Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexlimivv | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.) |
Ref | Expression |
---|---|
rexlimivv.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
rexlimivv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimivv.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) | |
2 | 1 | rexlimdva 3212 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 𝜑 → 𝜓)) |
3 | 2 | rexlimiv 3208 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-ral 3068 df-rex 3069 |
This theorem is referenced by: r19.29vva 3263 2reu5 3688 2reu4 4454 opelxp 5616 elinxp 5918 reuop 6185 opiota 7872 f1o2ndf1 7934 tfrlem5 8182 xpdom2 8807 1sdom 8955 unxpdomlem3 8958 unfiOLD 9011 elfiun 9119 xpnum 9640 kmlem9 9845 nqereu 10616 distrlem5pr 10714 mulid1 10904 1re 10906 mul02 11083 cnegex 11086 recex 11537 creur 11897 creui 11898 cju 11899 elz2 12267 zaddcl 12290 qre 12622 qaddcl 12634 qnegcl 12635 qmulcl 12636 qreccl 12638 elpqb 12645 hash2prd 14117 elss2prb 14129 fundmge2nop0 14134 wrdl3s3 14605 replim 14755 prodmo 15574 odd2np1 15978 opoe 16000 omoe 16001 opeo 16002 omeo 16003 qredeu 16291 pythagtriplem1 16445 pcz 16510 4sqlem1 16577 4sqlem2 16578 4sqlem4 16581 mul4sq 16583 pmtr3ncom 18998 efgmnvl 19235 efgrelexlema 19270 ring1ne0 19745 txuni2 22624 tx2ndc 22710 blssioo 23864 tgioo 23865 ioorf 24642 ioorinv 24645 ioorcl 24646 dyaddisj 24665 mbfid 24704 elply 25261 vmacl 26172 efvmacl 26174 vmalelog 26258 2sqlem2 26471 mul2sq 26472 2sqlem7 26477 2sqnn0 26491 2sqreultblem 26501 pntibnd 26646 ostth 26692 legval 26849 upgredgpr 27415 nbgr2vtx1edg 27620 cusgredg 27694 usgredgsscusgredg 27729 wwlksnwwlksnon 28181 n4cyclfrgr 28556 vdgn1frgrv2 28561 friendshipgt3 28663 lpni 28743 nsnlplig 28744 nsnlpligALT 28745 n0lpligALT 28747 ipasslem5 29098 ipasslem11 29103 hhssnv 29527 shscli 29580 shsleji 29633 shsidmi 29647 spansncvi 29915 superpos 30617 chirredi 30657 mdsymlem6 30671 rnmposs 30913 ccfldextdgrr 31644 cnre2csqima 31763 dya2icobrsiga 32143 dya2iocnrect 32148 dya2iocucvr 32151 sxbrsigalem2 32153 afsval 32551 satfv0 33220 satfrnmapom 33232 satfv0fun 33233 satf00 33236 sat1el2xp 33241 fmla0xp 33245 fmla1 33249 msubco 33393 ttrcltr 33702 poxp3 33723 poseq 33729 soseq 33730 scutf 33933 elaltxp 34204 altxpsspw 34206 funtransport 34260 funray 34369 funline 34371 ellines 34381 linethru 34382 icoreresf 35450 icoreclin 35455 relowlssretop 35461 relowlpssretop 35462 itg2addnc 35758 isline 37680 sn-it0e0 40318 sn-mulid2 40338 sn-0tie0 40342 sn-mul02 40343 mzpcompact2lem 40489 sprvalpw 44820 sprvalpwn0 44823 prsprel 44827 prpair 44841 prprvalpw 44855 reuopreuprim 44866 nnsum3primesgbe 45132 nnsum4primesodd 45136 nnsum4primesoddALTV 45137 tgblthelfgott 45155 nnpw2pb 45821 2arymaptf1 45887 |
Copyright terms: Public domain | W3C validator |