Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexlimivv | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.) |
Ref | Expression |
---|---|
rexlimivv.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
rexlimivv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimivv.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) | |
2 | 1 | rexlimdva 3213 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 𝜑 → 𝜓)) |
3 | 2 | rexlimiv 3209 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-ral 3069 df-rex 3070 |
This theorem is referenced by: r19.29vva 3266 2reu5 3693 2reu4 4457 opelxp 5625 elinxp 5929 reuop 6196 opiota 7899 f1o2ndf1 7963 tfrlem5 8211 xpdom2 8854 1sdom 9025 unxpdomlem3 9029 unfiOLD 9081 elfiun 9189 ttrcltr 9474 xpnum 9709 kmlem9 9914 nqereu 10685 distrlem5pr 10783 mulid1 10973 1re 10975 mul02 11153 cnegex 11156 recex 11607 creur 11967 creui 11968 cju 11969 elz2 12337 zaddcl 12360 qre 12693 qaddcl 12705 qnegcl 12706 qmulcl 12707 qreccl 12709 elpqb 12716 hash2prd 14189 elss2prb 14201 fundmge2nop0 14206 wrdl3s3 14677 replim 14827 prodmo 15646 odd2np1 16050 opoe 16072 omoe 16073 opeo 16074 omeo 16075 qredeu 16363 pythagtriplem1 16517 pcz 16582 4sqlem1 16649 4sqlem2 16650 4sqlem4 16653 mul4sq 16655 pmtr3ncom 19083 efgmnvl 19320 efgrelexlema 19355 ring1ne0 19830 txuni2 22716 tx2ndc 22802 blssioo 23958 tgioo 23959 ioorf 24737 ioorinv 24740 ioorcl 24741 dyaddisj 24760 mbfid 24799 elply 25356 vmacl 26267 efvmacl 26269 vmalelog 26353 2sqlem2 26566 mul2sq 26567 2sqlem7 26572 2sqnn0 26586 2sqreultblem 26596 pntibnd 26741 ostth 26787 legval 26945 upgredgpr 27512 nbgr2vtx1edg 27717 cusgredg 27791 usgredgsscusgredg 27826 wwlksnwwlksnon 28280 n4cyclfrgr 28655 vdgn1frgrv2 28660 friendshipgt3 28762 lpni 28842 nsnlplig 28843 nsnlpligALT 28844 n0lpligALT 28846 ipasslem5 29197 ipasslem11 29202 hhssnv 29626 shscli 29679 shsleji 29732 shsidmi 29746 spansncvi 30014 superpos 30716 chirredi 30756 mdsymlem6 30770 rnmposs 31011 ccfldextdgrr 31742 cnre2csqima 31861 dya2icobrsiga 32243 dya2iocnrect 32248 dya2iocucvr 32251 sxbrsigalem2 32253 afsval 32651 satfv0 33320 satfrnmapom 33332 satfv0fun 33333 satf00 33336 sat1el2xp 33341 fmla0xp 33345 fmla1 33349 msubco 33493 poxp3 33796 poseq 33802 soseq 33803 scutf 34006 elaltxp 34277 altxpsspw 34279 funtransport 34333 funray 34442 funline 34444 ellines 34454 linethru 34455 icoreresf 35523 icoreclin 35528 relowlssretop 35534 relowlpssretop 35535 itg2addnc 35831 isline 37753 sn-it0e0 40397 sn-mulid2 40417 sn-0tie0 40421 sn-mul02 40422 mzpcompact2lem 40573 sprvalpw 44932 sprvalpwn0 44935 prsprel 44939 prpair 44953 prprvalpw 44967 reuopreuprim 44978 nnsum3primesgbe 45244 nnsum4primesodd 45248 nnsum4primesoddALTV 45249 tgblthelfgott 45267 nnpw2pb 45933 2arymaptf1 45999 |
Copyright terms: Public domain | W3C validator |