Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cfsetsnfsetf Structured version   Visualization version   GIF version

Theorem cfsetsnfsetf 44610
Description: The mapping of the class of singleton functions into the class of constant functions is a function. (Contributed by AV, 14-Sep-2024.)
Hypotheses
Ref Expression
cfsetsnfsetfv.f 𝐹 = {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)}
cfsetsnfsetfv.g 𝐺 = {𝑥𝑥:{𝑌}⟶𝐵}
cfsetsnfsetfv.h 𝐻 = (𝑔𝐺 ↦ (𝑎𝐴 ↦ (𝑔𝑌)))
Assertion
Ref Expression
cfsetsnfsetf ((𝐴𝑉𝑌𝐴) → 𝐻:𝐺𝐹)
Distinct variable groups:   𝐴,𝑎,𝑔   𝑔,𝐺   𝑔,𝑉   𝑔,𝑌   𝐴,𝑏,𝑓,𝑧   𝑥,𝐵   𝐵,𝑎,𝑏,𝑓   𝑔,𝐹   𝐺,𝑎,𝑏,𝑧   𝑉,𝑎,𝑏,𝑧   𝑌,𝑎,𝑏,𝑓,𝑧   𝑥,𝑌,𝑔   𝑔,𝑏,𝑓,𝑧
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑧,𝑔)   𝐹(𝑥,𝑧,𝑓,𝑎,𝑏)   𝐺(𝑥,𝑓)   𝐻(𝑥,𝑧,𝑓,𝑔,𝑎,𝑏)   𝑉(𝑥,𝑓)

Proof of Theorem cfsetsnfsetf
StepHypRef Expression
1 simpl 484 . . . . . 6 ((𝐴𝑉𝑌𝐴) → 𝐴𝑉)
21adantr 482 . . . . 5 (((𝐴𝑉𝑌𝐴) ∧ 𝑔𝐺) → 𝐴𝑉)
32mptexd 7132 . . . 4 (((𝐴𝑉𝑌𝐴) ∧ 𝑔𝐺) → (𝑎𝐴 ↦ (𝑔𝑌)) ∈ V)
4 vex 3441 . . . . . . . . . . 11 𝑔 ∈ V
5 feq1 6611 . . . . . . . . . . 11 (𝑥 = 𝑔 → (𝑥:{𝑌}⟶𝐵𝑔:{𝑌}⟶𝐵))
6 cfsetsnfsetfv.g . . . . . . . . . . 11 𝐺 = {𝑥𝑥:{𝑌}⟶𝐵}
74, 5, 6elab2 3618 . . . . . . . . . 10 (𝑔𝐺𝑔:{𝑌}⟶𝐵)
87biimpi 215 . . . . . . . . 9 (𝑔𝐺𝑔:{𝑌}⟶𝐵)
98adantl 483 . . . . . . . 8 (((𝐴𝑉𝑌𝐴) ∧ 𝑔𝐺) → 𝑔:{𝑌}⟶𝐵)
10 snidg 4599 . . . . . . . . . 10 (𝑌𝐴𝑌 ∈ {𝑌})
1110adantl 483 . . . . . . . . 9 ((𝐴𝑉𝑌𝐴) → 𝑌 ∈ {𝑌})
1211adantr 482 . . . . . . . 8 (((𝐴𝑉𝑌𝐴) ∧ 𝑔𝐺) → 𝑌 ∈ {𝑌})
139, 12ffvelcdmd 6994 . . . . . . 7 (((𝐴𝑉𝑌𝐴) ∧ 𝑔𝐺) → (𝑔𝑌) ∈ 𝐵)
1413adantr 482 . . . . . 6 ((((𝐴𝑉𝑌𝐴) ∧ 𝑔𝐺) ∧ 𝑎𝐴) → (𝑔𝑌) ∈ 𝐵)
1514fmpttd 7021 . . . . 5 (((𝐴𝑉𝑌𝐴) ∧ 𝑔𝐺) → (𝑎𝐴 ↦ (𝑔𝑌)):𝐴𝐵)
16 eqeq2 2748 . . . . . . . 8 (𝑏 = (𝑔𝑌) → ((𝑔𝑌) = 𝑏 ↔ (𝑔𝑌) = (𝑔𝑌)))
1716ralbidv 3171 . . . . . . 7 (𝑏 = (𝑔𝑌) → (∀𝑧𝐴 (𝑔𝑌) = 𝑏 ↔ ∀𝑧𝐴 (𝑔𝑌) = (𝑔𝑌)))
1817adantl 483 . . . . . 6 ((((𝐴𝑉𝑌𝐴) ∧ 𝑔𝐺) ∧ 𝑏 = (𝑔𝑌)) → (∀𝑧𝐴 (𝑔𝑌) = 𝑏 ↔ ∀𝑧𝐴 (𝑔𝑌) = (𝑔𝑌)))
19 eqidd 2737 . . . . . . 7 ((((𝐴𝑉𝑌𝐴) ∧ 𝑔𝐺) ∧ 𝑧𝐴) → (𝑔𝑌) = (𝑔𝑌))
2019ralrimiva 3140 . . . . . 6 (((𝐴𝑉𝑌𝐴) ∧ 𝑔𝐺) → ∀𝑧𝐴 (𝑔𝑌) = (𝑔𝑌))
2113, 18, 20rspcedvd 3568 . . . . 5 (((𝐴𝑉𝑌𝐴) ∧ 𝑔𝐺) → ∃𝑏𝐵𝑧𝐴 (𝑔𝑌) = 𝑏)
2215, 21jca 513 . . . 4 (((𝐴𝑉𝑌𝐴) ∧ 𝑔𝐺) → ((𝑎𝐴 ↦ (𝑔𝑌)):𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑔𝑌) = 𝑏))
23 feq1 6611 . . . . 5 (𝑓 = (𝑎𝐴 ↦ (𝑔𝑌)) → (𝑓:𝐴𝐵 ↔ (𝑎𝐴 ↦ (𝑔𝑌)):𝐴𝐵))
24 simpl 484 . . . . . . . . 9 ((𝑓 = (𝑎𝐴 ↦ (𝑔𝑌)) ∧ 𝑧𝐴) → 𝑓 = (𝑎𝐴 ↦ (𝑔𝑌)))
25 eqidd 2737 . . . . . . . . 9 (((𝑓 = (𝑎𝐴 ↦ (𝑔𝑌)) ∧ 𝑧𝐴) ∧ 𝑎 = 𝑧) → (𝑔𝑌) = (𝑔𝑌))
26 simpr 486 . . . . . . . . 9 ((𝑓 = (𝑎𝐴 ↦ (𝑔𝑌)) ∧ 𝑧𝐴) → 𝑧𝐴)
27 fvexd 6819 . . . . . . . . 9 ((𝑓 = (𝑎𝐴 ↦ (𝑔𝑌)) ∧ 𝑧𝐴) → (𝑔𝑌) ∈ V)
28 nfcv 2905 . . . . . . . . . . 11 𝑎𝑓
29 nfmpt1 5189 . . . . . . . . . . 11 𝑎(𝑎𝐴 ↦ (𝑔𝑌))
3028, 29nfeq 2918 . . . . . . . . . 10 𝑎 𝑓 = (𝑎𝐴 ↦ (𝑔𝑌))
31 nfv 1915 . . . . . . . . . 10 𝑎 𝑧𝐴
3230, 31nfan 1900 . . . . . . . . 9 𝑎(𝑓 = (𝑎𝐴 ↦ (𝑔𝑌)) ∧ 𝑧𝐴)
33 nfcv 2905 . . . . . . . . 9 𝑎𝑧
34 nfcv 2905 . . . . . . . . 9 𝑎(𝑔𝑌)
3524, 25, 26, 27, 32, 33, 34fvmptdf 6913 . . . . . . . 8 ((𝑓 = (𝑎𝐴 ↦ (𝑔𝑌)) ∧ 𝑧𝐴) → (𝑓𝑧) = (𝑔𝑌))
3635eqeq1d 2738 . . . . . . 7 ((𝑓 = (𝑎𝐴 ↦ (𝑔𝑌)) ∧ 𝑧𝐴) → ((𝑓𝑧) = 𝑏 ↔ (𝑔𝑌) = 𝑏))
3736ralbidva 3169 . . . . . 6 (𝑓 = (𝑎𝐴 ↦ (𝑔𝑌)) → (∀𝑧𝐴 (𝑓𝑧) = 𝑏 ↔ ∀𝑧𝐴 (𝑔𝑌) = 𝑏))
3837rexbidv 3172 . . . . 5 (𝑓 = (𝑎𝐴 ↦ (𝑔𝑌)) → (∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏 ↔ ∃𝑏𝐵𝑧𝐴 (𝑔𝑌) = 𝑏))
3923, 38anbi12d 632 . . . 4 (𝑓 = (𝑎𝐴 ↦ (𝑔𝑌)) → ((𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏) ↔ ((𝑎𝐴 ↦ (𝑔𝑌)):𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑔𝑌) = 𝑏)))
403, 22, 39elabd 3617 . . 3 (((𝐴𝑉𝑌𝐴) ∧ 𝑔𝐺) → (𝑎𝐴 ↦ (𝑔𝑌)) ∈ {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)})
41 cfsetsnfsetfv.f . . 3 𝐹 = {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)}
4240, 41eleqtrrdi 2848 . 2 (((𝐴𝑉𝑌𝐴) ∧ 𝑔𝐺) → (𝑎𝐴 ↦ (𝑔𝑌)) ∈ 𝐹)
43 cfsetsnfsetfv.h . 2 𝐻 = (𝑔𝐺 ↦ (𝑎𝐴 ↦ (𝑔𝑌)))
4442, 43fmptd 7020 1 ((𝐴𝑉𝑌𝐴) → 𝐻:𝐺𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104  {cab 2713  wral 3062  wrex 3071  Vcvv 3437  {csn 4565  cmpt 5164  wf 6454  cfv 6458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466
This theorem is referenced by:  cfsetsnfsetf1  44611  cfsetsnfsetfo  44612
  Copyright terms: Public domain W3C validator