MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cssmre Structured version   Visualization version   GIF version

Theorem cssmre 21642
Description: The closed subspaces of a pre-Hilbert space are a Moore system. Unlike many of our other examples of closure systems, this one is not usually an algebraic closure system df-acs 17572: consider the Hilbert space of sequences ℕ⟶ℝ with convergent sum; the subspace of all sequences with finite support is the classic example of a non-closed subspace, but for every finite set of sequences of finite support, there is a finite-dimensional (and hence closed) subspace containing all of the sequences, so if closed subspaces were an algebraic closure system this would violate acsfiel 17637. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
cssmre.v 𝑉 = (Base‘𝑊)
cssmre.c 𝐶 = (ClSubSp‘𝑊)
Assertion
Ref Expression
cssmre (𝑊 ∈ PreHil → 𝐶 ∈ (Moore‘𝑉))

Proof of Theorem cssmre
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cssmre.v . . . . . 6 𝑉 = (Base‘𝑊)
2 cssmre.c . . . . . 6 𝐶 = (ClSubSp‘𝑊)
31, 2cssss 21634 . . . . 5 (𝑥𝐶𝑥𝑉)
4 velpw 4609 . . . . 5 (𝑥 ∈ 𝒫 𝑉𝑥𝑉)
53, 4sylibr 233 . . . 4 (𝑥𝐶𝑥 ∈ 𝒫 𝑉)
65a1i 11 . . 3 (𝑊 ∈ PreHil → (𝑥𝐶𝑥 ∈ 𝒫 𝑉))
76ssrdv 3982 . 2 (𝑊 ∈ PreHil → 𝐶 ⊆ 𝒫 𝑉)
81, 2css1 21639 . 2 (𝑊 ∈ PreHil → 𝑉𝐶)
9 intss1 4967 . . . . . . . . . . . 12 (𝑧𝑥 𝑥𝑧)
10 eqid 2725 . . . . . . . . . . . . 13 (ocv‘𝑊) = (ocv‘𝑊)
1110ocv2ss 21622 . . . . . . . . . . . 12 ( 𝑥𝑧 → ((ocv‘𝑊)‘𝑧) ⊆ ((ocv‘𝑊)‘ 𝑥))
1210ocv2ss 21622 . . . . . . . . . . . 12 (((ocv‘𝑊)‘𝑧) ⊆ ((ocv‘𝑊)‘ 𝑥) → ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ⊆ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧)))
139, 11, 123syl 18 . . . . . . . . . . 11 (𝑧𝑥 → ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ⊆ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧)))
1413ad2antll 727 . . . . . . . . . 10 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ⊆ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧)))
15 simprl 769 . . . . . . . . . 10 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)))
1614, 15sseldd 3977 . . . . . . . . 9 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧)))
17 simpl2 1189 . . . . . . . . . . 11 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑥𝐶)
18 simprr 771 . . . . . . . . . . 11 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑧𝑥)
1917, 18sseldd 3977 . . . . . . . . . 10 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑧𝐶)
2010, 2cssi 21633 . . . . . . . . . 10 (𝑧𝐶𝑧 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧)))
2119, 20syl 17 . . . . . . . . 9 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑧 = ((ocv‘𝑊)‘((ocv‘𝑊)‘𝑧)))
2216, 21eleqtrrd 2828 . . . . . . . 8 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ∧ 𝑧𝑥)) → 𝑦𝑧)
2322expr 455 . . . . . . 7 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥))) → (𝑧𝑥𝑦𝑧))
2423alrimiv 1922 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥))) → ∀𝑧(𝑧𝑥𝑦𝑧))
25 vex 3465 . . . . . . 7 𝑦 ∈ V
2625elint 4956 . . . . . 6 (𝑦 𝑥 ↔ ∀𝑧(𝑧𝑥𝑦𝑧))
2724, 26sylibr 233 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) ∧ 𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥))) → 𝑦 𝑥)
2827ex 411 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → (𝑦 ∈ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) → 𝑦 𝑥))
2928ssrdv 3982 . . 3 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ⊆ 𝑥)
30 simp1 1133 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑊 ∈ PreHil)
31 intssuni 4974 . . . . . 6 (𝑥 ≠ ∅ → 𝑥 𝑥)
32313ad2ant3 1132 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥 𝑥)
33 simp2 1134 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥𝐶)
3473ad2ant1 1130 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝐶 ⊆ 𝒫 𝑉)
3533, 34sstrd 3987 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥 ⊆ 𝒫 𝑉)
36 sspwuni 5104 . . . . . 6 (𝑥 ⊆ 𝒫 𝑉 𝑥𝑉)
3735, 36sylib 217 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥𝑉)
3832, 37sstrd 3987 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥𝑉)
391, 2, 10iscss2 21635 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥𝑉) → ( 𝑥𝐶 ↔ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ⊆ 𝑥))
4030, 38, 39syl2anc 582 . . 3 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → ( 𝑥𝐶 ↔ ((ocv‘𝑊)‘((ocv‘𝑊)‘ 𝑥)) ⊆ 𝑥))
4129, 40mpbird 256 . 2 ((𝑊 ∈ PreHil ∧ 𝑥𝐶𝑥 ≠ ∅) → 𝑥𝐶)
427, 8, 41ismred 17585 1 (𝑊 ∈ PreHil → 𝐶 ∈ (Moore‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084  wal 1531   = wceq 1533  wcel 2098  wne 2929  wss 3944  c0 4322  𝒫 cpw 4604   cuni 4909   cint 4950  cfv 6549  Basecbs 17183  Moorecmre 17565  PreHilcphl 21573  ocvcocv 21609  ClSubSpccss 21610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-plusg 17249  df-mulr 17250  df-sca 17252  df-vsca 17253  df-ip 17254  df-0g 17426  df-mre 17569  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mhm 18743  df-grp 18901  df-ghm 19176  df-mgp 20087  df-ur 20134  df-ring 20187  df-oppr 20285  df-rhm 20423  df-staf 20737  df-srng 20738  df-lmod 20757  df-lmhm 20919  df-lvec 21000  df-sra 21070  df-rgmod 21071  df-phl 21575  df-ocv 21612  df-css 21613
This theorem is referenced by:  mrccss  21643
  Copyright terms: Public domain W3C validator