MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cssmre Structured version   Visualization version   GIF version

Theorem cssmre 21636
Description: The closed subspaces of a pre-Hilbert space are a Moore system. Unlike many of our other examples of closure systems, this one is not usually an algebraic closure system df-acs 17497: consider the Hilbert space of sequences ℕ⟶ℝ with convergent sum; the subspace of all sequences with finite support is the classic example of a non-closed subspace, but for every finite set of sequences of finite support, there is a finite-dimensional (and hence closed) subspace containing all of the sequences, so if closed subspaces were an algebraic closure system this would violate acsfiel 17566. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
cssmre.v 𝑉 = (Base‘𝑊)
cssmre.c 𝐶 = (ClSubSp‘𝑊)
Assertion
Ref Expression
cssmre (𝑊 ∈ PreHil → 𝐶 ∈ (Moore‘𝑉))

Proof of Theorem cssmre
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cssmre.v . . . . . 6 𝑉 = (Base‘𝑊)
2 cssmre.c . . . . . 6 𝐶 = (ClSubSp‘𝑊)
31, 2cssss 21628 . . . . 5 (𝑥𝐶𝑥𝑉)
4 velpw 4554 . . . . 5 (𝑥 ∈ 𝒫 𝑉𝑥𝑉)
53, 4sylibr 234 . . . 4 (𝑥𝐶𝑥 ∈ 𝒫 𝑉)
65a1i 11 . . 3 (𝑊 ∈ PreHil → (𝑥𝐶𝑥 ∈ 𝒫 𝑉))
76ssrdv 3935 . 2 (𝑊 ∈ PreHil → 𝐶 ⊆ 𝒫 𝑉)
81, 2css1 21633 . 2 (𝑊 ∈ PreHil → 𝑉𝐶)
9 intss1 4913 . . . . . . . . . . . 12 (𝑧𝑥 𝑥𝑧)
10 eqid 2731 . . . . . . . . . . . . 13 (ocv‘𝑊) = (ocv‘𝑊)
1110ocv2ss 21616 . . . . . . . . . . . 12 ( 𝑥𝑧 → ((ocv‘𝑊)‘𝑧) ⊆ ((ocv‘𝑊)‘ 𝑥))
1210ocv2ss 21616 . . . . . . . . . . . 12 (((ocv‘𝑊)‘𝑧) ⊆ ((ocv‘𝑊)‘ 𝑥) → ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ⊆ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧)))
139, 11, 123syl 18 . . . . . . . . . . 11 (𝑧𝑥 → ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ⊆ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧)))
1413ad2antll 729 . . . . . . . . . 10 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ⊆ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧)))
15 simprl 770 . . . . . . . . . 10 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)))
1614, 15sseldd 3930 . . . . . . . . 9 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧)))
17 simpl2 1193 . . . . . . . . . . 11 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑥𝐶)
18 simprr 772 . . . . . . . . . . 11 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑧𝑥)
1917, 18sseldd 3930 . . . . . . . . . 10 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑧𝐶)
2010, 2cssi 21627 . . . . . . . . . 10 (𝑧𝐶𝑧 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧)))
2119, 20syl 17 . . . . . . . . 9 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑧 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧)))
2216, 21eleqtrrd 2834 . . . . . . . 8 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑦𝑧)
2322expr 456 . . . . . . 7 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥))) → (𝑧𝑥𝑦𝑧))
2423alrimiv 1928 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥))) → ∀𝑧(𝑧𝑥𝑦𝑧))
25 vex 3440 . . . . . . 7 𝑦 ∈ V
2625elint 4903 . . . . . 6 (𝑦 𝑥 ↔ ∀𝑧(𝑧𝑥𝑦𝑧))
2724, 26sylibr 234 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥))) → 𝑦 𝑥)
2827ex 412 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) → 𝑦 𝑥))
2928ssrdv 3935 . . 3 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ⊆ 𝑥)
30 simp1 1136 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑊 ∈ PreHil)
31 intssuni 4920 . . . . . 6 (𝑥 ≠ ∅ → 𝑥 𝑥)
32313ad2ant3 1135 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥 𝑥)
33 simp2 1137 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥𝐶)
3473ad2ant1 1133 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝐶 ⊆ 𝒫 𝑉)
3533, 34sstrd 3940 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥 ⊆ 𝒫 𝑉)
36 sspwuni 5050 . . . . . 6 (𝑥 ⊆ 𝒫 𝑉 𝑥𝑉)
3735, 36sylib 218 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥𝑉)
3832, 37sstrd 3940 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥𝑉)
391, 2, 10iscss2 21629 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥𝑉) → ( 𝑥𝐶 ↔ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ⊆ 𝑥))
4030, 38, 39syl2anc 584 . . 3 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → ( 𝑥𝐶 ↔ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ⊆ 𝑥))
4129, 40mpbird 257 . 2 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥𝐶)
427, 8, 41ismred 17510 1 (𝑊 ∈ PreHil → 𝐶 ∈ (Moore‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1539   = wceq 1541  wcel 2111  wne 2928  wss 3897  c0 4282  𝒫 cpw 4549   cuni 4858   cint 4897  cfv 6487  Basecbs 17126  Moorecmre 17490  PreHilcphl 21567  ocvcocv 21603  ClSubSpccss 21604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-2 12194  df-3 12195  df-4 12196  df-5 12197  df-6 12198  df-7 12199  df-8 12200  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17127  df-plusg 17180  df-mulr 17181  df-sca 17183  df-vsca 17184  df-ip 17185  df-0g 17351  df-mre 17494  df-mgm 18554  df-sgrp 18633  df-mnd 18649  df-mhm 18697  df-grp 18855  df-ghm 19131  df-mgp 20065  df-ur 20106  df-ring 20159  df-oppr 20261  df-rhm 20396  df-staf 20760  df-srng 20761  df-lmod 20801  df-lmhm 20962  df-lvec 21043  df-sra 21113  df-rgmod 21114  df-phl 21569  df-ocv 21606  df-css 21607
This theorem is referenced by:  mrccss  21637
  Copyright terms: Public domain W3C validator