![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elintrab | Structured version Visualization version GIF version |
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Oct-1999.) |
Ref | Expression |
---|---|
elintab.ex | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elintrab | ⊢ (𝐴 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elintab.ex | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | elintab 4953 | . . 3 ⊢ (𝐴 ∈ ∩ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↔ ∀𝑥((𝑥 ∈ 𝐵 ∧ 𝜑) → 𝐴 ∈ 𝑥)) |
3 | impexp 450 | . . . 4 ⊢ (((𝑥 ∈ 𝐵 ∧ 𝜑) → 𝐴 ∈ 𝑥) ↔ (𝑥 ∈ 𝐵 → (𝜑 → 𝐴 ∈ 𝑥))) | |
4 | 3 | albii 1813 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐵 ∧ 𝜑) → 𝐴 ∈ 𝑥) ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝜑 → 𝐴 ∈ 𝑥))) |
5 | 2, 4 | bitri 275 | . 2 ⊢ (𝐴 ∈ ∩ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝜑 → 𝐴 ∈ 𝑥))) |
6 | df-rab 3425 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} | |
7 | 6 | inteqi 4945 | . . 3 ⊢ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} = ∩ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} |
8 | 7 | eleq2i 2817 | . 2 ⊢ (𝐴 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝐴 ∈ ∩ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)}) |
9 | df-ral 3054 | . 2 ⊢ (∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ∈ 𝑥) ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝜑 → 𝐴 ∈ 𝑥))) | |
10 | 5, 8, 9 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ∈ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1531 ∈ wcel 2098 {cab 2701 ∀wral 3053 {crab 3424 Vcvv 3466 ∩ cint 4941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-int 4942 |
This theorem is referenced by: elintrabg 4956 intmin 4963 naddelim 8682 rankunb 9842 isf34lem4 10369 ist1-3 23197 filufint 23768 elspani 31291 fldgensdrg 32897 evls1fldgencl 33253 ldsysgenld 33678 ldgenpisyslem1 33681 kur14lem9 34723 pclclN 39266 elpclN 39267 naddwordnexlem4 42702 lcosslsp 47368 |
Copyright terms: Public domain | W3C validator |