![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexlimivv | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.) |
Ref | Expression |
---|---|
rexlimivv.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
rexlimivv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimivv.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) | |
2 | 1 | rexlimdva 3155 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 𝜑 → 𝜓)) |
3 | 2 | rexlimiv 3148 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-rex 3071 |
This theorem is referenced by: r19.29vva 3213 2reu5 3754 2reu4 4526 opelxp 5712 elinxp 6019 reuop 6292 opiota 8047 f1o2ndf1 8110 poseq 8146 soseq 8147 tfrlem5 8382 xpdom2 9069 1sdomOLD 9251 unxpdomlem3 9254 unfiOLD 9315 elfiun 9427 ttrcltr 9713 xpnum 9948 kmlem9 10155 nqereu 10926 distrlem5pr 11024 mulrid 11214 1re 11216 mul02 11394 cnegex 11397 recex 11848 creur 12208 creui 12209 cju 12210 elz2 12578 zaddcl 12604 qre 12939 qaddcl 12951 qnegcl 12952 qmulcl 12953 qreccl 12955 elpqb 12962 hash2prd 14438 elss2prb 14450 fundmge2nop0 14455 wrdl3s3 14915 replim 15065 prodmo 15882 odd2np1 16286 opoe 16308 omoe 16309 opeo 16310 omeo 16311 qredeu 16597 pythagtriplem1 16751 pcz 16816 4sqlem1 16883 4sqlem2 16884 4sqlem4 16887 mul4sq 16889 pmtr3ncom 19345 efgmnvl 19584 efgrelexlema 19619 ring1ne0 20115 txuni2 23076 tx2ndc 23162 blssioo 24318 tgioo 24319 ioorf 25097 ioorinv 25100 ioorcl 25101 dyaddisj 25120 mbfid 25159 elply 25716 vmacl 26629 efvmacl 26631 vmalelog 26715 2sqlem2 26928 mul2sq 26929 2sqlem7 26934 2sqnn0 26948 2sqreultblem 26958 pntibnd 27103 ostth 27149 scutf 27321 legval 27873 upgredgpr 28440 nbgr2vtx1edg 28645 cusgredg 28719 usgredgsscusgredg 28754 wwlksnwwlksnon 29207 n4cyclfrgr 29582 vdgn1frgrv2 29587 friendshipgt3 29689 lpni 29771 nsnlplig 29772 nsnlpligALT 29773 n0lpligALT 29775 ipasslem5 30126 ipasslem11 30131 hhssnv 30555 shscli 30608 shsleji 30661 shsidmi 30675 spansncvi 30943 superpos 31645 chirredi 31685 mdsymlem6 31699 rnmposs 31937 1fldgenq 32453 ccfldextdgrr 32806 cnre2csqima 32960 dya2icobrsiga 33344 dya2iocnrect 33349 dya2iocucvr 33352 sxbrsigalem2 33354 afsval 33752 satfv0 34418 satfrnmapom 34430 satfv0fun 34431 satf00 34434 sat1el2xp 34439 fmla0xp 34443 fmla1 34447 msubco 34591 elaltxp 35016 altxpsspw 35018 funtransport 35072 funray 35181 funline 35183 ellines 35193 linethru 35194 icoreresf 36319 icoreclin 36324 relowlssretop 36330 relowlpssretop 36331 itg2addnc 36628 isline 38696 sn-it0e0 41370 sn-mullid 41390 sn-0tie0 41394 sn-mul02 41395 mzpcompact2lem 41571 sprvalpw 46227 sprvalpwn0 46230 prsprel 46234 prpair 46248 prprvalpw 46262 reuopreuprim 46273 nnsum3primesgbe 46539 nnsum4primesodd 46543 nnsum4primesoddALTV 46544 tgblthelfgott 46562 pzriprnglem8 46891 nnpw2pb 47351 2arymaptf1 47417 |
Copyright terms: Public domain | W3C validator |