Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orvcval Structured version   Visualization version   GIF version

Theorem orvcval 34490
Description: Value of the preimage mapping operator applied on a given random variable and constant. (Contributed by Thierry Arnoux, 19-Jan-2017.)
Hypotheses
Ref Expression
orvcval.1 (𝜑 → Fun 𝑋)
orvcval.2 (𝜑𝑋𝑉)
orvcval.3 (𝜑𝐴𝑊)
Assertion
Ref Expression
orvcval (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦𝑦𝑅𝐴}))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑋
Allowed substitution hints:   𝜑(𝑦)   𝑉(𝑦)   𝑊(𝑦)

Proof of Theorem orvcval
Dummy variables 𝑥 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-orvc 34489 . . 3 RV/𝑐𝑅 = (𝑥 ∈ {𝑥 ∣ Fun 𝑥}, 𝑎 ∈ V ↦ (𝑥 “ {𝑦𝑦𝑅𝑎}))
21a1i 11 . 2 (𝜑 → ∘RV/𝑐𝑅 = (𝑥 ∈ {𝑥 ∣ Fun 𝑥}, 𝑎 ∈ V ↦ (𝑥 “ {𝑦𝑦𝑅𝑎})))
3 simpl 482 . . . . 5 ((𝑥 = 𝑋𝑎 = 𝐴) → 𝑥 = 𝑋)
43cnveqd 5855 . . . 4 ((𝑥 = 𝑋𝑎 = 𝐴) → 𝑥 = 𝑋)
5 simpr 484 . . . . . 6 ((𝑥 = 𝑋𝑎 = 𝐴) → 𝑎 = 𝐴)
65breq2d 5131 . . . . 5 ((𝑥 = 𝑋𝑎 = 𝐴) → (𝑦𝑅𝑎𝑦𝑅𝐴))
76abbidv 2801 . . . 4 ((𝑥 = 𝑋𝑎 = 𝐴) → {𝑦𝑦𝑅𝑎} = {𝑦𝑦𝑅𝐴})
84, 7imaeq12d 6048 . . 3 ((𝑥 = 𝑋𝑎 = 𝐴) → (𝑥 “ {𝑦𝑦𝑅𝑎}) = (𝑋 “ {𝑦𝑦𝑅𝐴}))
98adantl 481 . 2 ((𝜑 ∧ (𝑥 = 𝑋𝑎 = 𝐴)) → (𝑥 “ {𝑦𝑦𝑅𝑎}) = (𝑋 “ {𝑦𝑦𝑅𝐴}))
10 orvcval.2 . . 3 (𝜑𝑋𝑉)
11 orvcval.1 . . 3 (𝜑 → Fun 𝑋)
12 funeq 6556 . . 3 (𝑥 = 𝑋 → (Fun 𝑥 ↔ Fun 𝑋))
1310, 11, 12elabd 3660 . 2 (𝜑𝑋 ∈ {𝑥 ∣ Fun 𝑥})
14 orvcval.3 . . 3 (𝜑𝐴𝑊)
15 elex 3480 . . 3 (𝐴𝑊𝐴 ∈ V)
1614, 15syl 17 . 2 (𝜑𝐴 ∈ V)
17 cnvexg 7920 . . 3 (𝑋𝑉𝑋 ∈ V)
18 imaexg 7909 . . 3 (𝑋 ∈ V → (𝑋 “ {𝑦𝑦𝑅𝐴}) ∈ V)
1910, 17, 183syl 18 . 2 (𝜑 → (𝑋 “ {𝑦𝑦𝑅𝐴}) ∈ V)
202, 9, 13, 16, 19ovmpod 7559 1 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦𝑦𝑅𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {cab 2713  Vcvv 3459   class class class wbr 5119  ccnv 5653  cima 5657  Fun wfun 6525  (class class class)co 7405  cmpo 7407  RV/𝑐corvc 34488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-orvc 34489
This theorem is referenced by:  orvcval2  34491  orvcval4  34493
  Copyright terms: Public domain W3C validator