Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orvcval Structured version   Visualization version   GIF version

Theorem orvcval 32324
Description: Value of the preimage mapping operator applied on a given random variable and constant. (Contributed by Thierry Arnoux, 19-Jan-2017.)
Hypotheses
Ref Expression
orvcval.1 (𝜑 → Fun 𝑋)
orvcval.2 (𝜑𝑋𝑉)
orvcval.3 (𝜑𝐴𝑊)
Assertion
Ref Expression
orvcval (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦𝑦𝑅𝐴}))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑋
Allowed substitution hints:   𝜑(𝑦)   𝑉(𝑦)   𝑊(𝑦)

Proof of Theorem orvcval
Dummy variables 𝑥 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-orvc 32323 . . 3 RV/𝑐𝑅 = (𝑥 ∈ {𝑥 ∣ Fun 𝑥}, 𝑎 ∈ V ↦ (𝑥 “ {𝑦𝑦𝑅𝑎}))
21a1i 11 . 2 (𝜑 → ∘RV/𝑐𝑅 = (𝑥 ∈ {𝑥 ∣ Fun 𝑥}, 𝑎 ∈ V ↦ (𝑥 “ {𝑦𝑦𝑅𝑎})))
3 simpl 482 . . . . 5 ((𝑥 = 𝑋𝑎 = 𝐴) → 𝑥 = 𝑋)
43cnveqd 5773 . . . 4 ((𝑥 = 𝑋𝑎 = 𝐴) → 𝑥 = 𝑋)
5 simpr 484 . . . . . 6 ((𝑥 = 𝑋𝑎 = 𝐴) → 𝑎 = 𝐴)
65breq2d 5082 . . . . 5 ((𝑥 = 𝑋𝑎 = 𝐴) → (𝑦𝑅𝑎𝑦𝑅𝐴))
76abbidv 2808 . . . 4 ((𝑥 = 𝑋𝑎 = 𝐴) → {𝑦𝑦𝑅𝑎} = {𝑦𝑦𝑅𝐴})
84, 7imaeq12d 5959 . . 3 ((𝑥 = 𝑋𝑎 = 𝐴) → (𝑥 “ {𝑦𝑦𝑅𝑎}) = (𝑋 “ {𝑦𝑦𝑅𝐴}))
98adantl 481 . 2 ((𝜑 ∧ (𝑥 = 𝑋𝑎 = 𝐴)) → (𝑥 “ {𝑦𝑦𝑅𝑎}) = (𝑋 “ {𝑦𝑦𝑅𝐴}))
10 orvcval.2 . . 3 (𝜑𝑋𝑉)
11 orvcval.1 . . 3 (𝜑 → Fun 𝑋)
12 funeq 6438 . . 3 (𝑥 = 𝑋 → (Fun 𝑥 ↔ Fun 𝑋))
1310, 11, 12elabd 3605 . 2 (𝜑𝑋 ∈ {𝑥 ∣ Fun 𝑥})
14 orvcval.3 . . 3 (𝜑𝐴𝑊)
15 elex 3440 . . 3 (𝐴𝑊𝐴 ∈ V)
1614, 15syl 17 . 2 (𝜑𝐴 ∈ V)
17 cnvexg 7745 . . 3 (𝑋𝑉𝑋 ∈ V)
18 imaexg 7736 . . 3 (𝑋 ∈ V → (𝑋 “ {𝑦𝑦𝑅𝐴}) ∈ V)
1910, 17, 183syl 18 . 2 (𝜑 → (𝑋 “ {𝑦𝑦𝑅𝐴}) ∈ V)
202, 9, 13, 16, 19ovmpod 7403 1 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦𝑦𝑅𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {cab 2715  Vcvv 3422   class class class wbr 5070  ccnv 5579  cima 5583  Fun wfun 6412  (class class class)co 7255  cmpo 7257  RV/𝑐corvc 32322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-orvc 32323
This theorem is referenced by:  orvcval2  32325  orvcval4  32327
  Copyright terms: Public domain W3C validator