![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnlim | Structured version Visualization version GIF version |
Description: A natural number is not a limit ordinal. (Contributed by NM, 18-Oct-1995.) |
Ref | Expression |
---|---|
nnlim | ⊢ (𝐴 ∈ ω → ¬ Lim 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnord 7859 | . . 3 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
2 | ordirr 6379 | . . 3 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ ω → ¬ 𝐴 ∈ 𝐴) |
4 | elom 7854 | . . . 4 ⊢ (𝐴 ∈ ω ↔ (𝐴 ∈ On ∧ ∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥))) | |
5 | 4 | simprbi 497 | . . 3 ⊢ (𝐴 ∈ ω → ∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥)) |
6 | limeq 6373 | . . . . 5 ⊢ (𝑥 = 𝐴 → (Lim 𝑥 ↔ Lim 𝐴)) | |
7 | eleq2 2822 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐴)) | |
8 | 6, 7 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝐴 → ((Lim 𝑥 → 𝐴 ∈ 𝑥) ↔ (Lim 𝐴 → 𝐴 ∈ 𝐴))) |
9 | 8 | spcgv 3586 | . . 3 ⊢ (𝐴 ∈ ω → (∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥) → (Lim 𝐴 → 𝐴 ∈ 𝐴))) |
10 | 5, 9 | mpd 15 | . 2 ⊢ (𝐴 ∈ ω → (Lim 𝐴 → 𝐴 ∈ 𝐴)) |
11 | 3, 10 | mtod 197 | 1 ⊢ (𝐴 ∈ ω → ¬ Lim 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1539 = wceq 1541 ∈ wcel 2106 Ord word 6360 Oncon0 6361 Lim wlim 6362 ωcom 7851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-ord 6364 df-on 6365 df-lim 6366 df-om 7852 |
This theorem is referenced by: omssnlim 7866 nnsuc 7869 cantnfp1lem2 9670 cantnflem1 9680 cnfcom2lem 9692 1oequni2o 36237 finxp1o 36261 finxpreclem4 36263 dflim5 42064 |
Copyright terms: Public domain | W3C validator |