Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cssmre | Structured version Visualization version GIF version |
Description: The closed subspaces of a pre-Hilbert space are a Moore system. Unlike many of our other examples of closure systems, this one is not usually an algebraic closure system df-acs 17298: consider the Hilbert space of sequences ℕ⟶ℝ with convergent sum; the subspace of all sequences with finite support is the classic example of a non-closed subspace, but for every finite set of sequences of finite support, there is a finite-dimensional (and hence closed) subspace containing all of the sequences, so if closed subspaces were an algebraic closure system this would violate acsfiel 17363. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
cssmre.v | ⊢ 𝑉 = (Base‘𝑊) |
cssmre.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
Ref | Expression |
---|---|
cssmre | ⊢ (𝑊 ∈ PreHil → 𝐶 ∈ (Moore‘𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cssmre.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
2 | cssmre.c | . . . . . 6 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
3 | 1, 2 | cssss 20890 | . . . . 5 ⊢ (𝑥 ∈ 𝐶 → 𝑥 ⊆ 𝑉) |
4 | velpw 4538 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝑉 ↔ 𝑥 ⊆ 𝑉) | |
5 | 3, 4 | sylibr 233 | . . . 4 ⊢ (𝑥 ∈ 𝐶 → 𝑥 ∈ 𝒫 𝑉) |
6 | 5 | a1i 11 | . . 3 ⊢ (𝑊 ∈ PreHil → (𝑥 ∈ 𝐶 → 𝑥 ∈ 𝒫 𝑉)) |
7 | 6 | ssrdv 3927 | . 2 ⊢ (𝑊 ∈ PreHil → 𝐶 ⊆ 𝒫 𝑉) |
8 | 1, 2 | css1 20895 | . 2 ⊢ (𝑊 ∈ PreHil → 𝑉 ∈ 𝐶) |
9 | intss1 4894 | . . . . . . . . . . . 12 ⊢ (𝑧 ∈ 𝑥 → ∩ 𝑥 ⊆ 𝑧) | |
10 | eqid 2738 | . . . . . . . . . . . . 13 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
11 | 10 | ocv2ss 20878 | . . . . . . . . . . . 12 ⊢ (∩ 𝑥 ⊆ 𝑧 → ((ocv‘𝑊)‘𝑧) ⊆ ((ocv‘𝑊)‘∩ 𝑥)) |
12 | 10 | ocv2ss 20878 | . . . . . . . . . . . 12 ⊢ (((ocv‘𝑊)‘𝑧) ⊆ ((ocv‘𝑊)‘∩ 𝑥) → ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ⊆ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧))) |
13 | 9, 11, 12 | 3syl 18 | . . . . . . . . . . 11 ⊢ (𝑧 ∈ 𝑥 → ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ⊆ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧))) |
14 | 13 | ad2antll 726 | . . . . . . . . . 10 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ∧ 𝑧 ∈ 𝑥)) → ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ⊆ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧))) |
15 | simprl 768 | . . . . . . . . . 10 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ∧ 𝑧 ∈ 𝑥)) → 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥))) | |
16 | 14, 15 | sseldd 3922 | . . . . . . . . 9 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ∧ 𝑧 ∈ 𝑥)) → 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧))) |
17 | simpl2 1191 | . . . . . . . . . . 11 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ∧ 𝑧 ∈ 𝑥)) → 𝑥 ⊆ 𝐶) | |
18 | simprr 770 | . . . . . . . . . . 11 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ∧ 𝑧 ∈ 𝑥)) → 𝑧 ∈ 𝑥) | |
19 | 17, 18 | sseldd 3922 | . . . . . . . . . 10 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ∧ 𝑧 ∈ 𝑥)) → 𝑧 ∈ 𝐶) |
20 | 10, 2 | cssi 20889 | . . . . . . . . . 10 ⊢ (𝑧 ∈ 𝐶 → 𝑧 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧))) |
21 | 19, 20 | syl 17 | . . . . . . . . 9 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ∧ 𝑧 ∈ 𝑥)) → 𝑧 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧))) |
22 | 16, 21 | eleqtrrd 2842 | . . . . . . . 8 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ∧ 𝑧 ∈ 𝑥)) → 𝑦 ∈ 𝑧) |
23 | 22 | expr 457 | . . . . . . 7 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥))) → (𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧)) |
24 | 23 | alrimiv 1930 | . . . . . 6 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥))) → ∀𝑧(𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧)) |
25 | vex 3436 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
26 | 25 | elint 4885 | . . . . . 6 ⊢ (𝑦 ∈ ∩ 𝑥 ↔ ∀𝑧(𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧)) |
27 | 24, 26 | sylibr 233 | . . . . 5 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥))) → 𝑦 ∈ ∩ 𝑥) |
28 | 27 | ex 413 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) → 𝑦 ∈ ∩ 𝑥)) |
29 | 28 | ssrdv 3927 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ⊆ ∩ 𝑥) |
30 | simp1 1135 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → 𝑊 ∈ PreHil) | |
31 | intssuni 4901 | . . . . . 6 ⊢ (𝑥 ≠ ∅ → ∩ 𝑥 ⊆ ∪ 𝑥) | |
32 | 31 | 3ad2ant3 1134 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ∩ 𝑥 ⊆ ∪ 𝑥) |
33 | simp2 1136 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → 𝑥 ⊆ 𝐶) | |
34 | 7 | 3ad2ant1 1132 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → 𝐶 ⊆ 𝒫 𝑉) |
35 | 33, 34 | sstrd 3931 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → 𝑥 ⊆ 𝒫 𝑉) |
36 | sspwuni 5029 | . . . . . 6 ⊢ (𝑥 ⊆ 𝒫 𝑉 ↔ ∪ 𝑥 ⊆ 𝑉) | |
37 | 35, 36 | sylib 217 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ∪ 𝑥 ⊆ 𝑉) |
38 | 32, 37 | sstrd 3931 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ∩ 𝑥 ⊆ 𝑉) |
39 | 1, 2, 10 | iscss2 20891 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ ∩ 𝑥 ⊆ 𝑉) → (∩ 𝑥 ∈ 𝐶 ↔ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ⊆ ∩ 𝑥)) |
40 | 30, 38, 39 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → (∩ 𝑥 ∈ 𝐶 ↔ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ⊆ ∩ 𝑥)) |
41 | 29, 40 | mpbird 256 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ∩ 𝑥 ∈ 𝐶) |
42 | 7, 8, 41 | ismred 17311 | 1 ⊢ (𝑊 ∈ PreHil → 𝐶 ∈ (Moore‘𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∀wal 1537 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 ∪ cuni 4839 ∩ cint 4879 ‘cfv 6433 Basecbs 16912 Moorecmre 17291 PreHilcphl 20829 ocvcocv 20865 ClSubSpccss 20866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-ip 16980 df-0g 17152 df-mre 17295 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-grp 18580 df-ghm 18832 df-mgp 19721 df-ur 19738 df-ring 19785 df-oppr 19862 df-rnghom 19959 df-staf 20105 df-srng 20106 df-lmod 20125 df-lmhm 20284 df-lvec 20365 df-sra 20434 df-rgmod 20435 df-phl 20831 df-ocv 20868 df-css 20869 |
This theorem is referenced by: mrccss 20899 |
Copyright terms: Public domain | W3C validator |