| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexlimivv | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.) |
| Ref | Expression |
|---|---|
| rexlimivv.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| rexlimivv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimivv.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) | |
| 2 | 1 | rexlimdva 3135 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 𝜑 → 𝜓)) |
| 3 | 2 | rexlimiv 3128 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3055 |
| This theorem is referenced by: r19.29vva 3198 2reu5 3732 2reu4 4489 opelxp 5677 elinxp 5993 reuop 6269 opiota 8041 f1o2ndf1 8104 poseq 8140 soseq 8141 tfrlem5 8351 xpdom2 9041 1sdomOLD 9203 unxpdomlem3 9206 elfiun 9388 ttrcltr 9676 xpnum 9911 kmlem9 10119 nqereu 10889 distrlem5pr 10987 mulrid 11179 1re 11181 mul02 11359 cnegex 11362 recex 11817 creur 12187 creui 12188 cju 12189 elz2 12554 zaddcl 12580 qre 12919 qaddcl 12931 qnegcl 12932 qmulcl 12933 qreccl 12935 elpqb 12942 hash2prd 14447 elss2prb 14460 fundmge2nop0 14474 wrdl3s3 14935 replim 15089 prodmo 15909 odd2np1 16318 opoe 16340 omoe 16341 opeo 16342 omeo 16343 qredeu 16635 pythagtriplem1 16794 pcz 16859 4sqlem1 16926 4sqlem2 16927 4sqlem4 16930 mul4sq 16932 pmtr3ncom 19412 efgmnvl 19651 efgrelexlema 19686 ring1ne0 20215 pzriprnglem8 21405 txuni2 23459 tx2ndc 23545 blssioo 24690 tgioo 24691 ioorf 25481 ioorinv 25484 ioorcl 25485 dyaddisj 25504 mbfid 25543 elply 26107 vmacl 27035 efvmacl 27037 vmalelog 27123 2sqlem2 27336 mul2sq 27337 2sqlem7 27342 2sqnn0 27356 2sqreultblem 27366 pntibnd 27511 ostth 27557 scutf 27731 zaddscl 28289 zmulscld 28292 elzn0s 28293 eln0zs 28295 zseo 28315 elzs12 28344 zs12bday 28350 remulscllem1 28358 legval 28518 upgredgpr 29076 nbgr2vtx1edg 29284 cusgredg 29358 usgredgsscusgredg 29394 wwlksnwwlksnon 29852 n4cyclfrgr 30227 vdgn1frgrv2 30232 friendshipgt3 30334 lpni 30416 nsnlplig 30417 nsnlpligALT 30418 n0lpligALT 30420 ipasslem5 30771 ipasslem11 30776 hhssnv 31200 shscli 31253 shsleji 31306 shsidmi 31320 spansncvi 31588 superpos 32290 chirredi 32330 mdsymlem6 32344 rnmposs 32605 1fldgenq 33279 ccfldextdgrr 33674 cnre2csqima 33908 dya2icobrsiga 34274 dya2iocnrect 34279 dya2iocucvr 34282 sxbrsigalem2 34284 afsval 34669 satfv0 35352 satfrnmapom 35364 satfv0fun 35365 satf00 35368 sat1el2xp 35373 fmla0xp 35377 fmla1 35381 msubco 35525 elaltxp 35970 altxpsspw 35972 funtransport 36026 funray 36135 funline 36137 ellines 36147 linethru 36148 icoreresf 37347 icoreclin 37352 relowlssretop 37358 relowlpssretop 37359 itg2addnc 37675 isline 39740 sn-it0e0 42411 sn-mullid 42431 sn-0tie0 42446 sn-mul02 42447 mzpcompact2lem 42746 sprvalpw 47485 sprvalpwn0 47488 prsprel 47492 prpair 47506 prprvalpw 47520 reuopreuprim 47531 nnsum3primesgbe 47797 nnsum4primesodd 47801 nnsum4primesoddALTV 47802 tgblthelfgott 47820 grtrif1o 47945 grtrissvtx 47947 gpgvtxel2 48043 pgn4cyclex 48120 nnpw2pb 48580 2arymaptf1 48646 |
| Copyright terms: Public domain | W3C validator |