| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limomss | Structured version Visualization version GIF version | ||
| Description: The class of natural numbers is a subclass of any (infinite) limit ordinal. Exercise 1 of [TakeutiZaring] p. 44. Remarkably, our proof does not require the Axiom of Infinity. (Contributed by NM, 30-Oct-2003.) |
| Ref | Expression |
|---|---|
| limomss | ⊢ (Lim 𝐴 → ω ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limord 6396 | . 2 ⊢ (Lim 𝐴 → Ord 𝐴) | |
| 2 | ordeleqon 7761 | . . 3 ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) | |
| 3 | elom 7848 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ω ↔ (𝑥 ∈ On ∧ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦))) | |
| 4 | 3 | simprbi 496 | . . . . . . . . 9 ⊢ (𝑥 ∈ ω → ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)) |
| 5 | limeq 6347 | . . . . . . . . . . 11 ⊢ (𝑦 = 𝐴 → (Lim 𝑦 ↔ Lim 𝐴)) | |
| 6 | eleq2 2818 | . . . . . . . . . . 11 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴)) | |
| 7 | 5, 6 | imbi12d 344 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐴 → ((Lim 𝑦 → 𝑥 ∈ 𝑦) ↔ (Lim 𝐴 → 𝑥 ∈ 𝐴))) |
| 8 | 7 | spcgv 3565 | . . . . . . . . 9 ⊢ (𝐴 ∈ On → (∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦) → (Lim 𝐴 → 𝑥 ∈ 𝐴))) |
| 9 | 4, 8 | syl5 34 | . . . . . . . 8 ⊢ (𝐴 ∈ On → (𝑥 ∈ ω → (Lim 𝐴 → 𝑥 ∈ 𝐴))) |
| 10 | 9 | com23 86 | . . . . . . 7 ⊢ (𝐴 ∈ On → (Lim 𝐴 → (𝑥 ∈ ω → 𝑥 ∈ 𝐴))) |
| 11 | 10 | imp 406 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ Lim 𝐴) → (𝑥 ∈ ω → 𝑥 ∈ 𝐴)) |
| 12 | 11 | ssrdv 3955 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ Lim 𝐴) → ω ⊆ 𝐴) |
| 13 | 12 | ex 412 | . . . 4 ⊢ (𝐴 ∈ On → (Lim 𝐴 → ω ⊆ 𝐴)) |
| 14 | omsson 7849 | . . . . . 6 ⊢ ω ⊆ On | |
| 15 | sseq2 3976 | . . . . . 6 ⊢ (𝐴 = On → (ω ⊆ 𝐴 ↔ ω ⊆ On)) | |
| 16 | 14, 15 | mpbiri 258 | . . . . 5 ⊢ (𝐴 = On → ω ⊆ 𝐴) |
| 17 | 16 | a1d 25 | . . . 4 ⊢ (𝐴 = On → (Lim 𝐴 → ω ⊆ 𝐴)) |
| 18 | 13, 17 | jaoi 857 | . . 3 ⊢ ((𝐴 ∈ On ∨ 𝐴 = On) → (Lim 𝐴 → ω ⊆ 𝐴)) |
| 19 | 2, 18 | sylbi 217 | . 2 ⊢ (Ord 𝐴 → (Lim 𝐴 → ω ⊆ 𝐴)) |
| 20 | 1, 19 | mpcom 38 | 1 ⊢ (Lim 𝐴 → ω ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 Ord word 6334 Oncon0 6335 Lim wlim 6336 ωcom 7845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 df-lim 6340 df-om 7846 |
| This theorem is referenced by: limom 7861 rdg0 8392 frfnom 8406 frsuc 8408 r1fin 9733 rankdmr1 9761 rankeq0b 9820 cardlim 9932 ackbij2 10202 cfom 10224 wunom 10680 inar1 10735 bj-rdg0gALT 37066 |
| Copyright terms: Public domain | W3C validator |