| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexlimivv | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.) |
| Ref | Expression |
|---|---|
| rexlimivv.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| rexlimivv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimivv.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) | |
| 2 | 1 | rexlimdva 3141 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 𝜑 → 𝜓)) |
| 3 | 2 | rexlimiv 3134 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3061 |
| This theorem is referenced by: r19.29vva 3201 2reu5 3741 2reu4 4498 opelxp 5690 elinxp 6006 reuop 6282 opiota 8056 f1o2ndf1 8119 poseq 8155 soseq 8156 tfrlem5 8392 xpdom2 9079 1sdomOLD 9255 unxpdomlem3 9258 elfiun 9440 ttrcltr 9728 xpnum 9963 kmlem9 10171 nqereu 10941 distrlem5pr 11039 mulrid 11231 1re 11233 mul02 11411 cnegex 11414 recex 11867 creur 12232 creui 12233 cju 12234 elz2 12604 zaddcl 12630 qre 12967 qaddcl 12979 qnegcl 12980 qmulcl 12981 qreccl 12983 elpqb 12990 hash2prd 14491 elss2prb 14504 fundmge2nop0 14518 wrdl3s3 14979 replim 15133 prodmo 15950 odd2np1 16358 opoe 16380 omoe 16381 opeo 16382 omeo 16383 qredeu 16675 pythagtriplem1 16834 pcz 16899 4sqlem1 16966 4sqlem2 16967 4sqlem4 16970 mul4sq 16972 pmtr3ncom 19454 efgmnvl 19693 efgrelexlema 19728 ring1ne0 20257 pzriprnglem8 21447 txuni2 23501 tx2ndc 23587 blssioo 24732 tgioo 24733 ioorf 25524 ioorinv 25527 ioorcl 25528 dyaddisj 25547 mbfid 25586 elply 26150 vmacl 27078 efvmacl 27080 vmalelog 27166 2sqlem2 27379 mul2sq 27380 2sqlem7 27385 2sqnn0 27399 2sqreultblem 27409 pntibnd 27554 ostth 27600 scutf 27774 zaddscl 28297 zmulscld 28300 elzn0s 28301 eln0zs 28303 zseo 28323 elzs12 28338 zs12bday 28341 remulscllem1 28349 legval 28509 upgredgpr 29067 nbgr2vtx1edg 29275 cusgredg 29349 usgredgsscusgredg 29385 wwlksnwwlksnon 29843 n4cyclfrgr 30218 vdgn1frgrv2 30223 friendshipgt3 30325 lpni 30407 nsnlplig 30408 nsnlpligALT 30409 n0lpligALT 30411 ipasslem5 30762 ipasslem11 30767 hhssnv 31191 shscli 31244 shsleji 31297 shsidmi 31311 spansncvi 31579 superpos 32281 chirredi 32321 mdsymlem6 32335 rnmposs 32598 1fldgenq 33262 ccfldextdgrr 33659 cnre2csqima 33888 dya2icobrsiga 34254 dya2iocnrect 34259 dya2iocucvr 34262 sxbrsigalem2 34264 afsval 34649 satfv0 35326 satfrnmapom 35338 satfv0fun 35339 satf00 35342 sat1el2xp 35347 fmla0xp 35351 fmla1 35355 msubco 35499 elaltxp 35939 altxpsspw 35941 funtransport 35995 funray 36104 funline 36106 ellines 36116 linethru 36117 icoreresf 37316 icoreclin 37321 relowlssretop 37327 relowlpssretop 37328 itg2addnc 37644 isline 39704 sn-it0e0 42405 sn-mullid 42425 sn-0tie0 42429 sn-mul02 42430 mzpcompact2lem 42721 sprvalpw 47442 sprvalpwn0 47445 prsprel 47449 prpair 47463 prprvalpw 47477 reuopreuprim 47488 nnsum3primesgbe 47754 nnsum4primesodd 47758 nnsum4primesoddALTV 47759 tgblthelfgott 47777 grtrif1o 47902 grtrissvtx 47904 gpgvtxel2 48000 nnpw2pb 48515 2arymaptf1 48581 |
| Copyright terms: Public domain | W3C validator |