| Step | Hyp | Ref
| Expression |
| 1 | | vex 3484 |
. . . . 5
⊢ 𝑥 ∈ V |
| 2 | | foeq1 6816 |
. . . . 5
⊢ (ℎ = 𝑥 → (ℎ:𝐴–onto→𝐴 ↔ 𝑥:𝐴–onto→𝐴)) |
| 3 | 1, 2 | elab 3679 |
. . . 4
⊢ (𝑥 ∈ {ℎ ∣ ℎ:𝐴–onto→𝐴} ↔ 𝑥:𝐴–onto→𝐴) |
| 4 | | fof 6820 |
. . . . 5
⊢ (𝑥:𝐴–onto→𝐴 → 𝑥:𝐴⟶𝐴) |
| 5 | | sursubmefmnd.m |
. . . . . 6
⊢ 𝑀 = (EndoFMnd‘𝐴) |
| 6 | | eqid 2737 |
. . . . . 6
⊢
(Base‘𝑀) =
(Base‘𝑀) |
| 7 | 5, 6 | elefmndbas 18886 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (Base‘𝑀) ↔ 𝑥:𝐴⟶𝐴)) |
| 8 | 4, 7 | imbitrrid 246 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → (𝑥:𝐴–onto→𝐴 → 𝑥 ∈ (Base‘𝑀))) |
| 9 | 3, 8 | biimtrid 242 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ {ℎ ∣ ℎ:𝐴–onto→𝐴} → 𝑥 ∈ (Base‘𝑀))) |
| 10 | 9 | ssrdv 3989 |
. 2
⊢ (𝐴 ∈ 𝑉 → {ℎ ∣ ℎ:𝐴–onto→𝐴} ⊆ (Base‘𝑀)) |
| 11 | 5 | efmndid 18901 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) = (0g‘𝑀)) |
| 12 | | resiexg 7934 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) |
| 13 | | f1oi 6886 |
. . . . 5
⊢ ( I
↾ 𝐴):𝐴–1-1-onto→𝐴 |
| 14 | | f1ofo 6855 |
. . . . 5
⊢ (( I
↾ 𝐴):𝐴–1-1-onto→𝐴 → ( I ↾ 𝐴):𝐴–onto→𝐴) |
| 15 | 13, 14 | mp1i 13 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴):𝐴–onto→𝐴) |
| 16 | | foeq1 6816 |
. . . 4
⊢ (ℎ = ( I ↾ 𝐴) → (ℎ:𝐴–onto→𝐴 ↔ ( I ↾ 𝐴):𝐴–onto→𝐴)) |
| 17 | 12, 15, 16 | elabd 3681 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ {ℎ ∣ ℎ:𝐴–onto→𝐴}) |
| 18 | 11, 17 | eqeltrrd 2842 |
. 2
⊢ (𝐴 ∈ 𝑉 → (0g‘𝑀) ∈ {ℎ ∣ ℎ:𝐴–onto→𝐴}) |
| 19 | | vex 3484 |
. . . . . 6
⊢ 𝑦 ∈ V |
| 20 | | foeq1 6816 |
. . . . . 6
⊢ (ℎ = 𝑦 → (ℎ:𝐴–onto→𝐴 ↔ 𝑦:𝐴–onto→𝐴)) |
| 21 | 19, 20 | elab 3679 |
. . . . 5
⊢ (𝑦 ∈ {ℎ ∣ ℎ:𝐴–onto→𝐴} ↔ 𝑦:𝐴–onto→𝐴) |
| 22 | 3, 21 | anbi12i 628 |
. . . 4
⊢ ((𝑥 ∈ {ℎ ∣ ℎ:𝐴–onto→𝐴} ∧ 𝑦 ∈ {ℎ ∣ ℎ:𝐴–onto→𝐴}) ↔ (𝑥:𝐴–onto→𝐴 ∧ 𝑦:𝐴–onto→𝐴)) |
| 23 | | foco 6834 |
. . . . . . 7
⊢ ((𝑥:𝐴–onto→𝐴 ∧ 𝑦:𝐴–onto→𝐴) → (𝑥 ∘ 𝑦):𝐴–onto→𝐴) |
| 24 | 23 | adantl 481 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥:𝐴–onto→𝐴 ∧ 𝑦:𝐴–onto→𝐴)) → (𝑥 ∘ 𝑦):𝐴–onto→𝐴) |
| 25 | | fof 6820 |
. . . . . . . . . . . 12
⊢ (𝑦:𝐴–onto→𝐴 → 𝑦:𝐴⟶𝐴) |
| 26 | 4, 25 | anim12i 613 |
. . . . . . . . . . 11
⊢ ((𝑥:𝐴–onto→𝐴 ∧ 𝑦:𝐴–onto→𝐴) → (𝑥:𝐴⟶𝐴 ∧ 𝑦:𝐴⟶𝐴)) |
| 27 | 5, 6 | elefmndbas 18886 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ (Base‘𝑀) ↔ 𝑦:𝐴⟶𝐴)) |
| 28 | 7, 27 | anbi12d 632 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) ↔ (𝑥:𝐴⟶𝐴 ∧ 𝑦:𝐴⟶𝐴))) |
| 29 | 26, 28 | imbitrrid 246 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → ((𝑥:𝐴–onto→𝐴 ∧ 𝑦:𝐴–onto→𝐴) → (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)))) |
| 30 | 29 | imp 406 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥:𝐴–onto→𝐴 ∧ 𝑦:𝐴–onto→𝐴)) → (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) |
| 31 | | eqid 2737 |
. . . . . . . . . 10
⊢
(+g‘𝑀) = (+g‘𝑀) |
| 32 | 5, 6, 31 | efmndov 18894 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)𝑦) = (𝑥 ∘ 𝑦)) |
| 33 | 30, 32 | syl 17 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥:𝐴–onto→𝐴 ∧ 𝑦:𝐴–onto→𝐴)) → (𝑥(+g‘𝑀)𝑦) = (𝑥 ∘ 𝑦)) |
| 34 | 33 | eleq1d 2826 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥:𝐴–onto→𝐴 ∧ 𝑦:𝐴–onto→𝐴)) → ((𝑥(+g‘𝑀)𝑦) ∈ {ℎ ∣ ℎ:𝐴–onto→𝐴} ↔ (𝑥 ∘ 𝑦) ∈ {ℎ ∣ ℎ:𝐴–onto→𝐴})) |
| 35 | 1, 19 | coex 7952 |
. . . . . . . 8
⊢ (𝑥 ∘ 𝑦) ∈ V |
| 36 | | foeq1 6816 |
. . . . . . . 8
⊢ (ℎ = (𝑥 ∘ 𝑦) → (ℎ:𝐴–onto→𝐴 ↔ (𝑥 ∘ 𝑦):𝐴–onto→𝐴)) |
| 37 | 35, 36 | elab 3679 |
. . . . . . 7
⊢ ((𝑥 ∘ 𝑦) ∈ {ℎ ∣ ℎ:𝐴–onto→𝐴} ↔ (𝑥 ∘ 𝑦):𝐴–onto→𝐴) |
| 38 | 34, 37 | bitrdi 287 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥:𝐴–onto→𝐴 ∧ 𝑦:𝐴–onto→𝐴)) → ((𝑥(+g‘𝑀)𝑦) ∈ {ℎ ∣ ℎ:𝐴–onto→𝐴} ↔ (𝑥 ∘ 𝑦):𝐴–onto→𝐴)) |
| 39 | 24, 38 | mpbird 257 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥:𝐴–onto→𝐴 ∧ 𝑦:𝐴–onto→𝐴)) → (𝑥(+g‘𝑀)𝑦) ∈ {ℎ ∣ ℎ:𝐴–onto→𝐴}) |
| 40 | 39 | ex 412 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ((𝑥:𝐴–onto→𝐴 ∧ 𝑦:𝐴–onto→𝐴) → (𝑥(+g‘𝑀)𝑦) ∈ {ℎ ∣ ℎ:𝐴–onto→𝐴})) |
| 41 | 22, 40 | biimtrid 242 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ {ℎ ∣ ℎ:𝐴–onto→𝐴} ∧ 𝑦 ∈ {ℎ ∣ ℎ:𝐴–onto→𝐴}) → (𝑥(+g‘𝑀)𝑦) ∈ {ℎ ∣ ℎ:𝐴–onto→𝐴})) |
| 42 | 41 | ralrimivv 3200 |
. 2
⊢ (𝐴 ∈ 𝑉 → ∀𝑥 ∈ {ℎ ∣ ℎ:𝐴–onto→𝐴}∀𝑦 ∈ {ℎ ∣ ℎ:𝐴–onto→𝐴} (𝑥(+g‘𝑀)𝑦) ∈ {ℎ ∣ ℎ:𝐴–onto→𝐴}) |
| 43 | 5 | efmndmnd 18902 |
. . 3
⊢ (𝐴 ∈ 𝑉 → 𝑀 ∈ Mnd) |
| 44 | | eqid 2737 |
. . . 4
⊢
(0g‘𝑀) = (0g‘𝑀) |
| 45 | 6, 44, 31 | issubm 18816 |
. . 3
⊢ (𝑀 ∈ Mnd → ({ℎ ∣ ℎ:𝐴–onto→𝐴} ∈ (SubMnd‘𝑀) ↔ ({ℎ ∣ ℎ:𝐴–onto→𝐴} ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ {ℎ ∣ ℎ:𝐴–onto→𝐴} ∧ ∀𝑥 ∈ {ℎ ∣ ℎ:𝐴–onto→𝐴}∀𝑦 ∈ {ℎ ∣ ℎ:𝐴–onto→𝐴} (𝑥(+g‘𝑀)𝑦) ∈ {ℎ ∣ ℎ:𝐴–onto→𝐴}))) |
| 46 | 43, 45 | syl 17 |
. 2
⊢ (𝐴 ∈ 𝑉 → ({ℎ ∣ ℎ:𝐴–onto→𝐴} ∈ (SubMnd‘𝑀) ↔ ({ℎ ∣ ℎ:𝐴–onto→𝐴} ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ {ℎ ∣ ℎ:𝐴–onto→𝐴} ∧ ∀𝑥 ∈ {ℎ ∣ ℎ:𝐴–onto→𝐴}∀𝑦 ∈ {ℎ ∣ ℎ:𝐴–onto→𝐴} (𝑥(+g‘𝑀)𝑦) ∈ {ℎ ∣ ℎ:𝐴–onto→𝐴}))) |
| 47 | 10, 18, 42, 46 | mpbir3and 1343 |
1
⊢ (𝐴 ∈ 𝑉 → {ℎ ∣ ℎ:𝐴–onto→𝐴} ∈ (SubMnd‘𝑀)) |