| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexlimivv | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.) |
| Ref | Expression |
|---|---|
| rexlimivv.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| rexlimivv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimivv.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) | |
| 2 | 1 | rexlimdva 3134 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 𝜑 → 𝜓)) |
| 3 | 2 | rexlimiv 3127 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: r19.29vva 3195 2reu5 3726 2reu4 4482 opelxp 5667 elinxp 5979 reuop 6254 opiota 8017 f1o2ndf1 8078 poseq 8114 soseq 8115 tfrlem5 8325 xpdom2 9013 1sdomOLD 9172 unxpdomlem3 9175 elfiun 9357 ttrcltr 9645 xpnum 9880 kmlem9 10088 nqereu 10858 distrlem5pr 10956 mulrid 11148 1re 11150 mul02 11328 cnegex 11331 recex 11786 creur 12156 creui 12157 cju 12158 elz2 12523 zaddcl 12549 qre 12888 qaddcl 12900 qnegcl 12901 qmulcl 12902 qreccl 12904 elpqb 12911 hash2prd 14416 elss2prb 14429 fundmge2nop0 14443 wrdl3s3 14904 replim 15058 prodmo 15878 odd2np1 16287 opoe 16309 omoe 16310 opeo 16311 omeo 16312 qredeu 16604 pythagtriplem1 16763 pcz 16828 4sqlem1 16895 4sqlem2 16896 4sqlem4 16899 mul4sq 16901 pmtr3ncom 19381 efgmnvl 19620 efgrelexlema 19655 ring1ne0 20184 pzriprnglem8 21374 txuni2 23428 tx2ndc 23514 blssioo 24659 tgioo 24660 ioorf 25450 ioorinv 25453 ioorcl 25454 dyaddisj 25473 mbfid 25512 elply 26076 vmacl 27004 efvmacl 27006 vmalelog 27092 2sqlem2 27305 mul2sq 27306 2sqlem7 27311 2sqnn0 27325 2sqreultblem 27335 pntibnd 27480 ostth 27526 scutf 27700 zaddscl 28258 zmulscld 28261 elzn0s 28262 eln0zs 28264 zseo 28284 elzs12 28313 zs12bday 28319 remulscllem1 28327 legval 28487 upgredgpr 29045 nbgr2vtx1edg 29253 cusgredg 29327 usgredgsscusgredg 29363 wwlksnwwlksnon 29818 n4cyclfrgr 30193 vdgn1frgrv2 30198 friendshipgt3 30300 lpni 30382 nsnlplig 30383 nsnlpligALT 30384 n0lpligALT 30386 ipasslem5 30737 ipasslem11 30742 hhssnv 31166 shscli 31219 shsleji 31272 shsidmi 31286 spansncvi 31554 superpos 32256 chirredi 32296 mdsymlem6 32310 rnmposs 32571 1fldgenq 33245 ccfldextdgrr 33640 cnre2csqima 33874 dya2icobrsiga 34240 dya2iocnrect 34245 dya2iocucvr 34248 sxbrsigalem2 34250 afsval 34635 satfv0 35318 satfrnmapom 35330 satfv0fun 35331 satf00 35334 sat1el2xp 35339 fmla0xp 35343 fmla1 35347 msubco 35491 elaltxp 35936 altxpsspw 35938 funtransport 35992 funray 36101 funline 36103 ellines 36113 linethru 36114 icoreresf 37313 icoreclin 37318 relowlssretop 37324 relowlpssretop 37325 itg2addnc 37641 isline 39706 sn-it0e0 42377 sn-mullid 42397 sn-0tie0 42412 sn-mul02 42413 mzpcompact2lem 42712 sprvalpw 47454 sprvalpwn0 47457 prsprel 47461 prpair 47475 prprvalpw 47489 reuopreuprim 47500 nnsum3primesgbe 47766 nnsum4primesodd 47770 nnsum4primesoddALTV 47771 tgblthelfgott 47789 grtrif1o 47914 grtrissvtx 47916 gpgvtxel2 48012 pgn4cyclex 48089 nnpw2pb 48549 2arymaptf1 48615 |
| Copyright terms: Public domain | W3C validator |