Proof of Theorem cfsetsnfsetf
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpl 482 | . . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → 𝐴 ∈ 𝑉) | 
| 2 | 1 | adantr 480 | . . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ 𝑔 ∈ 𝐺) → 𝐴 ∈ 𝑉) | 
| 3 | 2 | mptexd 7244 | . . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ 𝑔 ∈ 𝐺) → (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)) ∈ V) | 
| 4 |  | vex 3484 | . . . . . . . . . . 11
⊢ 𝑔 ∈ V | 
| 5 |  | feq1 6716 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑔 → (𝑥:{𝑌}⟶𝐵 ↔ 𝑔:{𝑌}⟶𝐵)) | 
| 6 |  | cfsetsnfsetfv.g | . . . . . . . . . . 11
⊢ 𝐺 = {𝑥 ∣ 𝑥:{𝑌}⟶𝐵} | 
| 7 | 4, 5, 6 | elab2 3682 | . . . . . . . . . 10
⊢ (𝑔 ∈ 𝐺 ↔ 𝑔:{𝑌}⟶𝐵) | 
| 8 | 7 | biimpi 216 | . . . . . . . . 9
⊢ (𝑔 ∈ 𝐺 → 𝑔:{𝑌}⟶𝐵) | 
| 9 | 8 | adantl 481 | . . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ 𝑔 ∈ 𝐺) → 𝑔:{𝑌}⟶𝐵) | 
| 10 |  | snidg 4660 | . . . . . . . . . 10
⊢ (𝑌 ∈ 𝐴 → 𝑌 ∈ {𝑌}) | 
| 11 | 10 | adantl 481 | . . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → 𝑌 ∈ {𝑌}) | 
| 12 | 11 | adantr 480 | . . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ 𝑔 ∈ 𝐺) → 𝑌 ∈ {𝑌}) | 
| 13 | 9, 12 | ffvelcdmd 7105 | . . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ 𝑔 ∈ 𝐺) → (𝑔‘𝑌) ∈ 𝐵) | 
| 14 | 13 | adantr 480 | . . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ 𝑔 ∈ 𝐺) ∧ 𝑎 ∈ 𝐴) → (𝑔‘𝑌) ∈ 𝐵) | 
| 15 | 14 | fmpttd 7135 | . . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ 𝑔 ∈ 𝐺) → (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)):𝐴⟶𝐵) | 
| 16 |  | eqeq2 2749 | . . . . . . . 8
⊢ (𝑏 = (𝑔‘𝑌) → ((𝑔‘𝑌) = 𝑏 ↔ (𝑔‘𝑌) = (𝑔‘𝑌))) | 
| 17 | 16 | ralbidv 3178 | . . . . . . 7
⊢ (𝑏 = (𝑔‘𝑌) → (∀𝑧 ∈ 𝐴 (𝑔‘𝑌) = 𝑏 ↔ ∀𝑧 ∈ 𝐴 (𝑔‘𝑌) = (𝑔‘𝑌))) | 
| 18 | 17 | adantl 481 | . . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ 𝑔 ∈ 𝐺) ∧ 𝑏 = (𝑔‘𝑌)) → (∀𝑧 ∈ 𝐴 (𝑔‘𝑌) = 𝑏 ↔ ∀𝑧 ∈ 𝐴 (𝑔‘𝑌) = (𝑔‘𝑌))) | 
| 19 |  | eqidd 2738 | . . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ 𝑔 ∈ 𝐺) ∧ 𝑧 ∈ 𝐴) → (𝑔‘𝑌) = (𝑔‘𝑌)) | 
| 20 | 19 | ralrimiva 3146 | . . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ 𝑔 ∈ 𝐺) → ∀𝑧 ∈ 𝐴 (𝑔‘𝑌) = (𝑔‘𝑌)) | 
| 21 | 13, 18, 20 | rspcedvd 3624 | . . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ 𝑔 ∈ 𝐺) → ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑔‘𝑌) = 𝑏) | 
| 22 | 15, 21 | jca 511 | . . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ 𝑔 ∈ 𝐺) → ((𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)):𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑔‘𝑌) = 𝑏)) | 
| 23 |  | feq1 6716 | . . . . 5
⊢ (𝑓 = (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)) → (𝑓:𝐴⟶𝐵 ↔ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)):𝐴⟶𝐵)) | 
| 24 |  | simpl 482 | . . . . . . . . 9
⊢ ((𝑓 = (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)) ∧ 𝑧 ∈ 𝐴) → 𝑓 = (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) | 
| 25 |  | eqidd 2738 | . . . . . . . . 9
⊢ (((𝑓 = (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)) ∧ 𝑧 ∈ 𝐴) ∧ 𝑎 = 𝑧) → (𝑔‘𝑌) = (𝑔‘𝑌)) | 
| 26 |  | simpr 484 | . . . . . . . . 9
⊢ ((𝑓 = (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝐴) | 
| 27 |  | fvexd 6921 | . . . . . . . . 9
⊢ ((𝑓 = (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)) ∧ 𝑧 ∈ 𝐴) → (𝑔‘𝑌) ∈ V) | 
| 28 |  | nfcv 2905 | . . . . . . . . . . 11
⊢
Ⅎ𝑎𝑓 | 
| 29 |  | nfmpt1 5250 | . . . . . . . . . . 11
⊢
Ⅎ𝑎(𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)) | 
| 30 | 28, 29 | nfeq 2919 | . . . . . . . . . 10
⊢
Ⅎ𝑎 𝑓 = (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)) | 
| 31 |  | nfv 1914 | . . . . . . . . . 10
⊢
Ⅎ𝑎 𝑧 ∈ 𝐴 | 
| 32 | 30, 31 | nfan 1899 | . . . . . . . . 9
⊢
Ⅎ𝑎(𝑓 = (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)) ∧ 𝑧 ∈ 𝐴) | 
| 33 |  | nfcv 2905 | . . . . . . . . 9
⊢
Ⅎ𝑎𝑧 | 
| 34 |  | nfcv 2905 | . . . . . . . . 9
⊢
Ⅎ𝑎(𝑔‘𝑌) | 
| 35 | 24, 25, 26, 27, 32, 33, 34 | fvmptdf 7022 | . . . . . . . 8
⊢ ((𝑓 = (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)) ∧ 𝑧 ∈ 𝐴) → (𝑓‘𝑧) = (𝑔‘𝑌)) | 
| 36 | 35 | eqeq1d 2739 | . . . . . . 7
⊢ ((𝑓 = (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)) ∧ 𝑧 ∈ 𝐴) → ((𝑓‘𝑧) = 𝑏 ↔ (𝑔‘𝑌) = 𝑏)) | 
| 37 | 36 | ralbidva 3176 | . . . . . 6
⊢ (𝑓 = (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)) → (∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏 ↔ ∀𝑧 ∈ 𝐴 (𝑔‘𝑌) = 𝑏)) | 
| 38 | 37 | rexbidv 3179 | . . . . 5
⊢ (𝑓 = (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)) → (∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏 ↔ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑔‘𝑌) = 𝑏)) | 
| 39 | 23, 38 | anbi12d 632 | . . . 4
⊢ (𝑓 = (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)) → ((𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏) ↔ ((𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)):𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑔‘𝑌) = 𝑏))) | 
| 40 | 3, 22, 39 | elabd 3681 | . . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ 𝑔 ∈ 𝐺) → (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)) ∈ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)}) | 
| 41 |  | cfsetsnfsetfv.f | . . 3
⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} | 
| 42 | 40, 41 | eleqtrrdi 2852 | . 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) ∧ 𝑔 ∈ 𝐺) → (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)) ∈ 𝐹) | 
| 43 |  | cfsetsnfsetfv.h | . 2
⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) | 
| 44 | 42, 43 | fmptd 7134 | 1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → 𝐻:𝐺⟶𝐹) |