| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexlimivv | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.) |
| Ref | Expression |
|---|---|
| rexlimivv.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| rexlimivv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimivv.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) | |
| 2 | 1 | rexlimdva 3133 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 𝜑 → 𝜓)) |
| 3 | 2 | rexlimiv 3126 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-rex 3057 |
| This theorem is referenced by: r19.29vva 3192 2reu5 3712 2reu4 4468 opelxp 5647 elinxp 5963 reuop 6235 opiota 7986 f1o2ndf1 8047 poseq 8083 soseq 8084 tfrlem5 8294 xpdom2 8980 unxpdomlem3 9137 elfiun 9309 ttrcltr 9601 xpnum 9839 kmlem9 10045 nqereu 10815 distrlem5pr 10913 mulrid 11105 1re 11107 mul02 11286 cnegex 11289 recex 11744 creur 12114 creui 12115 cju 12116 elz2 12481 zaddcl 12507 qre 12846 qaddcl 12858 qnegcl 12859 qmulcl 12860 qreccl 12862 elpqb 12869 hash2prd 14377 elss2prb 14390 fundmge2nop0 14404 wrdl3s3 14864 replim 15018 prodmo 15838 odd2np1 16247 opoe 16269 omoe 16270 opeo 16271 omeo 16272 qredeu 16564 pythagtriplem1 16723 pcz 16788 4sqlem1 16855 4sqlem2 16856 4sqlem4 16859 mul4sq 16861 pmtr3ncom 19382 efgmnvl 19621 efgrelexlema 19656 ring1ne0 20212 pzriprnglem8 21420 txuni2 23475 tx2ndc 23561 blssioo 24705 tgioo 24706 ioorf 25496 ioorinv 25499 ioorcl 25500 dyaddisj 25519 mbfid 25558 elply 26122 vmacl 27050 efvmacl 27052 vmalelog 27138 2sqlem2 27351 mul2sq 27352 2sqlem7 27357 2sqnn0 27371 2sqreultblem 27381 pntibnd 27526 ostth 27572 scutf 27748 zaddscl 28313 zmulscld 28316 elzn0s 28317 eln0zs 28319 zseo 28340 elzs12 28378 zs12no 28381 zs12addscl 28382 zs12half 28385 zs12zodd 28387 zs12bday 28389 remulscllem1 28397 legval 28557 upgredgpr 29115 nbgr2vtx1edg 29323 cusgredg 29397 usgredgsscusgredg 29433 wwlksnwwlksnon 29888 n4cyclfrgr 30263 vdgn1frgrv2 30268 friendshipgt3 30370 lpni 30452 nsnlplig 30453 nsnlpligALT 30454 n0lpligALT 30456 ipasslem5 30807 ipasslem11 30812 hhssnv 31236 shscli 31289 shsleji 31342 shsidmi 31356 spansncvi 31624 superpos 32326 chirredi 32366 mdsymlem6 32380 rnmposs 32648 1fldgenq 33280 ccfldextdgrr 33677 cnre2csqima 33916 dya2icobrsiga 34281 dya2iocnrect 34286 dya2iocucvr 34289 sxbrsigalem2 34291 afsval 34676 satfv0 35394 satfrnmapom 35406 satfv0fun 35407 satf00 35410 sat1el2xp 35415 fmla0xp 35419 fmla1 35423 msubco 35567 elaltxp 36009 altxpsspw 36011 funtransport 36065 funray 36174 funline 36176 ellines 36186 linethru 36187 icoreresf 37386 icoreclin 37391 relowlssretop 37397 relowlpssretop 37398 itg2addnc 37714 isline 39778 sn-it0e0 42449 sn-mullid 42469 sn-0tie0 42484 sn-mul02 42485 mzpcompact2lem 42784 sprvalpw 47511 sprvalpwn0 47514 prsprel 47518 prpair 47532 prprvalpw 47546 reuopreuprim 47557 nnsum3primesgbe 47823 nnsum4primesodd 47827 nnsum4primesoddALTV 47828 tgblthelfgott 47846 grtrif1o 47973 grtrissvtx 47975 gpgvtxel2 48079 pgn4cyclex 48157 nnpw2pb 48619 2arymaptf1 48685 |
| Copyright terms: Public domain | W3C validator |