Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orvcval Structured version   Visualization version   GIF version

Theorem orvcval 33922
Description: Value of the preimage mapping operator applied on a given random variable and constant. (Contributed by Thierry Arnoux, 19-Jan-2017.)
Hypotheses
Ref Expression
orvcval.1 (𝜑 → Fun 𝑋)
orvcval.2 (𝜑𝑋𝑉)
orvcval.3 (𝜑𝐴𝑊)
Assertion
Ref Expression
orvcval (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦𝑦𝑅𝐴}))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑋
Allowed substitution hints:   𝜑(𝑦)   𝑉(𝑦)   𝑊(𝑦)

Proof of Theorem orvcval
Dummy variables 𝑥 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-orvc 33921 . . 3 RV/𝑐𝑅 = (𝑥 ∈ {𝑥 ∣ Fun 𝑥}, 𝑎 ∈ V ↦ (𝑥 “ {𝑦𝑦𝑅𝑎}))
21a1i 11 . 2 (𝜑 → ∘RV/𝑐𝑅 = (𝑥 ∈ {𝑥 ∣ Fun 𝑥}, 𝑎 ∈ V ↦ (𝑥 “ {𝑦𝑦𝑅𝑎})))
3 simpl 482 . . . . 5 ((𝑥 = 𝑋𝑎 = 𝐴) → 𝑥 = 𝑋)
43cnveqd 5875 . . . 4 ((𝑥 = 𝑋𝑎 = 𝐴) → 𝑥 = 𝑋)
5 simpr 484 . . . . . 6 ((𝑥 = 𝑋𝑎 = 𝐴) → 𝑎 = 𝐴)
65breq2d 5160 . . . . 5 ((𝑥 = 𝑋𝑎 = 𝐴) → (𝑦𝑅𝑎𝑦𝑅𝐴))
76abbidv 2800 . . . 4 ((𝑥 = 𝑋𝑎 = 𝐴) → {𝑦𝑦𝑅𝑎} = {𝑦𝑦𝑅𝐴})
84, 7imaeq12d 6060 . . 3 ((𝑥 = 𝑋𝑎 = 𝐴) → (𝑥 “ {𝑦𝑦𝑅𝑎}) = (𝑋 “ {𝑦𝑦𝑅𝐴}))
98adantl 481 . 2 ((𝜑 ∧ (𝑥 = 𝑋𝑎 = 𝐴)) → (𝑥 “ {𝑦𝑦𝑅𝑎}) = (𝑋 “ {𝑦𝑦𝑅𝐴}))
10 orvcval.2 . . 3 (𝜑𝑋𝑉)
11 orvcval.1 . . 3 (𝜑 → Fun 𝑋)
12 funeq 6568 . . 3 (𝑥 = 𝑋 → (Fun 𝑥 ↔ Fun 𝑋))
1310, 11, 12elabd 3671 . 2 (𝜑𝑋 ∈ {𝑥 ∣ Fun 𝑥})
14 orvcval.3 . . 3 (𝜑𝐴𝑊)
15 elex 3492 . . 3 (𝐴𝑊𝐴 ∈ V)
1614, 15syl 17 . 2 (𝜑𝐴 ∈ V)
17 cnvexg 7919 . . 3 (𝑋𝑉𝑋 ∈ V)
18 imaexg 7910 . . 3 (𝑋 ∈ V → (𝑋 “ {𝑦𝑦𝑅𝐴}) ∈ V)
1910, 17, 183syl 18 . 2 (𝜑 → (𝑋 “ {𝑦𝑦𝑅𝐴}) ∈ V)
202, 9, 13, 16, 19ovmpod 7563 1 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦𝑦𝑅𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  {cab 2708  Vcvv 3473   class class class wbr 5148  ccnv 5675  cima 5679  Fun wfun 6537  (class class class)co 7412  cmpo 7414  RV/𝑐corvc 33920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-orvc 33921
This theorem is referenced by:  orvcval2  33923  orvcval4  33925
  Copyright terms: Public domain W3C validator