| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elintrab | Structured version Visualization version GIF version | ||
| Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Oct-1999.) |
| Ref | Expression |
|---|---|
| elintab.ex | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elintrab | ⊢ (𝐴 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ∈ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elintab.ex | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 1 | elintab 4939 | . . 3 ⊢ (𝐴 ∈ ∩ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↔ ∀𝑥((𝑥 ∈ 𝐵 ∧ 𝜑) → 𝐴 ∈ 𝑥)) |
| 3 | impexp 450 | . . . 4 ⊢ (((𝑥 ∈ 𝐵 ∧ 𝜑) → 𝐴 ∈ 𝑥) ↔ (𝑥 ∈ 𝐵 → (𝜑 → 𝐴 ∈ 𝑥))) | |
| 4 | 3 | albii 1819 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐵 ∧ 𝜑) → 𝐴 ∈ 𝑥) ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝜑 → 𝐴 ∈ 𝑥))) |
| 5 | 2, 4 | bitri 275 | . 2 ⊢ (𝐴 ∈ ∩ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝜑 → 𝐴 ∈ 𝑥))) |
| 6 | df-rab 3421 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} | |
| 7 | 6 | inteqi 4931 | . . 3 ⊢ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} = ∩ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} |
| 8 | 7 | eleq2i 2827 | . 2 ⊢ (𝐴 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝐴 ∈ ∩ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)}) |
| 9 | df-ral 3053 | . 2 ⊢ (∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ∈ 𝑥) ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝜑 → 𝐴 ∈ 𝑥))) | |
| 10 | 5, 8, 9 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ∈ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 {cab 2714 ∀wral 3052 {crab 3420 Vcvv 3464 ∩ cint 4927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-int 4928 |
| This theorem is referenced by: elintrabg 4942 intmin 4949 naddelim 8703 rankunb 9869 isf34lem4 10396 ist1-3 23292 filufint 23863 elspani 31529 fldgensdrg 33313 evls1fldgencl 33716 ldsysgenld 34196 ldgenpisyslem1 34199 kur14lem9 35241 pclclN 39915 elpclN 39916 naddwordnexlem4 43392 lcosslsp 48381 |
| Copyright terms: Public domain | W3C validator |