![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elintrab | Structured version Visualization version GIF version |
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Oct-1999.) |
Ref | Expression |
---|---|
elintab.ex | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elintrab | ⊢ (𝐴 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elintab.ex | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | elintab 4961 | . . 3 ⊢ (𝐴 ∈ ∩ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↔ ∀𝑥((𝑥 ∈ 𝐵 ∧ 𝜑) → 𝐴 ∈ 𝑥)) |
3 | impexp 450 | . . . 4 ⊢ (((𝑥 ∈ 𝐵 ∧ 𝜑) → 𝐴 ∈ 𝑥) ↔ (𝑥 ∈ 𝐵 → (𝜑 → 𝐴 ∈ 𝑥))) | |
4 | 3 | albii 1814 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐵 ∧ 𝜑) → 𝐴 ∈ 𝑥) ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝜑 → 𝐴 ∈ 𝑥))) |
5 | 2, 4 | bitri 275 | . 2 ⊢ (𝐴 ∈ ∩ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝜑 → 𝐴 ∈ 𝑥))) |
6 | df-rab 3430 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} | |
7 | 6 | inteqi 4953 | . . 3 ⊢ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} = ∩ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} |
8 | 7 | eleq2i 2821 | . 2 ⊢ (𝐴 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝐴 ∈ ∩ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)}) |
9 | df-ral 3059 | . 2 ⊢ (∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ∈ 𝑥) ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝜑 → 𝐴 ∈ 𝑥))) | |
10 | 5, 8, 9 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ∈ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1532 ∈ wcel 2099 {cab 2705 ∀wral 3058 {crab 3429 Vcvv 3471 ∩ cint 4949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3430 df-int 4950 |
This theorem is referenced by: elintrabg 4964 intmin 4971 naddelim 8707 rankunb 9874 isf34lem4 10401 ist1-3 23266 filufint 23837 elspani 31366 fldgensdrg 33014 evls1fldgencl 33358 ldsysgenld 33779 ldgenpisyslem1 33782 kur14lem9 34824 pclclN 39364 elpclN 39365 naddwordnexlem4 42831 lcosslsp 47506 |
Copyright terms: Public domain | W3C validator |