| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexlimivv | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.) |
| Ref | Expression |
|---|---|
| rexlimivv.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| rexlimivv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimivv.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝜑 → 𝜓)) | |
| 2 | 1 | rexlimdva 3139 | . 2 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 𝜑 → 𝜓)) |
| 3 | 2 | rexlimiv 3132 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ∃wrex 3059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-rex 3060 |
| This theorem is referenced by: r19.29vva 3199 2reu5 3739 2reu4 4496 opelxp 5688 elinxp 6004 reuop 6280 opiota 8053 f1o2ndf1 8116 poseq 8152 soseq 8153 tfrlem5 8389 xpdom2 9076 1sdomOLD 9252 unxpdomlem3 9255 elfiun 9437 ttrcltr 9723 xpnum 9958 kmlem9 10166 nqereu 10936 distrlem5pr 11034 mulrid 11226 1re 11228 mul02 11406 cnegex 11409 recex 11862 creur 12227 creui 12228 cju 12229 elz2 12599 zaddcl 12625 qre 12962 qaddcl 12974 qnegcl 12975 qmulcl 12976 qreccl 12978 elpqb 12985 hash2prd 14483 elss2prb 14496 fundmge2nop0 14510 wrdl3s3 14970 replim 15124 prodmo 15941 odd2np1 16347 opoe 16369 omoe 16370 opeo 16371 omeo 16372 qredeu 16664 pythagtriplem1 16823 pcz 16888 4sqlem1 16955 4sqlem2 16956 4sqlem4 16959 mul4sq 16961 pmtr3ncom 19443 efgmnvl 19682 efgrelexlema 19717 ring1ne0 20246 pzriprnglem8 21436 txuni2 23490 tx2ndc 23576 blssioo 24721 tgioo 24722 ioorf 25513 ioorinv 25516 ioorcl 25517 dyaddisj 25536 mbfid 25575 elply 26139 vmacl 27066 efvmacl 27068 vmalelog 27154 2sqlem2 27367 mul2sq 27368 2sqlem7 27373 2sqnn0 27387 2sqreultblem 27397 pntibnd 27542 ostth 27588 scutf 27762 zaddscl 28285 zmulscld 28288 elzn0s 28289 eln0zs 28291 zseo 28311 elzs12 28326 zs12bday 28329 remulscllem1 28337 legval 28497 upgredgpr 29055 nbgr2vtx1edg 29263 cusgredg 29337 usgredgsscusgredg 29373 wwlksnwwlksnon 29831 n4cyclfrgr 30206 vdgn1frgrv2 30211 friendshipgt3 30313 lpni 30395 nsnlplig 30396 nsnlpligALT 30397 n0lpligALT 30399 ipasslem5 30750 ipasslem11 30755 hhssnv 31179 shscli 31232 shsleji 31285 shsidmi 31299 spansncvi 31567 superpos 32269 chirredi 32309 mdsymlem6 32323 rnmposs 32586 1fldgenq 33253 ccfldextdgrr 33648 cnre2csqima 33871 dya2icobrsiga 34237 dya2iocnrect 34242 dya2iocucvr 34245 sxbrsigalem2 34247 afsval 34632 satfv0 35309 satfrnmapom 35321 satfv0fun 35322 satf00 35325 sat1el2xp 35330 fmla0xp 35334 fmla1 35338 msubco 35482 elaltxp 35922 altxpsspw 35924 funtransport 35978 funray 36087 funline 36089 ellines 36099 linethru 36100 icoreresf 37299 icoreclin 37304 relowlssretop 37310 relowlpssretop 37311 itg2addnc 37627 isline 39687 sn-it0e0 42390 sn-mullid 42410 sn-0tie0 42414 sn-mul02 42415 mzpcompact2lem 42706 sprvalpw 47420 sprvalpwn0 47423 prsprel 47427 prpair 47441 prprvalpw 47455 reuopreuprim 47466 nnsum3primesgbe 47732 nnsum4primesodd 47736 nnsum4primesoddALTV 47737 tgblthelfgott 47755 grtrif1o 47862 grtrissvtx 47864 gpgvtxel2 47959 nnpw2pb 48461 2arymaptf1 48527 |
| Copyright terms: Public domain | W3C validator |