MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limomss Structured version   Visualization version   GIF version

Theorem limomss 7908
Description: The class of natural numbers is a subclass of any (infinite) limit ordinal. Exercise 1 of [TakeutiZaring] p. 44. Remarkably, our proof does not require the Axiom of Infinity. (Contributed by NM, 30-Oct-2003.)
Assertion
Ref Expression
limomss (Lim 𝐴 → ω ⊆ 𝐴)

Proof of Theorem limomss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limord 6455 . 2 (Lim 𝐴 → Ord 𝐴)
2 ordeleqon 7817 . . 3 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
3 elom 7906 . . . . . . . . . 10 (𝑥 ∈ ω ↔ (𝑥 ∈ On ∧ ∀𝑦(Lim 𝑦𝑥𝑦)))
43simprbi 496 . . . . . . . . 9 (𝑥 ∈ ω → ∀𝑦(Lim 𝑦𝑥𝑦))
5 limeq 6407 . . . . . . . . . . 11 (𝑦 = 𝐴 → (Lim 𝑦 ↔ Lim 𝐴))
6 eleq2 2833 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑥𝑦𝑥𝐴))
75, 6imbi12d 344 . . . . . . . . . 10 (𝑦 = 𝐴 → ((Lim 𝑦𝑥𝑦) ↔ (Lim 𝐴𝑥𝐴)))
87spcgv 3609 . . . . . . . . 9 (𝐴 ∈ On → (∀𝑦(Lim 𝑦𝑥𝑦) → (Lim 𝐴𝑥𝐴)))
94, 8syl5 34 . . . . . . . 8 (𝐴 ∈ On → (𝑥 ∈ ω → (Lim 𝐴𝑥𝐴)))
109com23 86 . . . . . . 7 (𝐴 ∈ On → (Lim 𝐴 → (𝑥 ∈ ω → 𝑥𝐴)))
1110imp 406 . . . . . 6 ((𝐴 ∈ On ∧ Lim 𝐴) → (𝑥 ∈ ω → 𝑥𝐴))
1211ssrdv 4014 . . . . 5 ((𝐴 ∈ On ∧ Lim 𝐴) → ω ⊆ 𝐴)
1312ex 412 . . . 4 (𝐴 ∈ On → (Lim 𝐴 → ω ⊆ 𝐴))
14 omsson 7907 . . . . . 6 ω ⊆ On
15 sseq2 4035 . . . . . 6 (𝐴 = On → (ω ⊆ 𝐴 ↔ ω ⊆ On))
1614, 15mpbiri 258 . . . . 5 (𝐴 = On → ω ⊆ 𝐴)
1716a1d 25 . . . 4 (𝐴 = On → (Lim 𝐴 → ω ⊆ 𝐴))
1813, 17jaoi 856 . . 3 ((𝐴 ∈ On ∨ 𝐴 = On) → (Lim 𝐴 → ω ⊆ 𝐴))
192, 18sylbi 217 . 2 (Ord 𝐴 → (Lim 𝐴 → ω ⊆ 𝐴))
201, 19mpcom 38 1 (Lim 𝐴 → ω ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846  wal 1535   = wceq 1537  wcel 2108  wss 3976  Ord word 6394  Oncon0 6395  Lim wlim 6396  ωcom 7903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-lim 6400  df-om 7904
This theorem is referenced by:  limom  7919  rdg0  8477  frfnom  8491  frsuc  8493  r1fin  9842  rankdmr1  9870  rankeq0b  9929  cardlim  10041  ackbij2  10311  cfom  10333  wunom  10789  inar1  10844  bj-rdg0gALT  37037
  Copyright terms: Public domain W3C validator