| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eldisjs2 | Structured version Visualization version GIF version | ||
| Description: Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| Ref | Expression |
|---|---|
| eldisjs2 | ⊢ (𝑅 ∈ Disjs ↔ ( ≀ ◡𝑅 ⊆ I ∧ 𝑅 ∈ Rels )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldisjs 38830 | . 2 ⊢ (𝑅 ∈ Disjs ↔ ( ≀ ◡𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels )) | |
| 2 | cosselcnvrefrels2 38640 | . . . 4 ⊢ ( ≀ ◡𝑅 ∈ CnvRefRels ↔ ( ≀ ◡𝑅 ⊆ I ∧ ≀ ◡𝑅 ∈ Rels )) | |
| 3 | cosscnvelrels 38599 | . . . . 5 ⊢ (𝑅 ∈ Rels → ≀ ◡𝑅 ∈ Rels ) | |
| 4 | 3 | biantrud 531 | . . . 4 ⊢ (𝑅 ∈ Rels → ( ≀ ◡𝑅 ⊆ I ↔ ( ≀ ◡𝑅 ⊆ I ∧ ≀ ◡𝑅 ∈ Rels ))) |
| 5 | 2, 4 | bitr4id 290 | . . 3 ⊢ (𝑅 ∈ Rels → ( ≀ ◡𝑅 ∈ CnvRefRels ↔ ≀ ◡𝑅 ⊆ I )) |
| 6 | 5 | pm5.32ri 575 | . 2 ⊢ (( ≀ ◡𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels ) ↔ ( ≀ ◡𝑅 ⊆ I ∧ 𝑅 ∈ Rels )) |
| 7 | 1, 6 | bitri 275 | 1 ⊢ (𝑅 ∈ Disjs ↔ ( ≀ ◡𝑅 ⊆ I ∧ 𝑅 ∈ Rels )) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ⊆ wss 3897 I cid 5508 ◡ccnv 5613 ≀ ccoss 38232 Rels crels 38234 CnvRefRels ccnvrefrels 38240 Disjs cdisjs 38265 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-rels 38474 df-coss 38523 df-ssr 38600 df-cnvrefs 38627 df-cnvrefrels 38628 df-disjss 38811 df-disjs 38812 |
| This theorem is referenced by: eldisjs3 38832 eldisjs4 38833 eldisjs5 38834 |
| Copyright terms: Public domain | W3C validator |