| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cssmre | Structured version Visualization version GIF version | ||
| Description: The closed subspaces of a pre-Hilbert space are a Moore system. Unlike many of our other examples of closure systems, this one is not usually an algebraic closure system df-acs 17556: consider the Hilbert space of sequences ℕ⟶ℝ with convergent sum; the subspace of all sequences with finite support is the classic example of a non-closed subspace, but for every finite set of sequences of finite support, there is a finite-dimensional (and hence closed) subspace containing all of the sequences, so if closed subspaces were an algebraic closure system this would violate acsfiel 17621. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| cssmre.v | ⊢ 𝑉 = (Base‘𝑊) |
| cssmre.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| cssmre | ⊢ (𝑊 ∈ PreHil → 𝐶 ∈ (Moore‘𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cssmre.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | cssmre.c | . . . . . 6 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
| 3 | 1, 2 | cssss 21600 | . . . . 5 ⊢ (𝑥 ∈ 𝐶 → 𝑥 ⊆ 𝑉) |
| 4 | velpw 4570 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝑉 ↔ 𝑥 ⊆ 𝑉) | |
| 5 | 3, 4 | sylibr 234 | . . . 4 ⊢ (𝑥 ∈ 𝐶 → 𝑥 ∈ 𝒫 𝑉) |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝑊 ∈ PreHil → (𝑥 ∈ 𝐶 → 𝑥 ∈ 𝒫 𝑉)) |
| 7 | 6 | ssrdv 3954 | . 2 ⊢ (𝑊 ∈ PreHil → 𝐶 ⊆ 𝒫 𝑉) |
| 8 | 1, 2 | css1 21605 | . 2 ⊢ (𝑊 ∈ PreHil → 𝑉 ∈ 𝐶) |
| 9 | intss1 4929 | . . . . . . . . . . . 12 ⊢ (𝑧 ∈ 𝑥 → ∩ 𝑥 ⊆ 𝑧) | |
| 10 | eqid 2730 | . . . . . . . . . . . . 13 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
| 11 | 10 | ocv2ss 21588 | . . . . . . . . . . . 12 ⊢ (∩ 𝑥 ⊆ 𝑧 → ((ocv‘𝑊)‘𝑧) ⊆ ((ocv‘𝑊)‘∩ 𝑥)) |
| 12 | 10 | ocv2ss 21588 | . . . . . . . . . . . 12 ⊢ (((ocv‘𝑊)‘𝑧) ⊆ ((ocv‘𝑊)‘∩ 𝑥) → ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ⊆ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧))) |
| 13 | 9, 11, 12 | 3syl 18 | . . . . . . . . . . 11 ⊢ (𝑧 ∈ 𝑥 → ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ⊆ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧))) |
| 14 | 13 | ad2antll 729 | . . . . . . . . . 10 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ∧ 𝑧 ∈ 𝑥)) → ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ⊆ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧))) |
| 15 | simprl 770 | . . . . . . . . . 10 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ∧ 𝑧 ∈ 𝑥)) → 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥))) | |
| 16 | 14, 15 | sseldd 3949 | . . . . . . . . 9 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ∧ 𝑧 ∈ 𝑥)) → 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧))) |
| 17 | simpl2 1193 | . . . . . . . . . . 11 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ∧ 𝑧 ∈ 𝑥)) → 𝑥 ⊆ 𝐶) | |
| 18 | simprr 772 | . . . . . . . . . . 11 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ∧ 𝑧 ∈ 𝑥)) → 𝑧 ∈ 𝑥) | |
| 19 | 17, 18 | sseldd 3949 | . . . . . . . . . 10 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ∧ 𝑧 ∈ 𝑥)) → 𝑧 ∈ 𝐶) |
| 20 | 10, 2 | cssi 21599 | . . . . . . . . . 10 ⊢ (𝑧 ∈ 𝐶 → 𝑧 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧))) |
| 21 | 19, 20 | syl 17 | . . . . . . . . 9 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ∧ 𝑧 ∈ 𝑥)) → 𝑧 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧))) |
| 22 | 16, 21 | eleqtrrd 2832 | . . . . . . . 8 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ∧ 𝑧 ∈ 𝑥)) → 𝑦 ∈ 𝑧) |
| 23 | 22 | expr 456 | . . . . . . 7 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥))) → (𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧)) |
| 24 | 23 | alrimiv 1927 | . . . . . 6 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥))) → ∀𝑧(𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧)) |
| 25 | vex 3454 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 26 | 25 | elint 4918 | . . . . . 6 ⊢ (𝑦 ∈ ∩ 𝑥 ↔ ∀𝑧(𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧)) |
| 27 | 24, 26 | sylibr 234 | . . . . 5 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥))) → 𝑦 ∈ ∩ 𝑥) |
| 28 | 27 | ex 412 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) → 𝑦 ∈ ∩ 𝑥)) |
| 29 | 28 | ssrdv 3954 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ⊆ ∩ 𝑥) |
| 30 | simp1 1136 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → 𝑊 ∈ PreHil) | |
| 31 | intssuni 4936 | . . . . . 6 ⊢ (𝑥 ≠ ∅ → ∩ 𝑥 ⊆ ∪ 𝑥) | |
| 32 | 31 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ∩ 𝑥 ⊆ ∪ 𝑥) |
| 33 | simp2 1137 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → 𝑥 ⊆ 𝐶) | |
| 34 | 7 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → 𝐶 ⊆ 𝒫 𝑉) |
| 35 | 33, 34 | sstrd 3959 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → 𝑥 ⊆ 𝒫 𝑉) |
| 36 | sspwuni 5066 | . . . . . 6 ⊢ (𝑥 ⊆ 𝒫 𝑉 ↔ ∪ 𝑥 ⊆ 𝑉) | |
| 37 | 35, 36 | sylib 218 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ∪ 𝑥 ⊆ 𝑉) |
| 38 | 32, 37 | sstrd 3959 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ∩ 𝑥 ⊆ 𝑉) |
| 39 | 1, 2, 10 | iscss2 21601 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ ∩ 𝑥 ⊆ 𝑉) → (∩ 𝑥 ∈ 𝐶 ↔ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ⊆ ∩ 𝑥)) |
| 40 | 30, 38, 39 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → (∩ 𝑥 ∈ 𝐶 ↔ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ⊆ ∩ 𝑥)) |
| 41 | 29, 40 | mpbird 257 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ∩ 𝑥 ∈ 𝐶) |
| 42 | 7, 8, 41 | ismred 17569 | 1 ⊢ (𝑊 ∈ PreHil → 𝐶 ∈ (Moore‘𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ⊆ wss 3916 ∅c0 4298 𝒫 cpw 4565 ∪ cuni 4873 ∩ cint 4912 ‘cfv 6513 Basecbs 17185 Moorecmre 17549 PreHilcphl 21539 ocvcocv 21575 ClSubSpccss 21576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-ip 17244 df-0g 17410 df-mre 17553 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18716 df-grp 18874 df-ghm 19151 df-mgp 20056 df-ur 20097 df-ring 20150 df-oppr 20252 df-rhm 20387 df-staf 20754 df-srng 20755 df-lmod 20774 df-lmhm 20935 df-lvec 21016 df-sra 21086 df-rgmod 21087 df-phl 21541 df-ocv 21578 df-css 21579 |
| This theorem is referenced by: mrccss 21609 |
| Copyright terms: Public domain | W3C validator |