| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > orvcval | Structured version Visualization version GIF version | ||
| Description: Value of the preimage mapping operator applied on a given random variable and constant. (Contributed by Thierry Arnoux, 19-Jan-2017.) |
| Ref | Expression |
|---|---|
| orvcval.1 | ⊢ (𝜑 → Fun 𝑋) |
| orvcval.2 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| orvcval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| orvcval | ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-orvc 34465 | . . 3 ⊢ ∘RV/𝑐𝑅 = (𝑥 ∈ {𝑥 ∣ Fun 𝑥}, 𝑎 ∈ V ↦ (◡𝑥 “ {𝑦 ∣ 𝑦𝑅𝑎})) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ∘RV/𝑐𝑅 = (𝑥 ∈ {𝑥 ∣ Fun 𝑥}, 𝑎 ∈ V ↦ (◡𝑥 “ {𝑦 ∣ 𝑦𝑅𝑎}))) |
| 3 | simpl 482 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑎 = 𝐴) → 𝑥 = 𝑋) | |
| 4 | 3 | cnveqd 5815 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑎 = 𝐴) → ◡𝑥 = ◡𝑋) |
| 5 | simpr 484 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑎 = 𝐴) → 𝑎 = 𝐴) | |
| 6 | 5 | breq2d 5103 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑎 = 𝐴) → (𝑦𝑅𝑎 ↔ 𝑦𝑅𝐴)) |
| 7 | 6 | abbidv 2797 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑎 = 𝐴) → {𝑦 ∣ 𝑦𝑅𝑎} = {𝑦 ∣ 𝑦𝑅𝐴}) |
| 8 | 4, 7 | imaeq12d 6010 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑎 = 𝐴) → (◡𝑥 “ {𝑦 ∣ 𝑦𝑅𝑎}) = (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴})) |
| 9 | 8 | adantl 481 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑎 = 𝐴)) → (◡𝑥 “ {𝑦 ∣ 𝑦𝑅𝑎}) = (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴})) |
| 10 | orvcval.2 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 11 | orvcval.1 | . . 3 ⊢ (𝜑 → Fun 𝑋) | |
| 12 | funeq 6501 | . . 3 ⊢ (𝑥 = 𝑋 → (Fun 𝑥 ↔ Fun 𝑋)) | |
| 13 | 10, 11, 12 | elabd 3637 | . 2 ⊢ (𝜑 → 𝑋 ∈ {𝑥 ∣ Fun 𝑥}) |
| 14 | orvcval.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
| 15 | elex 3457 | . . 3 ⊢ (𝐴 ∈ 𝑊 → 𝐴 ∈ V) | |
| 16 | 14, 15 | syl 17 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
| 17 | cnvexg 7854 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ◡𝑋 ∈ V) | |
| 18 | imaexg 7843 | . . 3 ⊢ (◡𝑋 ∈ V → (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴}) ∈ V) | |
| 19 | 10, 17, 18 | 3syl 18 | . 2 ⊢ (𝜑 → (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴}) ∈ V) |
| 20 | 2, 9, 13, 16, 19 | ovmpod 7498 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 Vcvv 3436 class class class wbr 5091 ◡ccnv 5615 “ cima 5619 Fun wfun 6475 (class class class)co 7346 ∈ cmpo 7348 ∘RV/𝑐corvc 34464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-orvc 34465 |
| This theorem is referenced by: orvcval2 34467 orvcval4 34469 |
| Copyright terms: Public domain | W3C validator |