Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > orvcval | Structured version Visualization version GIF version |
Description: Value of the preimage mapping operator applied on a given random variable and constant. (Contributed by Thierry Arnoux, 19-Jan-2017.) |
Ref | Expression |
---|---|
orvcval.1 | ⊢ (𝜑 → Fun 𝑋) |
orvcval.2 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
orvcval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
Ref | Expression |
---|---|
orvcval | ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-orvc 32402 | . . 3 ⊢ ∘RV/𝑐𝑅 = (𝑥 ∈ {𝑥 ∣ Fun 𝑥}, 𝑎 ∈ V ↦ (◡𝑥 “ {𝑦 ∣ 𝑦𝑅𝑎})) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ∘RV/𝑐𝑅 = (𝑥 ∈ {𝑥 ∣ Fun 𝑥}, 𝑎 ∈ V ↦ (◡𝑥 “ {𝑦 ∣ 𝑦𝑅𝑎}))) |
3 | simpl 482 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑎 = 𝐴) → 𝑥 = 𝑋) | |
4 | 3 | cnveqd 5781 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑎 = 𝐴) → ◡𝑥 = ◡𝑋) |
5 | simpr 484 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑎 = 𝐴) → 𝑎 = 𝐴) | |
6 | 5 | breq2d 5090 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑎 = 𝐴) → (𝑦𝑅𝑎 ↔ 𝑦𝑅𝐴)) |
7 | 6 | abbidv 2808 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑎 = 𝐴) → {𝑦 ∣ 𝑦𝑅𝑎} = {𝑦 ∣ 𝑦𝑅𝐴}) |
8 | 4, 7 | imaeq12d 5967 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑎 = 𝐴) → (◡𝑥 “ {𝑦 ∣ 𝑦𝑅𝑎}) = (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴})) |
9 | 8 | adantl 481 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑎 = 𝐴)) → (◡𝑥 “ {𝑦 ∣ 𝑦𝑅𝑎}) = (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴})) |
10 | orvcval.2 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
11 | orvcval.1 | . . 3 ⊢ (𝜑 → Fun 𝑋) | |
12 | funeq 6450 | . . 3 ⊢ (𝑥 = 𝑋 → (Fun 𝑥 ↔ Fun 𝑋)) | |
13 | 10, 11, 12 | elabd 3613 | . 2 ⊢ (𝜑 → 𝑋 ∈ {𝑥 ∣ Fun 𝑥}) |
14 | orvcval.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
15 | elex 3448 | . . 3 ⊢ (𝐴 ∈ 𝑊 → 𝐴 ∈ V) | |
16 | 14, 15 | syl 17 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
17 | cnvexg 7758 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ◡𝑋 ∈ V) | |
18 | imaexg 7749 | . . 3 ⊢ (◡𝑋 ∈ V → (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴}) ∈ V) | |
19 | 10, 17, 18 | 3syl 18 | . 2 ⊢ (𝜑 → (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴}) ∈ V) |
20 | 2, 9, 13, 16, 19 | ovmpod 7416 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 {cab 2716 Vcvv 3430 class class class wbr 5078 ◡ccnv 5587 “ cima 5591 Fun wfun 6424 (class class class)co 7268 ∈ cmpo 7270 ∘RV/𝑐corvc 32401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-orvc 32402 |
This theorem is referenced by: orvcval2 32404 orvcval4 32406 |
Copyright terms: Public domain | W3C validator |