![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexlimivv | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.) |
Ref | Expression |
---|---|
rexlimivv.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
rexlimivv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimivv.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) | |
2 | 1 | rexlimdva 3154 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 𝜑 → 𝜓)) |
3 | 2 | rexlimiv 3147 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 ∃wrex 3069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1781 df-rex 3070 |
This theorem is referenced by: r19.29vva 3212 2reu5 3755 2reu4 4527 opelxp 5713 elinxp 6020 reuop 6293 opiota 8048 f1o2ndf1 8111 poseq 8147 soseq 8148 tfrlem5 8383 xpdom2 9070 1sdomOLD 9252 unxpdomlem3 9255 unfiOLD 9316 elfiun 9428 ttrcltr 9714 xpnum 9949 kmlem9 10156 nqereu 10927 distrlem5pr 11025 mulrid 11217 1re 11219 mul02 11397 cnegex 11400 recex 11851 creur 12211 creui 12212 cju 12213 elz2 12581 zaddcl 12607 qre 12942 qaddcl 12954 qnegcl 12955 qmulcl 12956 qreccl 12958 elpqb 12965 hash2prd 14441 elss2prb 14453 fundmge2nop0 14458 wrdl3s3 14918 replim 15068 prodmo 15885 odd2np1 16289 opoe 16311 omoe 16312 opeo 16313 omeo 16314 qredeu 16600 pythagtriplem1 16754 pcz 16819 4sqlem1 16886 4sqlem2 16887 4sqlem4 16890 mul4sq 16892 pmtr3ncom 19385 efgmnvl 19624 efgrelexlema 19659 ring1ne0 20188 pzriprnglem8 21258 txuni2 23290 tx2ndc 23376 blssioo 24532 tgioo 24533 ioorf 25323 ioorinv 25326 ioorcl 25327 dyaddisj 25346 mbfid 25385 elply 25942 vmacl 26855 efvmacl 26857 vmalelog 26941 2sqlem2 27154 mul2sq 27155 2sqlem7 27160 2sqnn0 27174 2sqreultblem 27184 pntibnd 27329 ostth 27375 scutf 27547 legval 28099 upgredgpr 28666 nbgr2vtx1edg 28871 cusgredg 28945 usgredgsscusgredg 28980 wwlksnwwlksnon 29433 n4cyclfrgr 29808 vdgn1frgrv2 29813 friendshipgt3 29915 lpni 29997 nsnlplig 29998 nsnlpligALT 29999 n0lpligALT 30001 ipasslem5 30352 ipasslem11 30357 hhssnv 30781 shscli 30834 shsleji 30887 shsidmi 30901 spansncvi 31169 superpos 31871 chirredi 31911 mdsymlem6 31925 rnmposs 32163 1fldgenq 32679 ccfldextdgrr 33032 cnre2csqima 33186 dya2icobrsiga 33570 dya2iocnrect 33575 dya2iocucvr 33578 sxbrsigalem2 33580 afsval 33978 satfv0 34644 satfrnmapom 34656 satfv0fun 34657 satf00 34660 sat1el2xp 34665 fmla0xp 34669 fmla1 34673 msubco 34817 elaltxp 35248 altxpsspw 35250 funtransport 35304 funray 35413 funline 35415 ellines 35425 linethru 35426 icoreresf 36537 icoreclin 36542 relowlssretop 36548 relowlpssretop 36549 itg2addnc 36846 isline 38914 sn-it0e0 41591 sn-mullid 41611 sn-0tie0 41615 sn-mul02 41616 mzpcompact2lem 41792 sprvalpw 46448 sprvalpwn0 46451 prsprel 46455 prpair 46469 prprvalpw 46483 reuopreuprim 46494 nnsum3primesgbe 46760 nnsum4primesodd 46764 nnsum4primesoddALTV 46765 tgblthelfgott 46783 nnpw2pb 47362 2arymaptf1 47428 |
Copyright terms: Public domain | W3C validator |