MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cssmre Structured version   Visualization version   GIF version

Theorem cssmre 21711
Description: The closed subspaces of a pre-Hilbert space are a Moore system. Unlike many of our other examples of closure systems, this one is not usually an algebraic closure system df-acs 17632: consider the Hilbert space of sequences ℕ⟶ℝ with convergent sum; the subspace of all sequences with finite support is the classic example of a non-closed subspace, but for every finite set of sequences of finite support, there is a finite-dimensional (and hence closed) subspace containing all of the sequences, so if closed subspaces were an algebraic closure system this would violate acsfiel 17697. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
cssmre.v 𝑉 = (Base‘𝑊)
cssmre.c 𝐶 = (ClSubSp‘𝑊)
Assertion
Ref Expression
cssmre (𝑊 ∈ PreHil → 𝐶 ∈ (Moore‘𝑉))

Proof of Theorem cssmre
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cssmre.v . . . . . 6 𝑉 = (Base‘𝑊)
2 cssmre.c . . . . . 6 𝐶 = (ClSubSp‘𝑊)
31, 2cssss 21703 . . . . 5 (𝑥𝐶𝑥𝑉)
4 velpw 4605 . . . . 5 (𝑥 ∈ 𝒫 𝑉𝑥𝑉)
53, 4sylibr 234 . . . 4 (𝑥𝐶𝑥 ∈ 𝒫 𝑉)
65a1i 11 . . 3 (𝑊 ∈ PreHil → (𝑥𝐶𝑥 ∈ 𝒫 𝑉))
76ssrdv 3989 . 2 (𝑊 ∈ PreHil → 𝐶 ⊆ 𝒫 𝑉)
81, 2css1 21708 . 2 (𝑊 ∈ PreHil → 𝑉𝐶)
9 intss1 4963 . . . . . . . . . . . 12 (𝑧𝑥 𝑥𝑧)
10 eqid 2737 . . . . . . . . . . . . 13 (ocv‘𝑊) = (ocv‘𝑊)
1110ocv2ss 21691 . . . . . . . . . . . 12 ( 𝑥𝑧 → ((ocv‘𝑊)‘𝑧) ⊆ ((ocv‘𝑊)‘ 𝑥))
1210ocv2ss 21691 . . . . . . . . . . . 12 (((ocv‘𝑊)‘𝑧) ⊆ ((ocv‘𝑊)‘ 𝑥) → ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ⊆ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧)))
139, 11, 123syl 18 . . . . . . . . . . 11 (𝑧𝑥 → ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ⊆ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧)))
1413ad2antll 729 . . . . . . . . . 10 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ⊆ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧)))
15 simprl 771 . . . . . . . . . 10 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)))
1614, 15sseldd 3984 . . . . . . . . 9 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧)))
17 simpl2 1193 . . . . . . . . . . 11 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑥𝐶)
18 simprr 773 . . . . . . . . . . 11 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑧𝑥)
1917, 18sseldd 3984 . . . . . . . . . 10 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑧𝐶)
2010, 2cssi 21702 . . . . . . . . . 10 (𝑧𝐶𝑧 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧)))
2119, 20syl 17 . . . . . . . . 9 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑧 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧)))
2216, 21eleqtrrd 2844 . . . . . . . 8 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑦𝑧)
2322expr 456 . . . . . . 7 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥))) → (𝑧𝑥𝑦𝑧))
2423alrimiv 1927 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥))) → ∀𝑧(𝑧𝑥𝑦𝑧))
25 vex 3484 . . . . . . 7 𝑦 ∈ V
2625elint 4952 . . . . . 6 (𝑦 𝑥 ↔ ∀𝑧(𝑧𝑥𝑦𝑧))
2724, 26sylibr 234 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥))) → 𝑦 𝑥)
2827ex 412 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) → 𝑦 𝑥))
2928ssrdv 3989 . . 3 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ⊆ 𝑥)
30 simp1 1137 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑊 ∈ PreHil)
31 intssuni 4970 . . . . . 6 (𝑥 ≠ ∅ → 𝑥 𝑥)
32313ad2ant3 1136 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥 𝑥)
33 simp2 1138 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥𝐶)
3473ad2ant1 1134 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝐶 ⊆ 𝒫 𝑉)
3533, 34sstrd 3994 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥 ⊆ 𝒫 𝑉)
36 sspwuni 5100 . . . . . 6 (𝑥 ⊆ 𝒫 𝑉 𝑥𝑉)
3735, 36sylib 218 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥𝑉)
3832, 37sstrd 3994 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥𝑉)
391, 2, 10iscss2 21704 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥𝑉) → ( 𝑥𝐶 ↔ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ⊆ 𝑥))
4030, 38, 39syl2anc 584 . . 3 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → ( 𝑥𝐶 ↔ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ⊆ 𝑥))
4129, 40mpbird 257 . 2 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥𝐶)
427, 8, 41ismred 17645 1 (𝑊 ∈ PreHil → 𝐶 ∈ (Moore‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wal 1538   = wceq 1540  wcel 2108  wne 2940  wss 3951  c0 4333  𝒫 cpw 4600   cuni 4907   cint 4946  cfv 6561  Basecbs 17247  Moorecmre 17625  PreHilcphl 21642  ocvcocv 21678  ClSubSpccss 21679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-0g 17486  df-mre 17629  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-grp 18954  df-ghm 19231  df-mgp 20138  df-ur 20179  df-ring 20232  df-oppr 20334  df-rhm 20472  df-staf 20840  df-srng 20841  df-lmod 20860  df-lmhm 21021  df-lvec 21102  df-sra 21172  df-rgmod 21173  df-phl 21644  df-ocv 21681  df-css 21682
This theorem is referenced by:  mrccss  21712
  Copyright terms: Public domain W3C validator