![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexlimivv | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.) |
Ref | Expression |
---|---|
rexlimivv.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
rexlimivv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimivv.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) | |
2 | 1 | rexlimdva 3161 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 𝜑 → 𝜓)) |
3 | 2 | rexlimiv 3154 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-rex 3077 |
This theorem is referenced by: r19.29vva 3222 2reu5 3780 2reu4 4546 opelxp 5736 elinxp 6048 reuop 6324 opiota 8100 f1o2ndf1 8163 poseq 8199 soseq 8200 tfrlem5 8436 xpdom2 9133 1sdomOLD 9312 unxpdomlem3 9315 elfiun 9499 ttrcltr 9785 xpnum 10020 kmlem9 10228 nqereu 10998 distrlem5pr 11096 mulrid 11288 1re 11290 mul02 11468 cnegex 11471 recex 11922 creur 12287 creui 12288 cju 12289 elz2 12657 zaddcl 12683 qre 13018 qaddcl 13030 qnegcl 13031 qmulcl 13032 qreccl 13034 elpqb 13041 hash2prd 14524 elss2prb 14537 fundmge2nop0 14551 wrdl3s3 15011 replim 15165 prodmo 15984 odd2np1 16389 opoe 16411 omoe 16412 opeo 16413 omeo 16414 qredeu 16705 pythagtriplem1 16863 pcz 16928 4sqlem1 16995 4sqlem2 16996 4sqlem4 16999 mul4sq 17001 pmtr3ncom 19517 efgmnvl 19756 efgrelexlema 19791 ring1ne0 20322 pzriprnglem8 21522 txuni2 23594 tx2ndc 23680 blssioo 24836 tgioo 24837 ioorf 25627 ioorinv 25630 ioorcl 25631 dyaddisj 25650 mbfid 25689 elply 26254 vmacl 27179 efvmacl 27181 vmalelog 27267 2sqlem2 27480 mul2sq 27481 2sqlem7 27486 2sqnn0 27500 2sqreultblem 27510 pntibnd 27655 ostth 27701 scutf 27875 zaddscl 28398 zmulscld 28401 elzn0s 28402 eln0zs 28404 zseo 28424 elzs12 28439 zs12bday 28442 remulscllem1 28450 legval 28610 upgredgpr 29177 nbgr2vtx1edg 29385 cusgredg 29459 usgredgsscusgredg 29495 wwlksnwwlksnon 29948 n4cyclfrgr 30323 vdgn1frgrv2 30328 friendshipgt3 30430 lpni 30512 nsnlplig 30513 nsnlpligALT 30514 n0lpligALT 30516 ipasslem5 30867 ipasslem11 30872 hhssnv 31296 shscli 31349 shsleji 31402 shsidmi 31416 spansncvi 31684 superpos 32386 chirredi 32426 mdsymlem6 32440 rnmposs 32692 1fldgenq 33289 ccfldextdgrr 33682 cnre2csqima 33857 dya2icobrsiga 34241 dya2iocnrect 34246 dya2iocucvr 34249 sxbrsigalem2 34251 afsval 34648 satfv0 35326 satfrnmapom 35338 satfv0fun 35339 satf00 35342 sat1el2xp 35347 fmla0xp 35351 fmla1 35355 msubco 35499 elaltxp 35939 altxpsspw 35941 funtransport 35995 funray 36104 funline 36106 ellines 36116 linethru 36117 icoreresf 37318 icoreclin 37323 relowlssretop 37329 relowlpssretop 37330 itg2addnc 37634 isline 39696 sn-it0e0 42391 sn-mullid 42411 sn-0tie0 42415 sn-mul02 42416 mzpcompact2lem 42707 sprvalpw 47354 sprvalpwn0 47357 prsprel 47361 prpair 47375 prprvalpw 47389 reuopreuprim 47400 nnsum3primesgbe 47666 nnsum4primesodd 47670 nnsum4primesoddALTV 47671 tgblthelfgott 47689 grtrif1o 47793 grtrissvtx 47795 nnpw2pb 48321 2arymaptf1 48387 |
Copyright terms: Public domain | W3C validator |