MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limomss Structured version   Visualization version   GIF version

Theorem limomss 7847
Description: The class of natural numbers is a subclass of any (infinite) limit ordinal. Exercise 1 of [TakeutiZaring] p. 44. Remarkably, our proof does not require the Axiom of Infinity. (Contributed by NM, 30-Oct-2003.)
Assertion
Ref Expression
limomss (Lim 𝐴 → ω ⊆ 𝐴)

Proof of Theorem limomss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limord 6393 . 2 (Lim 𝐴 → Ord 𝐴)
2 ordeleqon 7758 . . 3 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
3 elom 7845 . . . . . . . . . 10 (𝑥 ∈ ω ↔ (𝑥 ∈ On ∧ ∀𝑦(Lim 𝑦𝑥𝑦)))
43simprbi 496 . . . . . . . . 9 (𝑥 ∈ ω → ∀𝑦(Lim 𝑦𝑥𝑦))
5 limeq 6344 . . . . . . . . . . 11 (𝑦 = 𝐴 → (Lim 𝑦 ↔ Lim 𝐴))
6 eleq2 2817 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑥𝑦𝑥𝐴))
75, 6imbi12d 344 . . . . . . . . . 10 (𝑦 = 𝐴 → ((Lim 𝑦𝑥𝑦) ↔ (Lim 𝐴𝑥𝐴)))
87spcgv 3562 . . . . . . . . 9 (𝐴 ∈ On → (∀𝑦(Lim 𝑦𝑥𝑦) → (Lim 𝐴𝑥𝐴)))
94, 8syl5 34 . . . . . . . 8 (𝐴 ∈ On → (𝑥 ∈ ω → (Lim 𝐴𝑥𝐴)))
109com23 86 . . . . . . 7 (𝐴 ∈ On → (Lim 𝐴 → (𝑥 ∈ ω → 𝑥𝐴)))
1110imp 406 . . . . . 6 ((𝐴 ∈ On ∧ Lim 𝐴) → (𝑥 ∈ ω → 𝑥𝐴))
1211ssrdv 3952 . . . . 5 ((𝐴 ∈ On ∧ Lim 𝐴) → ω ⊆ 𝐴)
1312ex 412 . . . 4 (𝐴 ∈ On → (Lim 𝐴 → ω ⊆ 𝐴))
14 omsson 7846 . . . . . 6 ω ⊆ On
15 sseq2 3973 . . . . . 6 (𝐴 = On → (ω ⊆ 𝐴 ↔ ω ⊆ On))
1614, 15mpbiri 258 . . . . 5 (𝐴 = On → ω ⊆ 𝐴)
1716a1d 25 . . . 4 (𝐴 = On → (Lim 𝐴 → ω ⊆ 𝐴))
1813, 17jaoi 857 . . 3 ((𝐴 ∈ On ∨ 𝐴 = On) → (Lim 𝐴 → ω ⊆ 𝐴))
192, 18sylbi 217 . 2 (Ord 𝐴 → (Lim 𝐴 → ω ⊆ 𝐴))
201, 19mpcom 38 1 (Lim 𝐴 → ω ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  wal 1538   = wceq 1540  wcel 2109  wss 3914  Ord word 6331  Oncon0 6332  Lim wlim 6333  ωcom 7842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335  df-on 6336  df-lim 6337  df-om 7843
This theorem is referenced by:  limom  7858  rdg0  8389  frfnom  8403  frsuc  8405  r1fin  9726  rankdmr1  9754  rankeq0b  9813  cardlim  9925  ackbij2  10195  cfom  10217  wunom  10673  inar1  10728  bj-rdg0gALT  37059
  Copyright terms: Public domain W3C validator