![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cssmre | Structured version Visualization version GIF version |
Description: The closed subspaces of a pre-Hilbert space are a Moore system. Unlike many of our other examples of closure systems, this one is not usually an algebraic closure system df-acs 16563: consider the Hilbert space of sequences ℕ⟶ℝ with convergent sum; the subspace of all sequences with finite support is the classic example of a non-closed subspace, but for every finite set of sequences of finite support, there is a finite-dimensional (and hence closed) subspace containing all of the sequences, so if closed subspaces were an algebraic closure system this would violate acsfiel 16628. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
cssmre.v | ⊢ 𝑉 = (Base‘𝑊) |
cssmre.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
Ref | Expression |
---|---|
cssmre | ⊢ (𝑊 ∈ PreHil → 𝐶 ∈ (Moore‘𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cssmre.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
2 | cssmre.c | . . . . . 6 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
3 | 1, 2 | cssss 20353 | . . . . 5 ⊢ (𝑥 ∈ 𝐶 → 𝑥 ⊆ 𝑉) |
4 | selpw 4357 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝑉 ↔ 𝑥 ⊆ 𝑉) | |
5 | 3, 4 | sylibr 226 | . . . 4 ⊢ (𝑥 ∈ 𝐶 → 𝑥 ∈ 𝒫 𝑉) |
6 | 5 | a1i 11 | . . 3 ⊢ (𝑊 ∈ PreHil → (𝑥 ∈ 𝐶 → 𝑥 ∈ 𝒫 𝑉)) |
7 | 6 | ssrdv 3805 | . 2 ⊢ (𝑊 ∈ PreHil → 𝐶 ⊆ 𝒫 𝑉) |
8 | 1, 2 | css1 20358 | . 2 ⊢ (𝑊 ∈ PreHil → 𝑉 ∈ 𝐶) |
9 | intss1 4683 | . . . . . . . . . . . 12 ⊢ (𝑧 ∈ 𝑥 → ∩ 𝑥 ⊆ 𝑧) | |
10 | eqid 2800 | . . . . . . . . . . . . 13 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
11 | 10 | ocv2ss 20341 | . . . . . . . . . . . 12 ⊢ (∩ 𝑥 ⊆ 𝑧 → ((ocv‘𝑊)‘𝑧) ⊆ ((ocv‘𝑊)‘∩ 𝑥)) |
12 | 10 | ocv2ss 20341 | . . . . . . . . . . . 12 ⊢ (((ocv‘𝑊)‘𝑧) ⊆ ((ocv‘𝑊)‘∩ 𝑥) → ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ⊆ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧))) |
13 | 9, 11, 12 | 3syl 18 | . . . . . . . . . . 11 ⊢ (𝑧 ∈ 𝑥 → ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ⊆ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧))) |
14 | 13 | ad2antll 721 | . . . . . . . . . 10 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ∧ 𝑧 ∈ 𝑥)) → ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ⊆ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧))) |
15 | simprl 788 | . . . . . . . . . 10 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ∧ 𝑧 ∈ 𝑥)) → 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥))) | |
16 | 14, 15 | sseldd 3800 | . . . . . . . . 9 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ∧ 𝑧 ∈ 𝑥)) → 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧))) |
17 | simpl2 1245 | . . . . . . . . . . 11 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ∧ 𝑧 ∈ 𝑥)) → 𝑥 ⊆ 𝐶) | |
18 | simprr 790 | . . . . . . . . . . 11 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ∧ 𝑧 ∈ 𝑥)) → 𝑧 ∈ 𝑥) | |
19 | 17, 18 | sseldd 3800 | . . . . . . . . . 10 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ∧ 𝑧 ∈ 𝑥)) → 𝑧 ∈ 𝐶) |
20 | 10, 2 | cssi 20352 | . . . . . . . . . 10 ⊢ (𝑧 ∈ 𝐶 → 𝑧 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧))) |
21 | 19, 20 | syl 17 | . . . . . . . . 9 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ∧ 𝑧 ∈ 𝑥)) → 𝑧 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧))) |
22 | 16, 21 | eleqtrrd 2882 | . . . . . . . 8 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ∧ 𝑧 ∈ 𝑥)) → 𝑦 ∈ 𝑧) |
23 | 22 | expr 449 | . . . . . . 7 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥))) → (𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧)) |
24 | 23 | alrimiv 2023 | . . . . . 6 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥))) → ∀𝑧(𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧)) |
25 | vex 3389 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
26 | 25 | elint 4674 | . . . . . 6 ⊢ (𝑦 ∈ ∩ 𝑥 ↔ ∀𝑧(𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧)) |
27 | 24, 26 | sylibr 226 | . . . . 5 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥))) → 𝑦 ∈ ∩ 𝑥) |
28 | 27 | ex 402 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) → 𝑦 ∈ ∩ 𝑥)) |
29 | 28 | ssrdv 3805 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ⊆ ∩ 𝑥) |
30 | simp1 1167 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → 𝑊 ∈ PreHil) | |
31 | intssuni 4690 | . . . . . 6 ⊢ (𝑥 ≠ ∅ → ∩ 𝑥 ⊆ ∪ 𝑥) | |
32 | 31 | 3ad2ant3 1166 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ∩ 𝑥 ⊆ ∪ 𝑥) |
33 | simp2 1168 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → 𝑥 ⊆ 𝐶) | |
34 | 7 | 3ad2ant1 1164 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → 𝐶 ⊆ 𝒫 𝑉) |
35 | 33, 34 | sstrd 3809 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → 𝑥 ⊆ 𝒫 𝑉) |
36 | sspwuni 4803 | . . . . . 6 ⊢ (𝑥 ⊆ 𝒫 𝑉 ↔ ∪ 𝑥 ⊆ 𝑉) | |
37 | 35, 36 | sylib 210 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ∪ 𝑥 ⊆ 𝑉) |
38 | 32, 37 | sstrd 3809 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ∩ 𝑥 ⊆ 𝑉) |
39 | 1, 2, 10 | iscss2 20354 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ ∩ 𝑥 ⊆ 𝑉) → (∩ 𝑥 ∈ 𝐶 ↔ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ⊆ ∩ 𝑥)) |
40 | 30, 38, 39 | syl2anc 580 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → (∩ 𝑥 ∈ 𝐶 ↔ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ⊆ ∩ 𝑥)) |
41 | 29, 40 | mpbird 249 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ∩ 𝑥 ∈ 𝐶) |
42 | 7, 8, 41 | ismred 16576 | 1 ⊢ (𝑊 ∈ PreHil → 𝐶 ∈ (Moore‘𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∧ w3a 1108 ∀wal 1651 = wceq 1653 ∈ wcel 2157 ≠ wne 2972 ⊆ wss 3770 ∅c0 4116 𝒫 cpw 4350 ∪ cuni 4629 ∩ cint 4668 ‘cfv 6102 Basecbs 16183 Moorecmre 16556 PreHilcphl 20292 ocvcocv 20328 ClSubSpccss 20329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-cnex 10281 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-pre-mulgt0 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-int 4669 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-om 7301 df-tpos 7591 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-er 7983 df-map 8098 df-en 8197 df-dom 8198 df-sdom 8199 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-sub 10559 df-neg 10560 df-nn 11314 df-2 11375 df-3 11376 df-4 11377 df-5 11378 df-6 11379 df-7 11380 df-8 11381 df-ndx 16186 df-slot 16187 df-base 16189 df-sets 16190 df-plusg 16279 df-mulr 16280 df-sca 16282 df-vsca 16283 df-ip 16284 df-0g 16416 df-mre 16560 df-mgm 17556 df-sgrp 17598 df-mnd 17609 df-mhm 17649 df-grp 17740 df-ghm 17970 df-mgp 18805 df-ur 18817 df-ring 18864 df-oppr 18938 df-rnghom 19032 df-staf 19162 df-srng 19163 df-lmod 19182 df-lmhm 19342 df-lvec 19423 df-sra 19494 df-rgmod 19495 df-phl 20294 df-ocv 20331 df-css 20332 |
This theorem is referenced by: mrccss 20362 |
Copyright terms: Public domain | W3C validator |