| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexlimivv | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.) |
| Ref | Expression |
|---|---|
| rexlimivv.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| rexlimivv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimivv.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) | |
| 2 | 1 | rexlimdva 3134 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 𝜑 → 𝜓)) |
| 3 | 2 | rexlimiv 3127 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: r19.29vva 3197 2reu5 3729 2reu4 4486 opelxp 5674 elinxp 5990 reuop 6266 opiota 8038 f1o2ndf1 8101 poseq 8137 soseq 8138 tfrlem5 8348 xpdom2 9036 1sdomOLD 9196 unxpdomlem3 9199 elfiun 9381 ttrcltr 9669 xpnum 9904 kmlem9 10112 nqereu 10882 distrlem5pr 10980 mulrid 11172 1re 11174 mul02 11352 cnegex 11355 recex 11810 creur 12180 creui 12181 cju 12182 elz2 12547 zaddcl 12573 qre 12912 qaddcl 12924 qnegcl 12925 qmulcl 12926 qreccl 12928 elpqb 12935 hash2prd 14440 elss2prb 14453 fundmge2nop0 14467 wrdl3s3 14928 replim 15082 prodmo 15902 odd2np1 16311 opoe 16333 omoe 16334 opeo 16335 omeo 16336 qredeu 16628 pythagtriplem1 16787 pcz 16852 4sqlem1 16919 4sqlem2 16920 4sqlem4 16923 mul4sq 16925 pmtr3ncom 19405 efgmnvl 19644 efgrelexlema 19679 ring1ne0 20208 pzriprnglem8 21398 txuni2 23452 tx2ndc 23538 blssioo 24683 tgioo 24684 ioorf 25474 ioorinv 25477 ioorcl 25478 dyaddisj 25497 mbfid 25536 elply 26100 vmacl 27028 efvmacl 27030 vmalelog 27116 2sqlem2 27329 mul2sq 27330 2sqlem7 27335 2sqnn0 27349 2sqreultblem 27359 pntibnd 27504 ostth 27550 scutf 27724 zaddscl 28282 zmulscld 28285 elzn0s 28286 eln0zs 28288 zseo 28308 elzs12 28337 zs12bday 28343 remulscllem1 28351 legval 28511 upgredgpr 29069 nbgr2vtx1edg 29277 cusgredg 29351 usgredgsscusgredg 29387 wwlksnwwlksnon 29845 n4cyclfrgr 30220 vdgn1frgrv2 30225 friendshipgt3 30327 lpni 30409 nsnlplig 30410 nsnlpligALT 30411 n0lpligALT 30413 ipasslem5 30764 ipasslem11 30769 hhssnv 31193 shscli 31246 shsleji 31299 shsidmi 31313 spansncvi 31581 superpos 32283 chirredi 32323 mdsymlem6 32337 rnmposs 32598 1fldgenq 33272 ccfldextdgrr 33667 cnre2csqima 33901 dya2icobrsiga 34267 dya2iocnrect 34272 dya2iocucvr 34275 sxbrsigalem2 34277 afsval 34662 satfv0 35345 satfrnmapom 35357 satfv0fun 35358 satf00 35361 sat1el2xp 35366 fmla0xp 35370 fmla1 35374 msubco 35518 elaltxp 35963 altxpsspw 35965 funtransport 36019 funray 36128 funline 36130 ellines 36140 linethru 36141 icoreresf 37340 icoreclin 37345 relowlssretop 37351 relowlpssretop 37352 itg2addnc 37668 isline 39733 sn-it0e0 42404 sn-mullid 42424 sn-0tie0 42439 sn-mul02 42440 mzpcompact2lem 42739 sprvalpw 47481 sprvalpwn0 47484 prsprel 47488 prpair 47502 prprvalpw 47516 reuopreuprim 47527 nnsum3primesgbe 47793 nnsum4primesodd 47797 nnsum4primesoddALTV 47798 tgblthelfgott 47816 grtrif1o 47941 grtrissvtx 47943 gpgvtxel2 48039 pgn4cyclex 48116 nnpw2pb 48576 2arymaptf1 48642 |
| Copyright terms: Public domain | W3C validator |