MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cssmre Structured version   Visualization version   GIF version

Theorem cssmre 20361
Description: The closed subspaces of a pre-Hilbert space are a Moore system. Unlike many of our other examples of closure systems, this one is not usually an algebraic closure system df-acs 16563: consider the Hilbert space of sequences ℕ⟶ℝ with convergent sum; the subspace of all sequences with finite support is the classic example of a non-closed subspace, but for every finite set of sequences of finite support, there is a finite-dimensional (and hence closed) subspace containing all of the sequences, so if closed subspaces were an algebraic closure system this would violate acsfiel 16628. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
cssmre.v 𝑉 = (Base‘𝑊)
cssmre.c 𝐶 = (ClSubSp‘𝑊)
Assertion
Ref Expression
cssmre (𝑊 ∈ PreHil → 𝐶 ∈ (Moore‘𝑉))

Proof of Theorem cssmre
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cssmre.v . . . . . 6 𝑉 = (Base‘𝑊)
2 cssmre.c . . . . . 6 𝐶 = (ClSubSp‘𝑊)
31, 2cssss 20353 . . . . 5 (𝑥𝐶𝑥𝑉)
4 selpw 4357 . . . . 5 (𝑥 ∈ 𝒫 𝑉𝑥𝑉)
53, 4sylibr 226 . . . 4 (𝑥𝐶𝑥 ∈ 𝒫 𝑉)
65a1i 11 . . 3 (𝑊 ∈ PreHil → (𝑥𝐶𝑥 ∈ 𝒫 𝑉))
76ssrdv 3805 . 2 (𝑊 ∈ PreHil → 𝐶 ⊆ 𝒫 𝑉)
81, 2css1 20358 . 2 (𝑊 ∈ PreHil → 𝑉𝐶)
9 intss1 4683 . . . . . . . . . . . 12 (𝑧𝑥 𝑥𝑧)
10 eqid 2800 . . . . . . . . . . . . 13 (ocv‘𝑊) = (ocv‘𝑊)
1110ocv2ss 20341 . . . . . . . . . . . 12 ( 𝑥𝑧 → ((ocv‘𝑊)‘𝑧) ⊆ ((ocv‘𝑊)‘ 𝑥))
1210ocv2ss 20341 . . . . . . . . . . . 12 (((ocv‘𝑊)‘𝑧) ⊆ ((ocv‘𝑊)‘ 𝑥) → ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ⊆ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧)))
139, 11, 123syl 18 . . . . . . . . . . 11 (𝑧𝑥 → ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ⊆ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧)))
1413ad2antll 721 . . . . . . . . . 10 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ⊆ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧)))
15 simprl 788 . . . . . . . . . 10 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)))
1614, 15sseldd 3800 . . . . . . . . 9 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧)))
17 simpl2 1245 . . . . . . . . . . 11 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑥𝐶)
18 simprr 790 . . . . . . . . . . 11 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑧𝑥)
1917, 18sseldd 3800 . . . . . . . . . 10 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑧𝐶)
2010, 2cssi 20352 . . . . . . . . . 10 (𝑧𝐶𝑧 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧)))
2119, 20syl 17 . . . . . . . . 9 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑧 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧)))
2216, 21eleqtrrd 2882 . . . . . . . 8 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑦𝑧)
2322expr 449 . . . . . . 7 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥))) → (𝑧𝑥𝑦𝑧))
2423alrimiv 2023 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥))) → ∀𝑧(𝑧𝑥𝑦𝑧))
25 vex 3389 . . . . . . 7 𝑦 ∈ V
2625elint 4674 . . . . . 6 (𝑦 𝑥 ↔ ∀𝑧(𝑧𝑥𝑦𝑧))
2724, 26sylibr 226 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥))) → 𝑦 𝑥)
2827ex 402 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) → 𝑦 𝑥))
2928ssrdv 3805 . . 3 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ⊆ 𝑥)
30 simp1 1167 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑊 ∈ PreHil)
31 intssuni 4690 . . . . . 6 (𝑥 ≠ ∅ → 𝑥 𝑥)
32313ad2ant3 1166 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥 𝑥)
33 simp2 1168 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥𝐶)
3473ad2ant1 1164 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝐶 ⊆ 𝒫 𝑉)
3533, 34sstrd 3809 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥 ⊆ 𝒫 𝑉)
36 sspwuni 4803 . . . . . 6 (𝑥 ⊆ 𝒫 𝑉 𝑥𝑉)
3735, 36sylib 210 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥𝑉)
3832, 37sstrd 3809 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥𝑉)
391, 2, 10iscss2 20354 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥𝑉) → ( 𝑥𝐶 ↔ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ⊆ 𝑥))
4030, 38, 39syl2anc 580 . . 3 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → ( 𝑥𝐶 ↔ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ⊆ 𝑥))
4129, 40mpbird 249 . 2 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥𝐶)
427, 8, 41ismred 16576 1 (𝑊 ∈ PreHil → 𝐶 ∈ (Moore‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108  wal 1651   = wceq 1653  wcel 2157  wne 2972  wss 3770  c0 4116  𝒫 cpw 4350   cuni 4629   cint 4668  cfv 6102  Basecbs 16183  Moorecmre 16556  PreHilcphl 20292  ocvcocv 20328  ClSubSpccss 20329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-rep 4965  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184  ax-cnex 10281  ax-resscn 10282  ax-1cn 10283  ax-icn 10284  ax-addcl 10285  ax-addrcl 10286  ax-mulcl 10287  ax-mulrcl 10288  ax-mulcom 10289  ax-addass 10290  ax-mulass 10291  ax-distr 10292  ax-i2m1 10293  ax-1ne0 10294  ax-1rid 10295  ax-rnegex 10296  ax-rrecex 10297  ax-cnre 10298  ax-pre-lttri 10299  ax-pre-lttrn 10300  ax-pre-ltadd 10301  ax-pre-mulgt0 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-pss 3786  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-tp 4374  df-op 4376  df-uni 4630  df-int 4669  df-iun 4713  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5221  df-eprel 5226  df-po 5234  df-so 5235  df-fr 5272  df-we 5274  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-pred 5899  df-ord 5945  df-on 5946  df-lim 5947  df-suc 5948  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-riota 6840  df-ov 6882  df-oprab 6883  df-mpt2 6884  df-om 7301  df-tpos 7591  df-wrecs 7646  df-recs 7708  df-rdg 7746  df-er 7983  df-map 8098  df-en 8197  df-dom 8198  df-sdom 8199  df-pnf 10366  df-mnf 10367  df-xr 10368  df-ltxr 10369  df-le 10370  df-sub 10559  df-neg 10560  df-nn 11314  df-2 11375  df-3 11376  df-4 11377  df-5 11378  df-6 11379  df-7 11380  df-8 11381  df-ndx 16186  df-slot 16187  df-base 16189  df-sets 16190  df-plusg 16279  df-mulr 16280  df-sca 16282  df-vsca 16283  df-ip 16284  df-0g 16416  df-mre 16560  df-mgm 17556  df-sgrp 17598  df-mnd 17609  df-mhm 17649  df-grp 17740  df-ghm 17970  df-mgp 18805  df-ur 18817  df-ring 18864  df-oppr 18938  df-rnghom 19032  df-staf 19162  df-srng 19163  df-lmod 19182  df-lmhm 19342  df-lvec 19423  df-sra 19494  df-rgmod 19495  df-phl 20294  df-ocv 20331  df-css 20332
This theorem is referenced by:  mrccss  20362
  Copyright terms: Public domain W3C validator