MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elintrab Structured version   Visualization version   GIF version

Theorem elintrab 4912
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Oct-1999.)
Hypothesis
Ref Expression
elintab.ex 𝐴 ∈ V
Assertion
Ref Expression
elintrab (𝐴 {𝑥𝐵𝜑} ↔ ∀𝑥𝐵 (𝜑𝐴𝑥))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem elintrab
StepHypRef Expression
1 elintab.ex . . . 4 𝐴 ∈ V
21elintab 4911 . . 3 (𝐴 {𝑥 ∣ (𝑥𝐵𝜑)} ↔ ∀𝑥((𝑥𝐵𝜑) → 𝐴𝑥))
3 impexp 450 . . . 4 (((𝑥𝐵𝜑) → 𝐴𝑥) ↔ (𝑥𝐵 → (𝜑𝐴𝑥)))
43albii 1820 . . 3 (∀𝑥((𝑥𝐵𝜑) → 𝐴𝑥) ↔ ∀𝑥(𝑥𝐵 → (𝜑𝐴𝑥)))
52, 4bitri 275 . 2 (𝐴 {𝑥 ∣ (𝑥𝐵𝜑)} ↔ ∀𝑥(𝑥𝐵 → (𝜑𝐴𝑥)))
6 df-rab 3397 . . . 4 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
76inteqi 4903 . . 3 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
87eleq2i 2825 . 2 (𝐴 {𝑥𝐵𝜑} ↔ 𝐴 {𝑥 ∣ (𝑥𝐵𝜑)})
9 df-ral 3049 . 2 (∀𝑥𝐵 (𝜑𝐴𝑥) ↔ ∀𝑥(𝑥𝐵 → (𝜑𝐴𝑥)))
105, 8, 93bitr4i 303 1 (𝐴 {𝑥𝐵𝜑} ↔ ∀𝑥𝐵 (𝜑𝐴𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539  wcel 2113  {cab 2711  wral 3048  {crab 3396  Vcvv 3437   cint 4899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-int 4900
This theorem is referenced by:  elintrabg  4913  intmin  4920  naddelim  8610  rankunb  9754  isf34lem4  10279  ist1-3  23284  filufint  23855  elspani  31544  fldgensdrg  33324  evls1fldgencl  33755  ldsysgenld  34245  ldgenpisyslem1  34248  kur14lem9  35330  pclclN  40063  elpclN  40064  naddwordnexlem4  43558  lcosslsp  48600
  Copyright terms: Public domain W3C validator