |
262 | 86 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → +∞ ∈
ℝ*) |
263 | 89 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈
ℝ*) |
264 | | nfv 1896 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑗(𝜑 ∧ 𝑢 ∈ 𝑈) |
265 | 92 | adantlr 711 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)) ∈ (0[,]+∞)) |
266 | 95 | adantlr 711 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → 𝑍 ∈ (𝑊 ∖ 𝑌)) |
267 | 27, 252, 266, 9, 254, 74, 253, 255 | hsphoidmvle 42432 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))) ≤ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))) |
268 | 264, 251,
258, 265, 267 | sge0lempt 42256 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |
269 | 98 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) < +∞) |
270 | 261, 263,
262, 268, 269 | xrlelttrd 12407 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))) < +∞) |
271 | 261, 262,
270 | xrltned 41187 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))) ≠ +∞) |
272 | | ge0xrre 41370 |
. . . . . . . . . . . . . . . 16
⊢
(((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))) ∈ (0[,]+∞) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))) ≠ +∞) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))) ∈ ℝ) |
273 | 260, 271,
272 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))) ∈ ℝ) |
274 | 250, 273 | remulcld 10524 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗)))))) ∈ ℝ) |
275 | 126, 123 | sseldd 3896 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑆 ∈ ℝ) |
276 | 27, 30, 94, 9, 61, 76, 88, 65, 275 | sge0hsphoire 42435 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) ∈ ℝ) |
277 | 45, 276 | remulcld 10524 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) ∈ ℝ) |
278 | 277 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) ∈ ℝ) |
279 | 14 | eleq2i 2876 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 ∈ 𝑈 ↔ 𝑢 ∈ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))}) |
280 | 279 | biimpi 217 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ 𝑈 → 𝑢 ∈ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))}) |
281 | | oveq1 7030 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = 𝑢 → (𝑧 − (𝐴‘𝑍)) = (𝑢 − (𝐴‘𝑍))) |
282 | 281 | oveq2d 7039 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑢 → (𝐺 · (𝑧 − (𝐴‘𝑍))) = (𝐺 · (𝑢 − (𝐴‘𝑍)))) |
283 | | fveq2 6545 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧 = 𝑢 → (𝐻‘𝑧) = (𝐻‘𝑢)) |
284 | 283 | fveq1d 6547 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 = 𝑢 → ((𝐻‘𝑧)‘(𝐷‘𝑗)) = ((𝐻‘𝑢)‘(𝐷‘𝑗))) |
285 | 284 | oveq2d 7039 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 = 𝑢 → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))) = ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗)))) |
286 | 285 | mpteq2dv 5063 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = 𝑢 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))) |
287 | 286 | fveq2d 6549 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = 𝑢 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗)))))) |
288 | 287 | oveq2d 7039 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑢 → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))))) = ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))))) |
289 | 282, 288 | breq12d 4981 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑢 → ((𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))))) ↔ (𝐺 · (𝑢 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗)))))))) |
290 | 289 | elrab 3621 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} ↔ (𝑢 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∧ (𝐺 · (𝑢 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗)))))))) |
291 | 280, 290 | sylib 219 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ 𝑈 → (𝑢 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∧ (𝐺 · (𝑢 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗)))))))) |
292 | 291 | simprd 496 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ 𝑈 → (𝐺 · (𝑢 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))))) |
293 | 292 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝐺 · (𝑢 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))))) |
294 | 276 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) ∈ ℝ) |
295 | 51 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 0 ≤ (1 + 𝐸)) |
296 | 275 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑆 ∈ ℝ) |
297 | 74, 296, 60, 79 | hsphoif 42422 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐻‘𝑆)‘(𝐷‘𝑗)):𝑊⟶ℝ) |
298 | 27, 60, 64, 297 | hoidmvcl 42428 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) ∈ (0[,)+∞)) |
299 | 54, 298 | sseldi 3893 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) ∈ (0[,]+∞)) |
300 | 299 | adantlr 711 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) ∈ (0[,]+∞)) |
301 | 296 | adantlr 711 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → 𝑆 ∈ ℝ) |
302 | 127 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑈 ⊆ ℝ) |
303 | 121 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑈 ≠ ∅) |
304 | 131 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝑈 𝑧 ≤ 𝑦) |
305 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ∈ 𝑈) |
306 | | suprub 11456 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝑈 𝑧 ≤ 𝑦) ∧ 𝑢 ∈ 𝑈) → 𝑢 ≤ sup(𝑈, ℝ, < )) |
307 | 302, 303,
304, 305, 306 | syl31anc 1366 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ≤ sup(𝑈, ℝ, < )) |
308 | 307, 1 | syl6breqr 5010 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ≤ 𝑆) |
309 | 308 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → 𝑢 ≤ 𝑆) |
310 | 27, 252, 266, 9, 254, 301, 309, 74, 253, 255 | hsphoidmvle2 42431 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))) ≤ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))) |
311 | 264, 251,
258, 300, 310 | sge0lempt 42256 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗))))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) |
312 | 273, 294,
250, 295, 311 | lemul2ad 11434 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑢)‘(𝐷‘𝑗)))))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) |
313 | 249, 274,
278, 293, 312 | letrd 10650 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝐺 · (𝑢 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) |
314 | 313 | 3adant3 1125 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍)))) → (𝐺 · (𝑢 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) |
315 | 247, 314 | eqbrtrd 4990 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍)))) → 𝑐 ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) |
316 | 315 | 3exp 1112 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑢 ∈ 𝑈 → (𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))) → 𝑐 ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))))) |
317 | 316 | rexlimdv 3248 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))) → 𝑐 ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))))) |
318 | 317 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}) → (∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))) → 𝑐 ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))))) |
319 | 246, 318 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}) → 𝑐 ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) |
320 | 319 | ralrimiva 3151 |
. . . . . 6
⊢ (𝜑 → ∀𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}𝑐 ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) |
321 | 226 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}) → ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑐 = (𝐺 · 𝑡)) |
322 | | nfv 1896 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑡𝜑 |
323 | | nfcv 2951 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑡𝑐 |
324 | | nfre1 3271 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑡∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡) |
325 | 324 | nfab 2957 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑡{𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} |
326 | 323, 325 | nfel 2963 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑡 𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} |
327 | 322, 326 | nfan 1885 |
. . . . . . . . . . 11
⊢
Ⅎ𝑡(𝜑 ∧ 𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}) |
328 | | nfv 1896 |
. . . . . . . . . . 11
⊢
Ⅎ𝑡 𝑐 ∈ ℝ |
329 | 232 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) → ∃𝑢 ∈ 𝑈 𝑡 = (𝑢 − (𝐴‘𝑍))) |
330 | | simpr 485 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) ∧ 𝑐 = (𝐺 · 𝑡)) → 𝑐 = (𝐺 · 𝑡)) |
331 | 248 | 3adant3 1125 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) → 𝐺 ∈ ℝ) |
332 | | simp3 1131 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) → 𝑡 = (𝑢 − (𝐴‘𝑍))) |
333 | 173 | 3adant3 1125 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) → (𝑢 − (𝐴‘𝑍)) ∈ ℝ) |
334 | 332, 333 | eqeltrd 2885 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) → 𝑡 ∈ ℝ) |
335 | 331, 334 | remulcld 10524 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) → (𝐺 · 𝑡) ∈ ℝ) |
336 | 335 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) ∧ 𝑐 = (𝐺 · 𝑡)) → (𝐺 · 𝑡) ∈ ℝ) |
337 | 330, 336 | eqeltrd 2885 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) ∧ 𝑐 = (𝐺 · 𝑡)) → 𝑐 ∈ ℝ) |
338 | 337 | ex 413 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑡 = (𝑢 − (𝐴‘𝑍))) → (𝑐 = (𝐺 · 𝑡) → 𝑐 ∈ ℝ)) |
339 | 338 | 3exp 1112 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑢 ∈ 𝑈 → (𝑡 = (𝑢 − (𝐴‘𝑍)) → (𝑐 = (𝐺 · 𝑡) → 𝑐 ∈ ℝ)))) |
340 | 339 | rexlimdv 3248 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (∃𝑢 ∈ 𝑈 𝑡 = (𝑢 − (𝐴‘𝑍)) → (𝑐 = (𝐺 · 𝑡) → 𝑐 ∈ ℝ))) |
341 | 340 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) → (∃𝑢 ∈ 𝑈 𝑡 = (𝑢 − (𝐴‘𝑍)) → (𝑐 = (𝐺 · 𝑡) → 𝑐 ∈ ℝ))) |
342 | 329, 341 | mpd 15 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}) → (𝑐 = (𝐺 · 𝑡) → 𝑐 ∈ ℝ)) |
343 | 342 | ex 413 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} → (𝑐 = (𝐺 · 𝑡) → 𝑐 ∈ ℝ))) |
344 | 343 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}) → (𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} → (𝑐 = (𝐺 · 𝑡) → 𝑐 ∈ ℝ))) |
345 | 327, 328,
344 | rexlimd 3280 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}) → (∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑐 = (𝐺 · 𝑡) → 𝑐 ∈ ℝ)) |
346 | 321, 345 | mpd 15 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}) → 𝑐 ∈ ℝ) |
347 | 346 | ralrimiva 3151 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}𝑐 ∈ ℝ) |
348 | | dfss3 3884 |
. . . . . . . 8
⊢ ({𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} ⊆ ℝ ↔ ∀𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}𝑐 ∈ ℝ) |
349 | 347, 348 | sylibr 235 |
. . . . . . 7
⊢ (𝜑 → {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} ⊆ ℝ) |
350 | 40 | eqcomd 2803 |
. . . . . . . . . 10
⊢ (𝜑 → 0 = (𝐺 · 0)) |
351 | | oveq2 7031 |
. . . . . . . . . . 11
⊢ (𝑡 = 0 → (𝐺 · 𝑡) = (𝐺 · 0)) |
352 | 351 | rspceeqv 3579 |
. . . . . . . . . 10
⊢ ((0
∈ {𝑤 ∣
∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))} ∧ 0 = (𝐺 · 0)) → ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}0 = (𝐺 · 𝑡)) |
353 | 189, 350,
352 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}0 = (𝐺 · 𝑡)) |
354 | | eqeq1 2801 |
. . . . . . . . . . 11
⊢ (𝑣 = 0 → (𝑣 = (𝐺 · 𝑡) ↔ 0 = (𝐺 · 𝑡))) |
355 | 354 | rexbidv 3262 |
. . . . . . . . . 10
⊢ (𝑣 = 0 → (∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡) ↔ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}0 = (𝐺 · 𝑡))) |
356 | 185, 355 | elab 3608 |
. . . . . . . . 9
⊢ (0 ∈
{𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} ↔ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}0 = (𝐺 · 𝑡)) |
357 | 353, 356 | sylibr 235 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}) |
358 | | ne0i 4226 |
. . . . . . . 8
⊢ (0 ∈
{𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} → {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} ≠ ∅) |
359 | 357, 358 | syl 17 |
. . . . . . 7
⊢ (𝜑 → {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} ≠ ∅) |
360 | 38, 192 | remulcld 10524 |
. . . . . . . 8
⊢ (𝜑 → (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍))) ∈ ℝ) |
361 | 192 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ((𝐵‘𝑍) − (𝐴‘𝑍)) ∈ ℝ) |
362 | 137 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 0 ≤ 𝐺) |
363 | 13 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝐵‘𝑍) ∈ ℝ) |
364 | | iccleub 12646 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴‘𝑍) ∈ ℝ* ∧ (𝐵‘𝑍) ∈ ℝ* ∧ 𝑢 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍))) → 𝑢 ≤ (𝐵‘𝑍)) |
365 | 152, 154,
155, 364 | syl3anc 1364 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ≤ (𝐵‘𝑍)) |
366 | 158, 363,
159, 365 | lesub1dd 11110 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝑢 − (𝐴‘𝑍)) ≤ ((𝐵‘𝑍) − (𝐴‘𝑍))) |
367 | 173, 361,
248, 362, 366 | lemul2ad 11434 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (𝐺 · (𝑢 − (𝐴‘𝑍))) ≤ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍)))) |
368 | 367 | 3adant3 1125 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍)))) → (𝐺 · (𝑢 − (𝐴‘𝑍))) ≤ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍)))) |
369 | 247, 368 | eqbrtrd 4990 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈 ∧ 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍)))) → 𝑐 ≤ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍)))) |
370 | 369 | 3exp 1112 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑢 ∈ 𝑈 → (𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))) → 𝑐 ≤ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍)))))) |
371 | 370 | rexlimdv 3248 |
. . . . . . . . . . 11
⊢ (𝜑 → (∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))) → 𝑐 ≤ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍))))) |
372 | 371 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}) → (∃𝑢 ∈ 𝑈 𝑐 = (𝐺 · (𝑢 − (𝐴‘𝑍))) → 𝑐 ≤ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍))))) |
373 | 246, 372 | mpd 15 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}) → 𝑐 ≤ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍)))) |
374 | 373 | ralrimiva 3151 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}𝑐 ≤ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍)))) |
375 | | brralrspcev 5028 |
. . . . . . . 8
⊢ (((𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍))) ∈ ℝ ∧ ∀𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}𝑐 ≤ (𝐺 · ((𝐵‘𝑍) − (𝐴‘𝑍)))) → ∃𝑦 ∈ ℝ ∀𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}𝑐 ≤ 𝑦) |
376 | 360, 374,
375 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}𝑐 ≤ 𝑦) |
377 | | suprleub 11461 |
. . . . . . 7
⊢ ((({𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} ⊆ ℝ ∧ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)} ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}𝑐 ≤ 𝑦) ∧ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) ∈ ℝ) → (sup({𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}, ℝ, < ) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) ↔ ∀𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}𝑐 ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))))) |
378 | 349, 359,
376, 277, 377 | syl31anc 1366 |
. . . . . 6
⊢ (𝜑 → (sup({𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}, ℝ, < ) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) ↔ ∀𝑐 ∈ {𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}𝑐 ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))))) |
379 | 320, 378 | mpbird 258 |
. . . . 5
⊢ (𝜑 → sup({𝑣 ∣ ∃𝑡 ∈ {𝑤 ∣ ∃𝑢 ∈ 𝑈 𝑤 = (𝑢 − (𝐴‘𝑍))}𝑣 = (𝐺 · 𝑡)}, ℝ, < ) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) |
380 | 221, 379 | eqbrtrd 4990 |
. . . 4
⊢ (𝜑 → (𝐺 · (𝑆 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) |
381 | 123, 380 | jca 512 |
. . 3
⊢ (𝜑 → (𝑆 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∧ (𝐺 · (𝑆 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))))) |
382 | | oveq1 7030 |
. . . . . 6
⊢ (𝑧 = 𝑆 → (𝑧 − (𝐴‘𝑍)) = (𝑆 − (𝐴‘𝑍))) |
383 | 382 | oveq2d 7039 |
. . . . 5
⊢ (𝑧 = 𝑆 → (𝐺 · (𝑧 − (𝐴‘𝑍))) = (𝐺 · (𝑆 − (𝐴‘𝑍)))) |
384 | | fveq2 6545 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑆 → (𝐻‘𝑧) = (𝐻‘𝑆)) |
385 | 384 | fveq1d 6547 |
. . . . . . . . 9
⊢ (𝑧 = 𝑆 → ((𝐻‘𝑧)‘(𝐷‘𝑗)) = ((𝐻‘𝑆)‘(𝐷‘𝑗))) |
386 | 385 | oveq2d 7039 |
. . . . . . . 8
⊢ (𝑧 = 𝑆 → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))) = ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))) |
387 | 386 | mpteq2dv 5063 |
. . . . . . 7
⊢ (𝑧 = 𝑆 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) |
388 | 387 | fveq2d 6549 |
. . . . . 6
⊢ (𝑧 = 𝑆 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))) |
389 | 388 | oveq2d 7039 |
. . . . 5
⊢ (𝑧 = 𝑆 → ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))))) = ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))))) |
390 | 383, 389 | breq12d 4981 |
. . . 4
⊢ (𝑧 = 𝑆 → ((𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗)))))) ↔ (𝐺 · (𝑆 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))))) |
391 | 390 | elrab 3621 |
. . 3
⊢ (𝑆 ∈ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))} ↔ (𝑆 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∧ (𝐺 · (𝑆 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))))))) |
392 | 381, 391 | sylibr 235 |
. 2
⊢ (𝜑 → 𝑆 ∈ {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (𝐺 · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝐸) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑧)‘(𝐷‘𝑗))))))}) |
393 | 392, 14 | syl6eleqr 2896 |
1
⊢ (𝜑 → 𝑆 ∈ 𝑈) |