![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limomss | Structured version Visualization version GIF version |
Description: The class of natural numbers is a subclass of any (infinite) limit ordinal. Exercise 1 of [TakeutiZaring] p. 44. Remarkably, our proof does not require the Axiom of Infinity. (Contributed by NM, 30-Oct-2003.) |
Ref | Expression |
---|---|
limomss | ⊢ (Lim 𝐴 → ω ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limord 5998 | . 2 ⊢ (Lim 𝐴 → Ord 𝐴) | |
2 | ordeleqon 7220 | . . 3 ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) | |
3 | elom 7300 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ω ↔ (𝑥 ∈ On ∧ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦))) | |
4 | 3 | simprbi 491 | . . . . . . . . 9 ⊢ (𝑥 ∈ ω → ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)) |
5 | limeq 5951 | . . . . . . . . . . 11 ⊢ (𝑦 = 𝐴 → (Lim 𝑦 ↔ Lim 𝐴)) | |
6 | eleq2 2865 | . . . . . . . . . . 11 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴)) | |
7 | 5, 6 | imbi12d 336 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐴 → ((Lim 𝑦 → 𝑥 ∈ 𝑦) ↔ (Lim 𝐴 → 𝑥 ∈ 𝐴))) |
8 | 7 | spcgv 3479 | . . . . . . . . 9 ⊢ (𝐴 ∈ On → (∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦) → (Lim 𝐴 → 𝑥 ∈ 𝐴))) |
9 | 4, 8 | syl5 34 | . . . . . . . 8 ⊢ (𝐴 ∈ On → (𝑥 ∈ ω → (Lim 𝐴 → 𝑥 ∈ 𝐴))) |
10 | 9 | com23 86 | . . . . . . 7 ⊢ (𝐴 ∈ On → (Lim 𝐴 → (𝑥 ∈ ω → 𝑥 ∈ 𝐴))) |
11 | 10 | imp 396 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ Lim 𝐴) → (𝑥 ∈ ω → 𝑥 ∈ 𝐴)) |
12 | 11 | ssrdv 3802 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ Lim 𝐴) → ω ⊆ 𝐴) |
13 | 12 | ex 402 | . . . 4 ⊢ (𝐴 ∈ On → (Lim 𝐴 → ω ⊆ 𝐴)) |
14 | omsson 7301 | . . . . . 6 ⊢ ω ⊆ On | |
15 | sseq2 3821 | . . . . . 6 ⊢ (𝐴 = On → (ω ⊆ 𝐴 ↔ ω ⊆ On)) | |
16 | 14, 15 | mpbiri 250 | . . . . 5 ⊢ (𝐴 = On → ω ⊆ 𝐴) |
17 | 16 | a1d 25 | . . . 4 ⊢ (𝐴 = On → (Lim 𝐴 → ω ⊆ 𝐴)) |
18 | 13, 17 | jaoi 884 | . . 3 ⊢ ((𝐴 ∈ On ∨ 𝐴 = On) → (Lim 𝐴 → ω ⊆ 𝐴)) |
19 | 2, 18 | sylbi 209 | . 2 ⊢ (Ord 𝐴 → (Lim 𝐴 → ω ⊆ 𝐴)) |
20 | 1, 19 | mpcom 38 | 1 ⊢ (Lim 𝐴 → ω ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∨ wo 874 ∀wal 1651 = wceq 1653 ∈ wcel 2157 ⊆ wss 3767 Ord word 5938 Oncon0 5939 Lim wlim 5940 ωcom 7297 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-tr 4944 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-om 7298 |
This theorem is referenced by: limom 7312 rdg0 7754 frfnom 7767 frsuc 7769 r1fin 8884 rankdmr1 8912 rankeq0b 8971 cardlim 9082 ackbij2 9351 cfom 9372 wunom 9828 inar1 9883 |
Copyright terms: Public domain | W3C validator |