Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cfsetsnfsetf Structured version   Visualization version   GIF version

Theorem cfsetsnfsetf 47087
Description: The mapping of the class of singleton functions into the class of constant functions is a function. (Contributed by AV, 14-Sep-2024.)
Hypotheses
Ref Expression
cfsetsnfsetfv.f 𝐹 = {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)}
cfsetsnfsetfv.g 𝐺 = {𝑥𝑥:{𝑌}⟶𝐵}
cfsetsnfsetfv.h 𝐻 = (𝑔𝐺 ↦ (𝑎𝐴 ↦ (𝑔𝑌)))
Assertion
Ref Expression
cfsetsnfsetf ((𝐴𝑉𝑌𝐴) → 𝐻:𝐺𝐹)
Distinct variable groups:   𝐴,𝑎,𝑔   𝑔,𝐺   𝑔,𝑉   𝑔,𝑌   𝐴,𝑏,𝑓,𝑧   𝑥,𝐵   𝐵,𝑎,𝑏,𝑓   𝑔,𝐹   𝐺,𝑎,𝑏,𝑧   𝑉,𝑎,𝑏,𝑧   𝑌,𝑎,𝑏,𝑓,𝑧   𝑥,𝑌,𝑔   𝑔,𝑏,𝑓,𝑧
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑧,𝑔)   𝐹(𝑥,𝑧,𝑓,𝑎,𝑏)   𝐺(𝑥,𝑓)   𝐻(𝑥,𝑧,𝑓,𝑔,𝑎,𝑏)   𝑉(𝑥,𝑓)

Proof of Theorem cfsetsnfsetf
StepHypRef Expression
1 simpl 482 . . . . . 6 ((𝐴𝑉𝑌𝐴) → 𝐴𝑉)
21adantr 480 . . . . 5 (((𝐴𝑉𝑌𝐴) ∧ 𝑔𝐺) → 𝐴𝑉)
32mptexd 7216 . . . 4 (((𝐴𝑉𝑌𝐴) ∧ 𝑔𝐺) → (𝑎𝐴 ↦ (𝑔𝑌)) ∈ V)
4 vex 3463 . . . . . . . . . . 11 𝑔 ∈ V
5 feq1 6686 . . . . . . . . . . 11 (𝑥 = 𝑔 → (𝑥:{𝑌}⟶𝐵𝑔:{𝑌}⟶𝐵))
6 cfsetsnfsetfv.g . . . . . . . . . . 11 𝐺 = {𝑥𝑥:{𝑌}⟶𝐵}
74, 5, 6elab2 3661 . . . . . . . . . 10 (𝑔𝐺𝑔:{𝑌}⟶𝐵)
87biimpi 216 . . . . . . . . 9 (𝑔𝐺𝑔:{𝑌}⟶𝐵)
98adantl 481 . . . . . . . 8 (((𝐴𝑉𝑌𝐴) ∧ 𝑔𝐺) → 𝑔:{𝑌}⟶𝐵)
10 snidg 4636 . . . . . . . . . 10 (𝑌𝐴𝑌 ∈ {𝑌})
1110adantl 481 . . . . . . . . 9 ((𝐴𝑉𝑌𝐴) → 𝑌 ∈ {𝑌})
1211adantr 480 . . . . . . . 8 (((𝐴𝑉𝑌𝐴) ∧ 𝑔𝐺) → 𝑌 ∈ {𝑌})
139, 12ffvelcdmd 7075 . . . . . . 7 (((𝐴𝑉𝑌𝐴) ∧ 𝑔𝐺) → (𝑔𝑌) ∈ 𝐵)
1413adantr 480 . . . . . 6 ((((𝐴𝑉𝑌𝐴) ∧ 𝑔𝐺) ∧ 𝑎𝐴) → (𝑔𝑌) ∈ 𝐵)
1514fmpttd 7105 . . . . 5 (((𝐴𝑉𝑌𝐴) ∧ 𝑔𝐺) → (𝑎𝐴 ↦ (𝑔𝑌)):𝐴𝐵)
16 eqeq2 2747 . . . . . . . 8 (𝑏 = (𝑔𝑌) → ((𝑔𝑌) = 𝑏 ↔ (𝑔𝑌) = (𝑔𝑌)))
1716ralbidv 3163 . . . . . . 7 (𝑏 = (𝑔𝑌) → (∀𝑧𝐴 (𝑔𝑌) = 𝑏 ↔ ∀𝑧𝐴 (𝑔𝑌) = (𝑔𝑌)))
1817adantl 481 . . . . . 6 ((((𝐴𝑉𝑌𝐴) ∧ 𝑔𝐺) ∧ 𝑏 = (𝑔𝑌)) → (∀𝑧𝐴 (𝑔𝑌) = 𝑏 ↔ ∀𝑧𝐴 (𝑔𝑌) = (𝑔𝑌)))
19 eqidd 2736 . . . . . . 7 ((((𝐴𝑉𝑌𝐴) ∧ 𝑔𝐺) ∧ 𝑧𝐴) → (𝑔𝑌) = (𝑔𝑌))
2019ralrimiva 3132 . . . . . 6 (((𝐴𝑉𝑌𝐴) ∧ 𝑔𝐺) → ∀𝑧𝐴 (𝑔𝑌) = (𝑔𝑌))
2113, 18, 20rspcedvd 3603 . . . . 5 (((𝐴𝑉𝑌𝐴) ∧ 𝑔𝐺) → ∃𝑏𝐵𝑧𝐴 (𝑔𝑌) = 𝑏)
2215, 21jca 511 . . . 4 (((𝐴𝑉𝑌𝐴) ∧ 𝑔𝐺) → ((𝑎𝐴 ↦ (𝑔𝑌)):𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑔𝑌) = 𝑏))
23 feq1 6686 . . . . 5 (𝑓 = (𝑎𝐴 ↦ (𝑔𝑌)) → (𝑓:𝐴𝐵 ↔ (𝑎𝐴 ↦ (𝑔𝑌)):𝐴𝐵))
24 simpl 482 . . . . . . . . 9 ((𝑓 = (𝑎𝐴 ↦ (𝑔𝑌)) ∧ 𝑧𝐴) → 𝑓 = (𝑎𝐴 ↦ (𝑔𝑌)))
25 eqidd 2736 . . . . . . . . 9 (((𝑓 = (𝑎𝐴 ↦ (𝑔𝑌)) ∧ 𝑧𝐴) ∧ 𝑎 = 𝑧) → (𝑔𝑌) = (𝑔𝑌))
26 simpr 484 . . . . . . . . 9 ((𝑓 = (𝑎𝐴 ↦ (𝑔𝑌)) ∧ 𝑧𝐴) → 𝑧𝐴)
27 fvexd 6891 . . . . . . . . 9 ((𝑓 = (𝑎𝐴 ↦ (𝑔𝑌)) ∧ 𝑧𝐴) → (𝑔𝑌) ∈ V)
28 nfcv 2898 . . . . . . . . . . 11 𝑎𝑓
29 nfmpt1 5220 . . . . . . . . . . 11 𝑎(𝑎𝐴 ↦ (𝑔𝑌))
3028, 29nfeq 2912 . . . . . . . . . 10 𝑎 𝑓 = (𝑎𝐴 ↦ (𝑔𝑌))
31 nfv 1914 . . . . . . . . . 10 𝑎 𝑧𝐴
3230, 31nfan 1899 . . . . . . . . 9 𝑎(𝑓 = (𝑎𝐴 ↦ (𝑔𝑌)) ∧ 𝑧𝐴)
33 nfcv 2898 . . . . . . . . 9 𝑎𝑧
34 nfcv 2898 . . . . . . . . 9 𝑎(𝑔𝑌)
3524, 25, 26, 27, 32, 33, 34fvmptdf 6992 . . . . . . . 8 ((𝑓 = (𝑎𝐴 ↦ (𝑔𝑌)) ∧ 𝑧𝐴) → (𝑓𝑧) = (𝑔𝑌))
3635eqeq1d 2737 . . . . . . 7 ((𝑓 = (𝑎𝐴 ↦ (𝑔𝑌)) ∧ 𝑧𝐴) → ((𝑓𝑧) = 𝑏 ↔ (𝑔𝑌) = 𝑏))
3736ralbidva 3161 . . . . . 6 (𝑓 = (𝑎𝐴 ↦ (𝑔𝑌)) → (∀𝑧𝐴 (𝑓𝑧) = 𝑏 ↔ ∀𝑧𝐴 (𝑔𝑌) = 𝑏))
3837rexbidv 3164 . . . . 5 (𝑓 = (𝑎𝐴 ↦ (𝑔𝑌)) → (∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏 ↔ ∃𝑏𝐵𝑧𝐴 (𝑔𝑌) = 𝑏))
3923, 38anbi12d 632 . . . 4 (𝑓 = (𝑎𝐴 ↦ (𝑔𝑌)) → ((𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏) ↔ ((𝑎𝐴 ↦ (𝑔𝑌)):𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑔𝑌) = 𝑏)))
403, 22, 39elabd 3660 . . 3 (((𝐴𝑉𝑌𝐴) ∧ 𝑔𝐺) → (𝑎𝐴 ↦ (𝑔𝑌)) ∈ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)})
41 cfsetsnfsetfv.f . . 3 𝐹 = {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)}
4240, 41eleqtrrdi 2845 . 2 (((𝐴𝑉𝑌𝐴) ∧ 𝑔𝐺) → (𝑎𝐴 ↦ (𝑔𝑌)) ∈ 𝐹)
43 cfsetsnfsetfv.h . 2 𝐻 = (𝑔𝐺 ↦ (𝑎𝐴 ↦ (𝑔𝑌)))
4442, 43fmptd 7104 1 ((𝐴𝑉𝑌𝐴) → 𝐻:𝐺𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {cab 2713  wral 3051  wrex 3060  Vcvv 3459  {csn 4601  cmpt 5201  wf 6527  cfv 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539
This theorem is referenced by:  cfsetsnfsetf1  47088  cfsetsnfsetfo  47089
  Copyright terms: Public domain W3C validator