![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexlimivv | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.) |
Ref | Expression |
---|---|
rexlimivv.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
rexlimivv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimivv.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) | |
2 | 1 | rexlimdva 3152 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 𝜑 → 𝜓)) |
3 | 2 | rexlimiv 3145 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 ∃wrex 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-rex 3068 |
This theorem is referenced by: r19.29vva 3213 2reu5 3766 2reu4 4528 opelxp 5724 elinxp 6038 reuop 6314 opiota 8082 f1o2ndf1 8145 poseq 8181 soseq 8182 tfrlem5 8418 xpdom2 9105 1sdomOLD 9282 unxpdomlem3 9285 elfiun 9467 ttrcltr 9753 xpnum 9988 kmlem9 10196 nqereu 10966 distrlem5pr 11064 mulrid 11256 1re 11258 mul02 11436 cnegex 11439 recex 11892 creur 12257 creui 12258 cju 12259 elz2 12628 zaddcl 12654 qre 12992 qaddcl 13004 qnegcl 13005 qmulcl 13006 qreccl 13008 elpqb 13015 hash2prd 14510 elss2prb 14523 fundmge2nop0 14537 wrdl3s3 14997 replim 15151 prodmo 15968 odd2np1 16374 opoe 16396 omoe 16397 opeo 16398 omeo 16399 qredeu 16691 pythagtriplem1 16849 pcz 16914 4sqlem1 16981 4sqlem2 16982 4sqlem4 16985 mul4sq 16987 pmtr3ncom 19507 efgmnvl 19746 efgrelexlema 19781 ring1ne0 20312 pzriprnglem8 21516 txuni2 23588 tx2ndc 23674 blssioo 24830 tgioo 24831 ioorf 25621 ioorinv 25624 ioorcl 25625 dyaddisj 25644 mbfid 25683 elply 26248 vmacl 27175 efvmacl 27177 vmalelog 27263 2sqlem2 27476 mul2sq 27477 2sqlem7 27482 2sqnn0 27496 2sqreultblem 27506 pntibnd 27651 ostth 27697 scutf 27871 zaddscl 28394 zmulscld 28397 elzn0s 28398 eln0zs 28400 zseo 28420 elzs12 28435 zs12bday 28438 remulscllem1 28446 legval 28606 upgredgpr 29173 nbgr2vtx1edg 29381 cusgredg 29455 usgredgsscusgredg 29491 wwlksnwwlksnon 29944 n4cyclfrgr 30319 vdgn1frgrv2 30324 friendshipgt3 30426 lpni 30508 nsnlplig 30509 nsnlpligALT 30510 n0lpligALT 30512 ipasslem5 30863 ipasslem11 30868 hhssnv 31292 shscli 31345 shsleji 31398 shsidmi 31412 spansncvi 31680 superpos 32382 chirredi 32422 mdsymlem6 32436 rnmposs 32690 1fldgenq 33303 ccfldextdgrr 33696 cnre2csqima 33871 dya2icobrsiga 34257 dya2iocnrect 34262 dya2iocucvr 34265 sxbrsigalem2 34267 afsval 34664 satfv0 35342 satfrnmapom 35354 satfv0fun 35355 satf00 35358 sat1el2xp 35363 fmla0xp 35367 fmla1 35371 msubco 35515 elaltxp 35956 altxpsspw 35958 funtransport 36012 funray 36121 funline 36123 ellines 36133 linethru 36134 icoreresf 37334 icoreclin 37339 relowlssretop 37345 relowlpssretop 37346 itg2addnc 37660 isline 39721 sn-it0e0 42421 sn-mullid 42441 sn-0tie0 42445 sn-mul02 42446 mzpcompact2lem 42738 sprvalpw 47404 sprvalpwn0 47407 prsprel 47411 prpair 47425 prprvalpw 47439 reuopreuprim 47450 nnsum3primesgbe 47716 nnsum4primesodd 47720 nnsum4primesoddALTV 47721 tgblthelfgott 47739 grtrif1o 47846 grtrissvtx 47848 gpgvtxel2 47941 nnpw2pb 48436 2arymaptf1 48502 |
Copyright terms: Public domain | W3C validator |