Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orvcval Structured version   Visualization version   GIF version

Theorem orvcval 32424
Description: Value of the preimage mapping operator applied on a given random variable and constant. (Contributed by Thierry Arnoux, 19-Jan-2017.)
Hypotheses
Ref Expression
orvcval.1 (𝜑 → Fun 𝑋)
orvcval.2 (𝜑𝑋𝑉)
orvcval.3 (𝜑𝐴𝑊)
Assertion
Ref Expression
orvcval (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦𝑦𝑅𝐴}))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑋
Allowed substitution hints:   𝜑(𝑦)   𝑉(𝑦)   𝑊(𝑦)

Proof of Theorem orvcval
Dummy variables 𝑥 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-orvc 32423 . . 3 RV/𝑐𝑅 = (𝑥 ∈ {𝑥 ∣ Fun 𝑥}, 𝑎 ∈ V ↦ (𝑥 “ {𝑦𝑦𝑅𝑎}))
21a1i 11 . 2 (𝜑 → ∘RV/𝑐𝑅 = (𝑥 ∈ {𝑥 ∣ Fun 𝑥}, 𝑎 ∈ V ↦ (𝑥 “ {𝑦𝑦𝑅𝑎})))
3 simpl 483 . . . . 5 ((𝑥 = 𝑋𝑎 = 𝐴) → 𝑥 = 𝑋)
43cnveqd 5784 . . . 4 ((𝑥 = 𝑋𝑎 = 𝐴) → 𝑥 = 𝑋)
5 simpr 485 . . . . . 6 ((𝑥 = 𝑋𝑎 = 𝐴) → 𝑎 = 𝐴)
65breq2d 5086 . . . . 5 ((𝑥 = 𝑋𝑎 = 𝐴) → (𝑦𝑅𝑎𝑦𝑅𝐴))
76abbidv 2807 . . . 4 ((𝑥 = 𝑋𝑎 = 𝐴) → {𝑦𝑦𝑅𝑎} = {𝑦𝑦𝑅𝐴})
84, 7imaeq12d 5970 . . 3 ((𝑥 = 𝑋𝑎 = 𝐴) → (𝑥 “ {𝑦𝑦𝑅𝑎}) = (𝑋 “ {𝑦𝑦𝑅𝐴}))
98adantl 482 . 2 ((𝜑 ∧ (𝑥 = 𝑋𝑎 = 𝐴)) → (𝑥 “ {𝑦𝑦𝑅𝑎}) = (𝑋 “ {𝑦𝑦𝑅𝐴}))
10 orvcval.2 . . 3 (𝜑𝑋𝑉)
11 orvcval.1 . . 3 (𝜑 → Fun 𝑋)
12 funeq 6454 . . 3 (𝑥 = 𝑋 → (Fun 𝑥 ↔ Fun 𝑋))
1310, 11, 12elabd 3612 . 2 (𝜑𝑋 ∈ {𝑥 ∣ Fun 𝑥})
14 orvcval.3 . . 3 (𝜑𝐴𝑊)
15 elex 3450 . . 3 (𝐴𝑊𝐴 ∈ V)
1614, 15syl 17 . 2 (𝜑𝐴 ∈ V)
17 cnvexg 7771 . . 3 (𝑋𝑉𝑋 ∈ V)
18 imaexg 7762 . . 3 (𝑋 ∈ V → (𝑋 “ {𝑦𝑦𝑅𝐴}) ∈ V)
1910, 17, 183syl 18 . 2 (𝜑 → (𝑋 “ {𝑦𝑦𝑅𝐴}) ∈ V)
202, 9, 13, 16, 19ovmpod 7425 1 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦𝑦𝑅𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {cab 2715  Vcvv 3432   class class class wbr 5074  ccnv 5588  cima 5592  Fun wfun 6427  (class class class)co 7275  cmpo 7277  RV/𝑐corvc 32422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-orvc 32423
This theorem is referenced by:  orvcval2  32425  orvcval4  32427
  Copyright terms: Public domain W3C validator