| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnlim | Structured version Visualization version GIF version | ||
| Description: A natural number is not a limit ordinal. (Contributed by NM, 18-Oct-1995.) |
| Ref | Expression |
|---|---|
| nnlim | ⊢ (𝐴 ∈ ω → ¬ Lim 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnord 7850 | . . 3 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
| 2 | ordirr 6350 | . . 3 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ ω → ¬ 𝐴 ∈ 𝐴) |
| 4 | elom 7845 | . . . 4 ⊢ (𝐴 ∈ ω ↔ (𝐴 ∈ On ∧ ∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥))) | |
| 5 | 4 | simprbi 496 | . . 3 ⊢ (𝐴 ∈ ω → ∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥)) |
| 6 | limeq 6344 | . . . . 5 ⊢ (𝑥 = 𝐴 → (Lim 𝑥 ↔ Lim 𝐴)) | |
| 7 | eleq2 2817 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐴)) | |
| 8 | 6, 7 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝐴 → ((Lim 𝑥 → 𝐴 ∈ 𝑥) ↔ (Lim 𝐴 → 𝐴 ∈ 𝐴))) |
| 9 | 8 | spcgv 3562 | . . 3 ⊢ (𝐴 ∈ ω → (∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥) → (Lim 𝐴 → 𝐴 ∈ 𝐴))) |
| 10 | 5, 9 | mpd 15 | . 2 ⊢ (𝐴 ∈ ω → (Lim 𝐴 → 𝐴 ∈ 𝐴)) |
| 11 | 3, 10 | mtod 198 | 1 ⊢ (𝐴 ∈ ω → ¬ Lim 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 = wceq 1540 ∈ wcel 2109 Ord word 6331 Oncon0 6332 Lim wlim 6333 ωcom 7842 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 df-lim 6337 df-om 7843 |
| This theorem is referenced by: omssnlim 7857 nnsuc 7860 cantnfp1lem2 9632 cantnflem1 9642 cnfcom2lem 9654 1oequni2o 37356 finxp1o 37380 finxpreclem4 37382 dflim5 43318 |
| Copyright terms: Public domain | W3C validator |