![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexlimivv | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.) |
Ref | Expression |
---|---|
rexlimivv.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
rexlimivv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimivv.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) | |
2 | 1 | rexlimdva 3156 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 𝜑 → 𝜓)) |
3 | 2 | rexlimiv 3149 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 ∃wrex 3071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-rex 3072 |
This theorem is referenced by: r19.29vva 3214 2reu5 3755 2reu4 4527 opelxp 5713 elinxp 6020 reuop 6293 opiota 8045 f1o2ndf1 8108 poseq 8144 soseq 8145 tfrlem5 8380 xpdom2 9067 1sdomOLD 9249 unxpdomlem3 9252 unfiOLD 9313 elfiun 9425 ttrcltr 9711 xpnum 9946 kmlem9 10153 nqereu 10924 distrlem5pr 11022 mulrid 11212 1re 11214 mul02 11392 cnegex 11395 recex 11846 creur 12206 creui 12207 cju 12208 elz2 12576 zaddcl 12602 qre 12937 qaddcl 12949 qnegcl 12950 qmulcl 12951 qreccl 12953 elpqb 12960 hash2prd 14436 elss2prb 14448 fundmge2nop0 14453 wrdl3s3 14913 replim 15063 prodmo 15880 odd2np1 16284 opoe 16306 omoe 16307 opeo 16308 omeo 16309 qredeu 16595 pythagtriplem1 16749 pcz 16814 4sqlem1 16881 4sqlem2 16882 4sqlem4 16885 mul4sq 16887 pmtr3ncom 19343 efgmnvl 19582 efgrelexlema 19617 ring1ne0 20111 txuni2 23069 tx2ndc 23155 blssioo 24311 tgioo 24312 ioorf 25090 ioorinv 25093 ioorcl 25094 dyaddisj 25113 mbfid 25152 elply 25709 vmacl 26622 efvmacl 26624 vmalelog 26708 2sqlem2 26921 mul2sq 26922 2sqlem7 26927 2sqnn0 26941 2sqreultblem 26951 pntibnd 27096 ostth 27142 scutf 27313 legval 27835 upgredgpr 28402 nbgr2vtx1edg 28607 cusgredg 28681 usgredgsscusgredg 28716 wwlksnwwlksnon 29169 n4cyclfrgr 29544 vdgn1frgrv2 29549 friendshipgt3 29651 lpni 29733 nsnlplig 29734 nsnlpligALT 29735 n0lpligALT 29737 ipasslem5 30088 ipasslem11 30093 hhssnv 30517 shscli 30570 shsleji 30623 shsidmi 30637 spansncvi 30905 superpos 31607 chirredi 31647 mdsymlem6 31661 rnmposs 31899 1fldgenq 32412 ccfldextdgrr 32746 cnre2csqima 32891 dya2icobrsiga 33275 dya2iocnrect 33280 dya2iocucvr 33283 sxbrsigalem2 33285 afsval 33683 satfv0 34349 satfrnmapom 34361 satfv0fun 34362 satf00 34365 sat1el2xp 34370 fmla0xp 34374 fmla1 34378 msubco 34522 elaltxp 34947 altxpsspw 34949 funtransport 35003 funray 35112 funline 35114 ellines 35124 linethru 35125 icoreresf 36233 icoreclin 36238 relowlssretop 36244 relowlpssretop 36245 itg2addnc 36542 isline 38610 sn-it0e0 41288 sn-mullid 41308 sn-0tie0 41312 sn-mul02 41313 mzpcompact2lem 41489 sprvalpw 46148 sprvalpwn0 46151 prsprel 46155 prpair 46169 prprvalpw 46183 reuopreuprim 46194 nnsum3primesgbe 46460 nnsum4primesodd 46464 nnsum4primesoddALTV 46465 tgblthelfgott 46483 pzriprnglem8 46812 nnpw2pb 47273 2arymaptf1 47339 |
Copyright terms: Public domain | W3C validator |