Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldisjs2 Structured version   Visualization version   GIF version

Theorem eldisjs2 38722
Description: Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.)
Assertion
Ref Expression
eldisjs2 (𝑅 ∈ Disjs ↔ ( ≀ 𝑅 ⊆ I ∧ 𝑅 ∈ Rels ))

Proof of Theorem eldisjs2
StepHypRef Expression
1 eldisjs 38721 . 2 (𝑅 ∈ Disjs ↔ ( ≀ 𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels ))
2 cosselcnvrefrels2 38536 . . . 4 ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ≀ 𝑅 ⊆ I ∧ ≀ 𝑅 ∈ Rels ))
3 cosscnvelrels 38495 . . . . 5 (𝑅 ∈ Rels → ≀ 𝑅 ∈ Rels )
43biantrud 531 . . . 4 (𝑅 ∈ Rels → ( ≀ 𝑅 ⊆ I ↔ ( ≀ 𝑅 ⊆ I ∧ ≀ 𝑅 ∈ Rels )))
52, 4bitr4id 290 . . 3 (𝑅 ∈ Rels → ( ≀ 𝑅 ∈ CnvRefRels ↔ ≀ 𝑅 ⊆ I ))
65pm5.32ri 575 . 2 (( ≀ 𝑅 ∈ CnvRefRels ∧ 𝑅 ∈ Rels ) ↔ ( ≀ 𝑅 ⊆ I ∧ 𝑅 ∈ Rels ))
71, 6bitri 275 1 (𝑅 ∈ Disjs ↔ ( ≀ 𝑅 ⊆ I ∧ 𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  wss 3917   I cid 5535  ccnv 5640  ccoss 38176   Rels crels 38178   CnvRefRels ccnvrefrels 38184   Disjs cdisjs 38209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-coss 38409  df-rels 38483  df-ssr 38496  df-cnvrefs 38523  df-cnvrefrels 38524  df-disjss 38702  df-disjs 38703
This theorem is referenced by:  eldisjs3  38723  eldisjs4  38724  eldisjs5  38725
  Copyright terms: Public domain W3C validator