| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cssmre | Structured version Visualization version GIF version | ||
| Description: The closed subspaces of a pre-Hilbert space are a Moore system. Unlike many of our other examples of closure systems, this one is not usually an algebraic closure system df-acs 17483: consider the Hilbert space of sequences ℕ⟶ℝ with convergent sum; the subspace of all sequences with finite support is the classic example of a non-closed subspace, but for every finite set of sequences of finite support, there is a finite-dimensional (and hence closed) subspace containing all of the sequences, so if closed subspaces were an algebraic closure system this would violate acsfiel 17552. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| cssmre.v | ⊢ 𝑉 = (Base‘𝑊) |
| cssmre.c | ⊢ 𝐶 = (ClSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| cssmre | ⊢ (𝑊 ∈ PreHil → 𝐶 ∈ (Moore‘𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cssmre.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | cssmre.c | . . . . . 6 ⊢ 𝐶 = (ClSubSp‘𝑊) | |
| 3 | 1, 2 | cssss 21615 | . . . . 5 ⊢ (𝑥 ∈ 𝐶 → 𝑥 ⊆ 𝑉) |
| 4 | velpw 4553 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝑉 ↔ 𝑥 ⊆ 𝑉) | |
| 5 | 3, 4 | sylibr 234 | . . . 4 ⊢ (𝑥 ∈ 𝐶 → 𝑥 ∈ 𝒫 𝑉) |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝑊 ∈ PreHil → (𝑥 ∈ 𝐶 → 𝑥 ∈ 𝒫 𝑉)) |
| 7 | 6 | ssrdv 3938 | . 2 ⊢ (𝑊 ∈ PreHil → 𝐶 ⊆ 𝒫 𝑉) |
| 8 | 1, 2 | css1 21620 | . 2 ⊢ (𝑊 ∈ PreHil → 𝑉 ∈ 𝐶) |
| 9 | intss1 4911 | . . . . . . . . . . . 12 ⊢ (𝑧 ∈ 𝑥 → ∩ 𝑥 ⊆ 𝑧) | |
| 10 | eqid 2730 | . . . . . . . . . . . . 13 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
| 11 | 10 | ocv2ss 21603 | . . . . . . . . . . . 12 ⊢ (∩ 𝑥 ⊆ 𝑧 → ((ocv‘𝑊)‘𝑧) ⊆ ((ocv‘𝑊)‘∩ 𝑥)) |
| 12 | 10 | ocv2ss 21603 | . . . . . . . . . . . 12 ⊢ (((ocv‘𝑊)‘𝑧) ⊆ ((ocv‘𝑊)‘∩ 𝑥) → ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ⊆ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧))) |
| 13 | 9, 11, 12 | 3syl 18 | . . . . . . . . . . 11 ⊢ (𝑧 ∈ 𝑥 → ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ⊆ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧))) |
| 14 | 13 | ad2antll 729 | . . . . . . . . . 10 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ∧ 𝑧 ∈ 𝑥)) → ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ⊆ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧))) |
| 15 | simprl 770 | . . . . . . . . . 10 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ∧ 𝑧 ∈ 𝑥)) → 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥))) | |
| 16 | 14, 15 | sseldd 3933 | . . . . . . . . 9 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ∧ 𝑧 ∈ 𝑥)) → 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧))) |
| 17 | simpl2 1193 | . . . . . . . . . . 11 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ∧ 𝑧 ∈ 𝑥)) → 𝑥 ⊆ 𝐶) | |
| 18 | simprr 772 | . . . . . . . . . . 11 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ∧ 𝑧 ∈ 𝑥)) → 𝑧 ∈ 𝑥) | |
| 19 | 17, 18 | sseldd 3933 | . . . . . . . . . 10 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ∧ 𝑧 ∈ 𝑥)) → 𝑧 ∈ 𝐶) |
| 20 | 10, 2 | cssi 21614 | . . . . . . . . . 10 ⊢ (𝑧 ∈ 𝐶 → 𝑧 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧))) |
| 21 | 19, 20 | syl 17 | . . . . . . . . 9 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ∧ 𝑧 ∈ 𝑥)) → 𝑧 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧))) |
| 22 | 16, 21 | eleqtrrd 2832 | . . . . . . . 8 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ∧ 𝑧 ∈ 𝑥)) → 𝑦 ∈ 𝑧) |
| 23 | 22 | expr 456 | . . . . . . 7 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥))) → (𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧)) |
| 24 | 23 | alrimiv 1928 | . . . . . 6 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥))) → ∀𝑧(𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧)) |
| 25 | vex 3438 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 26 | 25 | elint 4901 | . . . . . 6 ⊢ (𝑦 ∈ ∩ 𝑥 ↔ ∀𝑧(𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧)) |
| 27 | 24, 26 | sylibr 234 | . . . . 5 ⊢ (((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) ∧ 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥))) → 𝑦 ∈ ∩ 𝑥) |
| 28 | 27 | ex 412 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) → 𝑦 ∈ ∩ 𝑥)) |
| 29 | 28 | ssrdv 3938 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ⊆ ∩ 𝑥) |
| 30 | simp1 1136 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → 𝑊 ∈ PreHil) | |
| 31 | intssuni 4918 | . . . . . 6 ⊢ (𝑥 ≠ ∅ → ∩ 𝑥 ⊆ ∪ 𝑥) | |
| 32 | 31 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ∩ 𝑥 ⊆ ∪ 𝑥) |
| 33 | simp2 1137 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → 𝑥 ⊆ 𝐶) | |
| 34 | 7 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → 𝐶 ⊆ 𝒫 𝑉) |
| 35 | 33, 34 | sstrd 3943 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → 𝑥 ⊆ 𝒫 𝑉) |
| 36 | sspwuni 5046 | . . . . . 6 ⊢ (𝑥 ⊆ 𝒫 𝑉 ↔ ∪ 𝑥 ⊆ 𝑉) | |
| 37 | 35, 36 | sylib 218 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ∪ 𝑥 ⊆ 𝑉) |
| 38 | 32, 37 | sstrd 3943 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ∩ 𝑥 ⊆ 𝑉) |
| 39 | 1, 2, 10 | iscss2 21616 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ ∩ 𝑥 ⊆ 𝑉) → (∩ 𝑥 ∈ 𝐶 ↔ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ⊆ ∩ 𝑥)) |
| 40 | 30, 38, 39 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → (∩ 𝑥 ∈ 𝐶 ↔ ((ocv‘𝑊)‘((ocv‘𝑊)‘∩ 𝑥)) ⊆ ∩ 𝑥)) |
| 41 | 29, 40 | mpbird 257 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅) → ∩ 𝑥 ∈ 𝐶) |
| 42 | 7, 8, 41 | ismred 17496 | 1 ⊢ (𝑊 ∈ PreHil → 𝐶 ∈ (Moore‘𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∀wal 1539 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 ⊆ wss 3900 ∅c0 4281 𝒫 cpw 4548 ∪ cuni 4857 ∩ cint 4895 ‘cfv 6477 Basecbs 17112 Moorecmre 17476 PreHilcphl 21554 ocvcocv 21590 ClSubSpccss 21591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-plusg 17166 df-mulr 17167 df-sca 17169 df-vsca 17170 df-ip 17171 df-0g 17337 df-mre 17480 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-mhm 18683 df-grp 18841 df-ghm 19118 df-mgp 20052 df-ur 20093 df-ring 20146 df-oppr 20248 df-rhm 20383 df-staf 20747 df-srng 20748 df-lmod 20788 df-lmhm 20949 df-lvec 21030 df-sra 21100 df-rgmod 21101 df-phl 21556 df-ocv 21593 df-css 21594 |
| This theorem is referenced by: mrccss 21624 |
| Copyright terms: Public domain | W3C validator |