MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elintabOLD Structured version   Visualization version   GIF version

Theorem elintabOLD 4983
Description: Obsolete version of elintab 4982 as of 17-Jan-2025. (Contributed by NM, 30-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
elintab.ex 𝐴 ∈ V
Assertion
Ref Expression
elintabOLD (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem elintabOLD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elintab.ex . . 3 𝐴 ∈ V
21elint 4976 . 2 (𝐴 {𝑥𝜑} ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} → 𝐴𝑦))
3 nfsab1 2725 . . . 4 𝑥 𝑦 ∈ {𝑥𝜑}
4 nfv 1913 . . . 4 𝑥 𝐴𝑦
53, 4nfim 1895 . . 3 𝑥(𝑦 ∈ {𝑥𝜑} → 𝐴𝑦)
6 nfv 1913 . . 3 𝑦(𝜑𝐴𝑥)
7 eleq1w 2827 . . . . 5 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥𝜑} ↔ 𝑥 ∈ {𝑥𝜑}))
8 abid 2721 . . . . 5 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
97, 8bitrdi 287 . . . 4 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥𝜑} ↔ 𝜑))
10 eleq2w 2828 . . . 4 (𝑦 = 𝑥 → (𝐴𝑦𝐴𝑥))
119, 10imbi12d 344 . . 3 (𝑦 = 𝑥 → ((𝑦 ∈ {𝑥𝜑} → 𝐴𝑦) ↔ (𝜑𝐴𝑥)))
125, 6, 11cbvalv1 2347 . 2 (∀𝑦(𝑦 ∈ {𝑥𝜑} → 𝐴𝑦) ↔ ∀𝑥(𝜑𝐴𝑥))
132, 12bitri 275 1 (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wcel 2108  {cab 2717  Vcvv 3488   cint 4970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-int 4971
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator