MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cssmre Structured version   Visualization version   GIF version

Theorem cssmre 20836
Description: The closed subspaces of a pre-Hilbert space are a Moore system. Unlike many of our other examples of closure systems, this one is not usually an algebraic closure system df-acs 16859: consider the Hilbert space of sequences ℕ⟶ℝ with convergent sum; the subspace of all sequences with finite support is the classic example of a non-closed subspace, but for every finite set of sequences of finite support, there is a finite-dimensional (and hence closed) subspace containing all of the sequences, so if closed subspaces were an algebraic closure system this would violate acsfiel 16924. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
cssmre.v 𝑉 = (Base‘𝑊)
cssmre.c 𝐶 = (ClSubSp‘𝑊)
Assertion
Ref Expression
cssmre (𝑊 ∈ PreHil → 𝐶 ∈ (Moore‘𝑉))

Proof of Theorem cssmre
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cssmre.v . . . . . 6 𝑉 = (Base‘𝑊)
2 cssmre.c . . . . . 6 𝐶 = (ClSubSp‘𝑊)
31, 2cssss 20828 . . . . 5 (𝑥𝐶𝑥𝑉)
4 velpw 4543 . . . . 5 (𝑥 ∈ 𝒫 𝑉𝑥𝑉)
53, 4sylibr 236 . . . 4 (𝑥𝐶𝑥 ∈ 𝒫 𝑉)
65a1i 11 . . 3 (𝑊 ∈ PreHil → (𝑥𝐶𝑥 ∈ 𝒫 𝑉))
76ssrdv 3972 . 2 (𝑊 ∈ PreHil → 𝐶 ⊆ 𝒫 𝑉)
81, 2css1 20833 . 2 (𝑊 ∈ PreHil → 𝑉𝐶)
9 intss1 4890 . . . . . . . . . . . 12 (𝑧𝑥 𝑥𝑧)
10 eqid 2821 . . . . . . . . . . . . 13 (ocv‘𝑊) = (ocv‘𝑊)
1110ocv2ss 20816 . . . . . . . . . . . 12 ( 𝑥𝑧 → ((ocv‘𝑊)‘𝑧) ⊆ ((ocv‘𝑊)‘ 𝑥))
1210ocv2ss 20816 . . . . . . . . . . . 12 (((ocv‘𝑊)‘𝑧) ⊆ ((ocv‘𝑊)‘ 𝑥) → ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ⊆ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧)))
139, 11, 123syl 18 . . . . . . . . . . 11 (𝑧𝑥 → ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ⊆ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧)))
1413ad2antll 727 . . . . . . . . . 10 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ⊆ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧)))
15 simprl 769 . . . . . . . . . 10 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)))
1614, 15sseldd 3967 . . . . . . . . 9 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧)))
17 simpl2 1188 . . . . . . . . . . 11 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑥𝐶)
18 simprr 771 . . . . . . . . . . 11 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑧𝑥)
1917, 18sseldd 3967 . . . . . . . . . 10 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑧𝐶)
2010, 2cssi 20827 . . . . . . . . . 10 (𝑧𝐶𝑧 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧)))
2119, 20syl 17 . . . . . . . . 9 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑧 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧)))
2216, 21eleqtrrd 2916 . . . . . . . 8 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑦𝑧)
2322expr 459 . . . . . . 7 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥))) → (𝑧𝑥𝑦𝑧))
2423alrimiv 1924 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥))) → ∀𝑧(𝑧𝑥𝑦𝑧))
25 vex 3497 . . . . . . 7 𝑦 ∈ V
2625elint 4881 . . . . . 6 (𝑦 𝑥 ↔ ∀𝑧(𝑧𝑥𝑦𝑧))
2724, 26sylibr 236 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥))) → 𝑦 𝑥)
2827ex 415 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) → 𝑦 𝑥))
2928ssrdv 3972 . . 3 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ⊆ 𝑥)
30 simp1 1132 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑊 ∈ PreHil)
31 intssuni 4897 . . . . . 6 (𝑥 ≠ ∅ → 𝑥 𝑥)
32313ad2ant3 1131 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥 𝑥)
33 simp2 1133 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥𝐶)
3473ad2ant1 1129 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝐶 ⊆ 𝒫 𝑉)
3533, 34sstrd 3976 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥 ⊆ 𝒫 𝑉)
36 sspwuni 5021 . . . . . 6 (𝑥 ⊆ 𝒫 𝑉 𝑥𝑉)
3735, 36sylib 220 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥𝑉)
3832, 37sstrd 3976 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥𝑉)
391, 2, 10iscss2 20829 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥𝑉) → ( 𝑥𝐶 ↔ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ⊆ 𝑥))
4030, 38, 39syl2anc 586 . . 3 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → ( 𝑥𝐶 ↔ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ⊆ 𝑥))
4129, 40mpbird 259 . 2 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥𝐶)
427, 8, 41ismred 16872 1 (𝑊 ∈ PreHil → 𝐶 ∈ (Moore‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wal 1531   = wceq 1533  wcel 2110  wne 3016  wss 3935  c0 4290  𝒫 cpw 4538   cuni 4837   cint 4875  cfv 6354  Basecbs 16482  Moorecmre 16852  PreHilcphl 20767  ocvcocv 20803  ClSubSpccss 20804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-tpos 7891  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-plusg 16577  df-mulr 16578  df-sca 16580  df-vsca 16581  df-ip 16582  df-0g 16714  df-mre 16856  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-mhm 17955  df-grp 18105  df-ghm 18355  df-mgp 19239  df-ur 19251  df-ring 19298  df-oppr 19372  df-rnghom 19466  df-staf 19615  df-srng 19616  df-lmod 19635  df-lmhm 19793  df-lvec 19874  df-sra 19943  df-rgmod 19944  df-phl 20769  df-ocv 20806  df-css 20807
This theorem is referenced by:  mrccss  20837
  Copyright terms: Public domain W3C validator