Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexlimivv | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.) |
Ref | Expression |
---|---|
rexlimivv.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
rexlimivv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimivv.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) | |
2 | 1 | rexlimdva 3212 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 𝜑 → 𝜓)) |
3 | 2 | rexlimiv 3208 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-ral 3069 df-rex 3070 |
This theorem is referenced by: r19.29vva 3265 2reu5 3694 2reu4 4459 opelxp 5622 elinxp 5924 reuop 6191 opiota 7890 f1o2ndf1 7952 tfrlem5 8200 xpdom2 8843 1sdom 9014 unxpdomlem3 9018 unfiOLD 9070 elfiun 9178 ttrcltr 9463 xpnum 9698 kmlem9 9903 nqereu 10674 distrlem5pr 10772 mulid1 10962 1re 10964 mul02 11142 cnegex 11145 recex 11596 creur 11956 creui 11957 cju 11958 elz2 12326 zaddcl 12349 qre 12682 qaddcl 12694 qnegcl 12695 qmulcl 12696 qreccl 12698 elpqb 12705 hash2prd 14178 elss2prb 14190 fundmge2nop0 14195 wrdl3s3 14666 replim 14816 prodmo 15635 odd2np1 16039 opoe 16061 omoe 16062 opeo 16063 omeo 16064 qredeu 16352 pythagtriplem1 16506 pcz 16571 4sqlem1 16638 4sqlem2 16639 4sqlem4 16642 mul4sq 16644 pmtr3ncom 19072 efgmnvl 19309 efgrelexlema 19344 ring1ne0 19819 txuni2 22705 tx2ndc 22791 blssioo 23947 tgioo 23948 ioorf 24726 ioorinv 24729 ioorcl 24730 dyaddisj 24749 mbfid 24788 elply 25345 vmacl 26256 efvmacl 26258 vmalelog 26342 2sqlem2 26555 mul2sq 26556 2sqlem7 26561 2sqnn0 26575 2sqreultblem 26585 pntibnd 26730 ostth 26776 legval 26934 upgredgpr 27501 nbgr2vtx1edg 27706 cusgredg 27780 usgredgsscusgredg 27815 wwlksnwwlksnon 28267 n4cyclfrgr 28642 vdgn1frgrv2 28647 friendshipgt3 28749 lpni 28829 nsnlplig 28830 nsnlpligALT 28831 n0lpligALT 28833 ipasslem5 29184 ipasslem11 29189 hhssnv 29613 shscli 29666 shsleji 29719 shsidmi 29733 spansncvi 30001 superpos 30703 chirredi 30743 mdsymlem6 30757 rnmposs 30998 ccfldextdgrr 31729 cnre2csqima 31848 dya2icobrsiga 32230 dya2iocnrect 32235 dya2iocucvr 32238 sxbrsigalem2 32240 afsval 32638 satfv0 33307 satfrnmapom 33319 satfv0fun 33320 satf00 33323 sat1el2xp 33328 fmla0xp 33332 fmla1 33336 msubco 33480 poxp3 33783 poseq 33789 soseq 33790 scutf 33993 elaltxp 34264 altxpsspw 34266 funtransport 34320 funray 34429 funline 34431 ellines 34441 linethru 34442 icoreresf 35510 icoreclin 35515 relowlssretop 35521 relowlpssretop 35522 itg2addnc 35818 isline 37740 sn-it0e0 40384 sn-mulid2 40404 sn-0tie0 40408 sn-mul02 40409 mzpcompact2lem 40560 sprvalpw 44889 sprvalpwn0 44892 prsprel 44896 prpair 44910 prprvalpw 44924 reuopreuprim 44935 nnsum3primesgbe 45201 nnsum4primesodd 45205 nnsum4primesoddALTV 45206 tgblthelfgott 45224 nnpw2pb 45890 2arymaptf1 45956 |
Copyright terms: Public domain | W3C validator |