| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnlim | Structured version Visualization version GIF version | ||
| Description: A natural number is not a limit ordinal. (Contributed by NM, 18-Oct-1995.) |
| Ref | Expression |
|---|---|
| nnlim | ⊢ (𝐴 ∈ ω → ¬ Lim 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnord 7813 | . . 3 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
| 2 | ordirr 6332 | . . 3 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ ω → ¬ 𝐴 ∈ 𝐴) |
| 4 | elom 7808 | . . . 4 ⊢ (𝐴 ∈ ω ↔ (𝐴 ∈ On ∧ ∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥))) | |
| 5 | 4 | simprbi 496 | . . 3 ⊢ (𝐴 ∈ ω → ∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥)) |
| 6 | limeq 6326 | . . . . 5 ⊢ (𝑥 = 𝐴 → (Lim 𝑥 ↔ Lim 𝐴)) | |
| 7 | eleq2 2822 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐴)) | |
| 8 | 6, 7 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝐴 → ((Lim 𝑥 → 𝐴 ∈ 𝑥) ↔ (Lim 𝐴 → 𝐴 ∈ 𝐴))) |
| 9 | 8 | spcgv 3547 | . . 3 ⊢ (𝐴 ∈ ω → (∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥) → (Lim 𝐴 → 𝐴 ∈ 𝐴))) |
| 10 | 5, 9 | mpd 15 | . 2 ⊢ (𝐴 ∈ ω → (Lim 𝐴 → 𝐴 ∈ 𝐴)) |
| 11 | 3, 10 | mtod 198 | 1 ⊢ (𝐴 ∈ ω → ¬ Lim 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1539 = wceq 1541 ∈ wcel 2113 Ord word 6313 Oncon0 6314 Lim wlim 6315 ωcom 7805 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-ord 6317 df-on 6318 df-lim 6319 df-om 7806 |
| This theorem is referenced by: omssnlim 7820 nnsuc 7823 cantnfp1lem2 9580 cantnflem1 9590 cnfcom2lem 9602 1oequni2o 37485 finxp1o 37509 finxpreclem4 37511 dflim5 43486 |
| Copyright terms: Public domain | W3C validator |