MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limomss Structured version   Visualization version   GIF version

Theorem limomss 7579
Description: The class of natural numbers is a subclass of any (infinite) limit ordinal. Exercise 1 of [TakeutiZaring] p. 44. Remarkably, our proof does not require the Axiom of Infinity. (Contributed by NM, 30-Oct-2003.)
Assertion
Ref Expression
limomss (Lim 𝐴 → ω ⊆ 𝐴)

Proof of Theorem limomss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limord 6244 . 2 (Lim 𝐴 → Ord 𝐴)
2 ordeleqon 7497 . . 3 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
3 elom 7577 . . . . . . . . . 10 (𝑥 ∈ ω ↔ (𝑥 ∈ On ∧ ∀𝑦(Lim 𝑦𝑥𝑦)))
43simprbi 499 . . . . . . . . 9 (𝑥 ∈ ω → ∀𝑦(Lim 𝑦𝑥𝑦))
5 limeq 6197 . . . . . . . . . . 11 (𝑦 = 𝐴 → (Lim 𝑦 ↔ Lim 𝐴))
6 eleq2 2901 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑥𝑦𝑥𝐴))
75, 6imbi12d 347 . . . . . . . . . 10 (𝑦 = 𝐴 → ((Lim 𝑦𝑥𝑦) ↔ (Lim 𝐴𝑥𝐴)))
87spcgv 3594 . . . . . . . . 9 (𝐴 ∈ On → (∀𝑦(Lim 𝑦𝑥𝑦) → (Lim 𝐴𝑥𝐴)))
94, 8syl5 34 . . . . . . . 8 (𝐴 ∈ On → (𝑥 ∈ ω → (Lim 𝐴𝑥𝐴)))
109com23 86 . . . . . . 7 (𝐴 ∈ On → (Lim 𝐴 → (𝑥 ∈ ω → 𝑥𝐴)))
1110imp 409 . . . . . 6 ((𝐴 ∈ On ∧ Lim 𝐴) → (𝑥 ∈ ω → 𝑥𝐴))
1211ssrdv 3972 . . . . 5 ((𝐴 ∈ On ∧ Lim 𝐴) → ω ⊆ 𝐴)
1312ex 415 . . . 4 (𝐴 ∈ On → (Lim 𝐴 → ω ⊆ 𝐴))
14 omsson 7578 . . . . . 6 ω ⊆ On
15 sseq2 3992 . . . . . 6 (𝐴 = On → (ω ⊆ 𝐴 ↔ ω ⊆ On))
1614, 15mpbiri 260 . . . . 5 (𝐴 = On → ω ⊆ 𝐴)
1716a1d 25 . . . 4 (𝐴 = On → (Lim 𝐴 → ω ⊆ 𝐴))
1813, 17jaoi 853 . . 3 ((𝐴 ∈ On ∨ 𝐴 = On) → (Lim 𝐴 → ω ⊆ 𝐴))
192, 18sylbi 219 . 2 (Ord 𝐴 → (Lim 𝐴 → ω ⊆ 𝐴))
201, 19mpcom 38 1 (Lim 𝐴 → ω ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843  wal 1531   = wceq 1533  wcel 2110  wss 3935  Ord word 6184  Oncon0 6185  Lim wlim 6186  ωcom 7574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-tr 5165  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-om 7575
This theorem is referenced by:  limom  7589  rdg0  8051  frfnom  8064  frsuc  8066  r1fin  9196  rankdmr1  9224  rankeq0b  9283  cardlim  9395  ackbij2  9659  cfom  9680  wunom  10136  inar1  10191
  Copyright terms: Public domain W3C validator