| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexlimivv | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.) |
| Ref | Expression |
|---|---|
| rexlimivv.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| rexlimivv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimivv.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) | |
| 2 | 1 | rexlimdva 3130 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 𝜑 → 𝜓)) |
| 3 | 2 | rexlimiv 3123 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: r19.29vva 3189 2reu5 3718 2reu4 4474 opelxp 5655 elinxp 5970 reuop 6241 opiota 7994 f1o2ndf1 8055 poseq 8091 soseq 8092 tfrlem5 8302 xpdom2 8989 unxpdomlem3 9147 elfiun 9320 ttrcltr 9612 xpnum 9847 kmlem9 10053 nqereu 10823 distrlem5pr 10921 mulrid 11113 1re 11115 mul02 11294 cnegex 11297 recex 11752 creur 12122 creui 12123 cju 12124 elz2 12489 zaddcl 12515 qre 12854 qaddcl 12866 qnegcl 12867 qmulcl 12868 qreccl 12870 elpqb 12877 hash2prd 14382 elss2prb 14395 fundmge2nop0 14409 wrdl3s3 14869 replim 15023 prodmo 15843 odd2np1 16252 opoe 16274 omoe 16275 opeo 16276 omeo 16277 qredeu 16569 pythagtriplem1 16728 pcz 16793 4sqlem1 16860 4sqlem2 16861 4sqlem4 16864 mul4sq 16866 pmtr3ncom 19354 efgmnvl 19593 efgrelexlema 19628 ring1ne0 20184 pzriprnglem8 21395 txuni2 23450 tx2ndc 23536 blssioo 24681 tgioo 24682 ioorf 25472 ioorinv 25475 ioorcl 25476 dyaddisj 25495 mbfid 25534 elply 26098 vmacl 27026 efvmacl 27028 vmalelog 27114 2sqlem2 27327 mul2sq 27328 2sqlem7 27333 2sqnn0 27347 2sqreultblem 27357 pntibnd 27502 ostth 27548 scutf 27723 zaddscl 28287 zmulscld 28290 elzn0s 28291 eln0zs 28293 zseo 28314 elzs12 28350 zs12no 28353 zs12addscl 28354 zs12half 28357 zs12zodd 28359 zs12bday 28361 remulscllem1 28369 legval 28529 upgredgpr 29087 nbgr2vtx1edg 29295 cusgredg 29369 usgredgsscusgredg 29405 wwlksnwwlksnon 29860 n4cyclfrgr 30235 vdgn1frgrv2 30240 friendshipgt3 30342 lpni 30424 nsnlplig 30425 nsnlpligALT 30426 n0lpligALT 30428 ipasslem5 30779 ipasslem11 30784 hhssnv 31208 shscli 31261 shsleji 31314 shsidmi 31328 spansncvi 31596 superpos 32298 chirredi 32338 mdsymlem6 32352 rnmposs 32617 1fldgenq 33261 ccfldextdgrr 33639 cnre2csqima 33878 dya2icobrsiga 34244 dya2iocnrect 34249 dya2iocucvr 34252 sxbrsigalem2 34254 afsval 34639 satfv0 35331 satfrnmapom 35343 satfv0fun 35344 satf00 35347 sat1el2xp 35352 fmla0xp 35356 fmla1 35360 msubco 35504 elaltxp 35949 altxpsspw 35951 funtransport 36005 funray 36114 funline 36116 ellines 36126 linethru 36127 icoreresf 37326 icoreclin 37331 relowlssretop 37337 relowlpssretop 37338 itg2addnc 37654 isline 39718 sn-it0e0 42389 sn-mullid 42409 sn-0tie0 42424 sn-mul02 42425 mzpcompact2lem 42724 sprvalpw 47464 sprvalpwn0 47467 prsprel 47471 prpair 47485 prprvalpw 47499 reuopreuprim 47510 nnsum3primesgbe 47776 nnsum4primesodd 47780 nnsum4primesoddALTV 47781 tgblthelfgott 47799 grtrif1o 47926 grtrissvtx 47928 gpgvtxel2 48032 pgn4cyclex 48110 nnpw2pb 48572 2arymaptf1 48638 |
| Copyright terms: Public domain | W3C validator |