MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limomss Structured version   Visualization version   GIF version

Theorem limomss 7692
Description: The class of natural numbers is a subclass of any (infinite) limit ordinal. Exercise 1 of [TakeutiZaring] p. 44. Remarkably, our proof does not require the Axiom of Infinity. (Contributed by NM, 30-Oct-2003.)
Assertion
Ref Expression
limomss (Lim 𝐴 → ω ⊆ 𝐴)

Proof of Theorem limomss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limord 6310 . 2 (Lim 𝐴 → Ord 𝐴)
2 ordeleqon 7609 . . 3 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
3 elom 7690 . . . . . . . . . 10 (𝑥 ∈ ω ↔ (𝑥 ∈ On ∧ ∀𝑦(Lim 𝑦𝑥𝑦)))
43simprbi 496 . . . . . . . . 9 (𝑥 ∈ ω → ∀𝑦(Lim 𝑦𝑥𝑦))
5 limeq 6263 . . . . . . . . . . 11 (𝑦 = 𝐴 → (Lim 𝑦 ↔ Lim 𝐴))
6 eleq2 2827 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑥𝑦𝑥𝐴))
75, 6imbi12d 344 . . . . . . . . . 10 (𝑦 = 𝐴 → ((Lim 𝑦𝑥𝑦) ↔ (Lim 𝐴𝑥𝐴)))
87spcgv 3525 . . . . . . . . 9 (𝐴 ∈ On → (∀𝑦(Lim 𝑦𝑥𝑦) → (Lim 𝐴𝑥𝐴)))
94, 8syl5 34 . . . . . . . 8 (𝐴 ∈ On → (𝑥 ∈ ω → (Lim 𝐴𝑥𝐴)))
109com23 86 . . . . . . 7 (𝐴 ∈ On → (Lim 𝐴 → (𝑥 ∈ ω → 𝑥𝐴)))
1110imp 406 . . . . . 6 ((𝐴 ∈ On ∧ Lim 𝐴) → (𝑥 ∈ ω → 𝑥𝐴))
1211ssrdv 3923 . . . . 5 ((𝐴 ∈ On ∧ Lim 𝐴) → ω ⊆ 𝐴)
1312ex 412 . . . 4 (𝐴 ∈ On → (Lim 𝐴 → ω ⊆ 𝐴))
14 omsson 7691 . . . . . 6 ω ⊆ On
15 sseq2 3943 . . . . . 6 (𝐴 = On → (ω ⊆ 𝐴 ↔ ω ⊆ On))
1614, 15mpbiri 257 . . . . 5 (𝐴 = On → ω ⊆ 𝐴)
1716a1d 25 . . . 4 (𝐴 = On → (Lim 𝐴 → ω ⊆ 𝐴))
1813, 17jaoi 853 . . 3 ((𝐴 ∈ On ∨ 𝐴 = On) → (Lim 𝐴 → ω ⊆ 𝐴))
192, 18sylbi 216 . 2 (Ord 𝐴 → (Lim 𝐴 → ω ⊆ 𝐴))
201, 19mpcom 38 1 (Lim 𝐴 → ω ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843  wal 1537   = wceq 1539  wcel 2108  wss 3883  Ord word 6250  Oncon0 6251  Lim wlim 6252  ωcom 7687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255  df-lim 6256  df-om 7688
This theorem is referenced by:  limom  7703  rdg0  8223  frfnom  8236  frsuc  8238  r1fin  9462  rankdmr1  9490  rankeq0b  9549  cardlim  9661  ackbij2  9930  cfom  9951  wunom  10407  inar1  10462  bj-rdg0gALT  35169
  Copyright terms: Public domain W3C validator