MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cssmre Structured version   Visualization version   GIF version

Theorem cssmre 21237
Description: The closed subspaces of a pre-Hilbert space are a Moore system. Unlike many of our other examples of closure systems, this one is not usually an algebraic closure system df-acs 17529: consider the Hilbert space of sequences β„•βŸΆβ„ with convergent sum; the subspace of all sequences with finite support is the classic example of a non-closed subspace, but for every finite set of sequences of finite support, there is a finite-dimensional (and hence closed) subspace containing all of the sequences, so if closed subspaces were an algebraic closure system this would violate acsfiel 17594. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
cssmre.v 𝑉 = (Baseβ€˜π‘Š)
cssmre.c 𝐢 = (ClSubSpβ€˜π‘Š)
Assertion
Ref Expression
cssmre (π‘Š ∈ PreHil β†’ 𝐢 ∈ (Mooreβ€˜π‘‰))

Proof of Theorem cssmre
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cssmre.v . . . . . 6 𝑉 = (Baseβ€˜π‘Š)
2 cssmre.c . . . . . 6 𝐢 = (ClSubSpβ€˜π‘Š)
31, 2cssss 21229 . . . . 5 (π‘₯ ∈ 𝐢 β†’ π‘₯ βŠ† 𝑉)
4 velpw 4606 . . . . 5 (π‘₯ ∈ 𝒫 𝑉 ↔ π‘₯ βŠ† 𝑉)
53, 4sylibr 233 . . . 4 (π‘₯ ∈ 𝐢 β†’ π‘₯ ∈ 𝒫 𝑉)
65a1i 11 . . 3 (π‘Š ∈ PreHil β†’ (π‘₯ ∈ 𝐢 β†’ π‘₯ ∈ 𝒫 𝑉))
76ssrdv 3987 . 2 (π‘Š ∈ PreHil β†’ 𝐢 βŠ† 𝒫 𝑉)
81, 2css1 21234 . 2 (π‘Š ∈ PreHil β†’ 𝑉 ∈ 𝐢)
9 intss1 4966 . . . . . . . . . . . 12 (𝑧 ∈ π‘₯ β†’ ∩ π‘₯ βŠ† 𝑧)
10 eqid 2732 . . . . . . . . . . . . 13 (ocvβ€˜π‘Š) = (ocvβ€˜π‘Š)
1110ocv2ss 21217 . . . . . . . . . . . 12 (∩ π‘₯ βŠ† 𝑧 β†’ ((ocvβ€˜π‘Š)β€˜π‘§) βŠ† ((ocvβ€˜π‘Š)β€˜βˆ© π‘₯))
1210ocv2ss 21217 . . . . . . . . . . . 12 (((ocvβ€˜π‘Š)β€˜π‘§) βŠ† ((ocvβ€˜π‘Š)β€˜βˆ© π‘₯) β†’ ((ocvβ€˜π‘Š)β€˜((ocvβ€˜π‘Š)β€˜βˆ© π‘₯)) βŠ† ((ocvβ€˜π‘Š)β€˜((ocvβ€˜π‘Š)β€˜π‘§)))
139, 11, 123syl 18 . . . . . . . . . . 11 (𝑧 ∈ π‘₯ β†’ ((ocvβ€˜π‘Š)β€˜((ocvβ€˜π‘Š)β€˜βˆ© π‘₯)) βŠ† ((ocvβ€˜π‘Š)β€˜((ocvβ€˜π‘Š)β€˜π‘§)))
1413ad2antll 727 . . . . . . . . . 10 (((π‘Š ∈ PreHil ∧ π‘₯ βŠ† 𝐢 ∧ π‘₯ β‰  βˆ…) ∧ (𝑦 ∈ ((ocvβ€˜π‘Š)β€˜((ocvβ€˜π‘Š)β€˜βˆ© π‘₯)) ∧ 𝑧 ∈ π‘₯)) β†’ ((ocvβ€˜π‘Š)β€˜((ocvβ€˜π‘Š)β€˜βˆ© π‘₯)) βŠ† ((ocvβ€˜π‘Š)β€˜((ocvβ€˜π‘Š)β€˜π‘§)))
15 simprl 769 . . . . . . . . . 10 (((π‘Š ∈ PreHil ∧ π‘₯ βŠ† 𝐢 ∧ π‘₯ β‰  βˆ…) ∧ (𝑦 ∈ ((ocvβ€˜π‘Š)β€˜((ocvβ€˜π‘Š)β€˜βˆ© π‘₯)) ∧ 𝑧 ∈ π‘₯)) β†’ 𝑦 ∈ ((ocvβ€˜π‘Š)β€˜((ocvβ€˜π‘Š)β€˜βˆ© π‘₯)))
1614, 15sseldd 3982 . . . . . . . . 9 (((π‘Š ∈ PreHil ∧ π‘₯ βŠ† 𝐢 ∧ π‘₯ β‰  βˆ…) ∧ (𝑦 ∈ ((ocvβ€˜π‘Š)β€˜((ocvβ€˜π‘Š)β€˜βˆ© π‘₯)) ∧ 𝑧 ∈ π‘₯)) β†’ 𝑦 ∈ ((ocvβ€˜π‘Š)β€˜((ocvβ€˜π‘Š)β€˜π‘§)))
17 simpl2 1192 . . . . . . . . . . 11 (((π‘Š ∈ PreHil ∧ π‘₯ βŠ† 𝐢 ∧ π‘₯ β‰  βˆ…) ∧ (𝑦 ∈ ((ocvβ€˜π‘Š)β€˜((ocvβ€˜π‘Š)β€˜βˆ© π‘₯)) ∧ 𝑧 ∈ π‘₯)) β†’ π‘₯ βŠ† 𝐢)
18 simprr 771 . . . . . . . . . . 11 (((π‘Š ∈ PreHil ∧ π‘₯ βŠ† 𝐢 ∧ π‘₯ β‰  βˆ…) ∧ (𝑦 ∈ ((ocvβ€˜π‘Š)β€˜((ocvβ€˜π‘Š)β€˜βˆ© π‘₯)) ∧ 𝑧 ∈ π‘₯)) β†’ 𝑧 ∈ π‘₯)
1917, 18sseldd 3982 . . . . . . . . . 10 (((π‘Š ∈ PreHil ∧ π‘₯ βŠ† 𝐢 ∧ π‘₯ β‰  βˆ…) ∧ (𝑦 ∈ ((ocvβ€˜π‘Š)β€˜((ocvβ€˜π‘Š)β€˜βˆ© π‘₯)) ∧ 𝑧 ∈ π‘₯)) β†’ 𝑧 ∈ 𝐢)
2010, 2cssi 21228 . . . . . . . . . 10 (𝑧 ∈ 𝐢 β†’ 𝑧 = ((ocvβ€˜π‘Š)β€˜((ocvβ€˜π‘Š)β€˜π‘§)))
2119, 20syl 17 . . . . . . . . 9 (((π‘Š ∈ PreHil ∧ π‘₯ βŠ† 𝐢 ∧ π‘₯ β‰  βˆ…) ∧ (𝑦 ∈ ((ocvβ€˜π‘Š)β€˜((ocvβ€˜π‘Š)β€˜βˆ© π‘₯)) ∧ 𝑧 ∈ π‘₯)) β†’ 𝑧 = ((ocvβ€˜π‘Š)β€˜((ocvβ€˜π‘Š)β€˜π‘§)))
2216, 21eleqtrrd 2836 . . . . . . . 8 (((π‘Š ∈ PreHil ∧ π‘₯ βŠ† 𝐢 ∧ π‘₯ β‰  βˆ…) ∧ (𝑦 ∈ ((ocvβ€˜π‘Š)β€˜((ocvβ€˜π‘Š)β€˜βˆ© π‘₯)) ∧ 𝑧 ∈ π‘₯)) β†’ 𝑦 ∈ 𝑧)
2322expr 457 . . . . . . 7 (((π‘Š ∈ PreHil ∧ π‘₯ βŠ† 𝐢 ∧ π‘₯ β‰  βˆ…) ∧ 𝑦 ∈ ((ocvβ€˜π‘Š)β€˜((ocvβ€˜π‘Š)β€˜βˆ© π‘₯))) β†’ (𝑧 ∈ π‘₯ β†’ 𝑦 ∈ 𝑧))
2423alrimiv 1930 . . . . . 6 (((π‘Š ∈ PreHil ∧ π‘₯ βŠ† 𝐢 ∧ π‘₯ β‰  βˆ…) ∧ 𝑦 ∈ ((ocvβ€˜π‘Š)β€˜((ocvβ€˜π‘Š)β€˜βˆ© π‘₯))) β†’ βˆ€π‘§(𝑧 ∈ π‘₯ β†’ 𝑦 ∈ 𝑧))
25 vex 3478 . . . . . . 7 𝑦 ∈ V
2625elint 4955 . . . . . 6 (𝑦 ∈ ∩ π‘₯ ↔ βˆ€π‘§(𝑧 ∈ π‘₯ β†’ 𝑦 ∈ 𝑧))
2724, 26sylibr 233 . . . . 5 (((π‘Š ∈ PreHil ∧ π‘₯ βŠ† 𝐢 ∧ π‘₯ β‰  βˆ…) ∧ 𝑦 ∈ ((ocvβ€˜π‘Š)β€˜((ocvβ€˜π‘Š)β€˜βˆ© π‘₯))) β†’ 𝑦 ∈ ∩ π‘₯)
2827ex 413 . . . 4 ((π‘Š ∈ PreHil ∧ π‘₯ βŠ† 𝐢 ∧ π‘₯ β‰  βˆ…) β†’ (𝑦 ∈ ((ocvβ€˜π‘Š)β€˜((ocvβ€˜π‘Š)β€˜βˆ© π‘₯)) β†’ 𝑦 ∈ ∩ π‘₯))
2928ssrdv 3987 . . 3 ((π‘Š ∈ PreHil ∧ π‘₯ βŠ† 𝐢 ∧ π‘₯ β‰  βˆ…) β†’ ((ocvβ€˜π‘Š)β€˜((ocvβ€˜π‘Š)β€˜βˆ© π‘₯)) βŠ† ∩ π‘₯)
30 simp1 1136 . . . 4 ((π‘Š ∈ PreHil ∧ π‘₯ βŠ† 𝐢 ∧ π‘₯ β‰  βˆ…) β†’ π‘Š ∈ PreHil)
31 intssuni 4973 . . . . . 6 (π‘₯ β‰  βˆ… β†’ ∩ π‘₯ βŠ† βˆͺ π‘₯)
32313ad2ant3 1135 . . . . 5 ((π‘Š ∈ PreHil ∧ π‘₯ βŠ† 𝐢 ∧ π‘₯ β‰  βˆ…) β†’ ∩ π‘₯ βŠ† βˆͺ π‘₯)
33 simp2 1137 . . . . . . 7 ((π‘Š ∈ PreHil ∧ π‘₯ βŠ† 𝐢 ∧ π‘₯ β‰  βˆ…) β†’ π‘₯ βŠ† 𝐢)
3473ad2ant1 1133 . . . . . . 7 ((π‘Š ∈ PreHil ∧ π‘₯ βŠ† 𝐢 ∧ π‘₯ β‰  βˆ…) β†’ 𝐢 βŠ† 𝒫 𝑉)
3533, 34sstrd 3991 . . . . . 6 ((π‘Š ∈ PreHil ∧ π‘₯ βŠ† 𝐢 ∧ π‘₯ β‰  βˆ…) β†’ π‘₯ βŠ† 𝒫 𝑉)
36 sspwuni 5102 . . . . . 6 (π‘₯ βŠ† 𝒫 𝑉 ↔ βˆͺ π‘₯ βŠ† 𝑉)
3735, 36sylib 217 . . . . 5 ((π‘Š ∈ PreHil ∧ π‘₯ βŠ† 𝐢 ∧ π‘₯ β‰  βˆ…) β†’ βˆͺ π‘₯ βŠ† 𝑉)
3832, 37sstrd 3991 . . . 4 ((π‘Š ∈ PreHil ∧ π‘₯ βŠ† 𝐢 ∧ π‘₯ β‰  βˆ…) β†’ ∩ π‘₯ βŠ† 𝑉)
391, 2, 10iscss2 21230 . . . 4 ((π‘Š ∈ PreHil ∧ ∩ π‘₯ βŠ† 𝑉) β†’ (∩ π‘₯ ∈ 𝐢 ↔ ((ocvβ€˜π‘Š)β€˜((ocvβ€˜π‘Š)β€˜βˆ© π‘₯)) βŠ† ∩ π‘₯))
4030, 38, 39syl2anc 584 . . 3 ((π‘Š ∈ PreHil ∧ π‘₯ βŠ† 𝐢 ∧ π‘₯ β‰  βˆ…) β†’ (∩ π‘₯ ∈ 𝐢 ↔ ((ocvβ€˜π‘Š)β€˜((ocvβ€˜π‘Š)β€˜βˆ© π‘₯)) βŠ† ∩ π‘₯))
4129, 40mpbird 256 . 2 ((π‘Š ∈ PreHil ∧ π‘₯ βŠ† 𝐢 ∧ π‘₯ β‰  βˆ…) β†’ ∩ π‘₯ ∈ 𝐢)
427, 8, 41ismred 17542 1 (π‘Š ∈ PreHil β†’ 𝐢 ∈ (Mooreβ€˜π‘‰))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087  βˆ€wal 1539   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   βŠ† wss 3947  βˆ…c0 4321  π’« cpw 4601  βˆͺ cuni 4907  βˆ© cint 4949  β€˜cfv 6540  Basecbs 17140  Moorecmre 17522  PreHilcphl 21168  ocvcocv 21204  ClSubSpccss 21205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-0g 17383  df-mre 17526  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-grp 18818  df-ghm 19084  df-mgp 19982  df-ur 19999  df-ring 20051  df-oppr 20142  df-rnghom 20243  df-staf 20445  df-srng 20446  df-lmod 20465  df-lmhm 20625  df-lvec 20706  df-sra 20777  df-rgmod 20778  df-phl 21170  df-ocv 21207  df-css 21208
This theorem is referenced by:  mrccss  21238
  Copyright terms: Public domain W3C validator