![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexlimivv | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.) |
Ref | Expression |
---|---|
rexlimivv.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
rexlimivv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimivv.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) | |
2 | 1 | rexlimdva 3212 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 𝜑 → 𝜓)) |
3 | 2 | rexlimiv 3208 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∈ wcel 2157 ∃wrex 3090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 |
This theorem depends on definitions: df-bi 199 df-an 386 df-ex 1876 df-ral 3094 df-rex 3095 |
This theorem is referenced by: 2reu5 3614 opelxp 5348 elinxp 5644 opiota 7464 f1o2ndf1 7522 tfrlem5 7715 xpdom2 8297 1sdom 8405 unxpdomlem3 8408 unfi 8469 elfiun 8578 xpnum 9063 kmlem9 9268 nqereu 10039 distrlem5pr 10137 mulid1 10326 1re 10328 mul02 10504 cnegex 10507 recex 10951 creur 11306 creui 11307 cju 11308 elz2 11683 zaddcl 11707 qre 12038 qaddcl 12049 qnegcl 12050 qmulcl 12051 qreccl 12053 elpqb 12060 hash2prd 13506 elss2prb 13518 fundmge2nop0 13523 wrdl3s3 14048 replim 14197 prodmo 15003 odd2np1 15401 opoe 15423 omoe 15424 opeo 15425 omeo 15426 qredeu 15706 pythagtriplem1 15854 pcz 15918 4sqlem1 15985 4sqlem2 15986 4sqlem4 15989 mul4sq 15991 pmtr3ncom 18207 efgmnvl 18440 efgrelexlema 18477 ring1ne0 18907 txuni2 21697 tx2ndc 21783 blssioo 22926 tgioo 22927 ioorf 23681 ioorinv 23684 ioorcl 23685 dyaddisj 23704 mbfid 23743 elply 24292 vmacl 25196 efvmacl 25198 vmalelog 25282 2sqlem2 25495 mul2sq 25496 2sqlem7 25501 pntibnd 25634 ostth 25680 legval 25835 upgredgpr 26378 nbgr2vtx1edg 26588 cusgredg 26674 usgredgsscusgredg 26709 wwlksnwwlksnon 27202 n4cyclfrgr 27640 vdgn1frgrv2 27645 friendshipgt3 27783 lpni 27860 nsnlplig 27861 nsnlpligALT 27862 n0lpligALT 27864 ipasslem5 28215 ipasslem11 28220 hhssnv 28646 shscli 28701 shsleji 28754 shsidmi 28768 spansncvi 29036 superpos 29738 chirredi 29778 mdsymlem6 29792 rnmpt2ss 29991 cnre2csqima 30473 dya2icobrsiga 30854 dya2iocnrect 30859 dya2iocucvr 30862 sxbrsigalem2 30864 afsval 31269 msubco 31945 poseq 32266 soseq 32267 scutf 32432 elaltxp 32595 altxpsspw 32597 funtransport 32651 funray 32760 funline 32762 ellines 32772 linethru 32773 icoreresf 33698 icoreclin 33703 relowlssretop 33709 relowlpssretop 33710 itg2addnc 33952 isline 35760 mzpcompact2lem 38100 2reu4 41967 nnsum3primesgbe 42462 nnsum4primesodd 42466 nnsum4primesoddALTV 42467 tgblthelfgott 42485 sprvalpw 42529 sprvalpwn0 42532 prsprel 42536 nnpw2pb 43180 |
Copyright terms: Public domain | W3C validator |