MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnlim Structured version   Visualization version   GIF version

Theorem nnlim 7701
Description: A natural number is not a limit ordinal. (Contributed by NM, 18-Oct-1995.)
Assertion
Ref Expression
nnlim (𝐴 ∈ ω → ¬ Lim 𝐴)

Proof of Theorem nnlim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nnord 7695 . . 3 (𝐴 ∈ ω → Ord 𝐴)
2 ordirr 6269 . . 3 (Ord 𝐴 → ¬ 𝐴𝐴)
31, 2syl 17 . 2 (𝐴 ∈ ω → ¬ 𝐴𝐴)
4 elom 7690 . . . 4 (𝐴 ∈ ω ↔ (𝐴 ∈ On ∧ ∀𝑥(Lim 𝑥𝐴𝑥)))
54simprbi 496 . . 3 (𝐴 ∈ ω → ∀𝑥(Lim 𝑥𝐴𝑥))
6 limeq 6263 . . . . 5 (𝑥 = 𝐴 → (Lim 𝑥 ↔ Lim 𝐴))
7 eleq2 2827 . . . . 5 (𝑥 = 𝐴 → (𝐴𝑥𝐴𝐴))
86, 7imbi12d 344 . . . 4 (𝑥 = 𝐴 → ((Lim 𝑥𝐴𝑥) ↔ (Lim 𝐴𝐴𝐴)))
98spcgv 3525 . . 3 (𝐴 ∈ ω → (∀𝑥(Lim 𝑥𝐴𝑥) → (Lim 𝐴𝐴𝐴)))
105, 9mpd 15 . 2 (𝐴 ∈ ω → (Lim 𝐴𝐴𝐴))
113, 10mtod 197 1 (𝐴 ∈ ω → ¬ Lim 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537   = wceq 1539  wcel 2108  Ord word 6250  Oncon0 6251  Lim wlim 6252  ωcom 7687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255  df-lim 6256  df-om 7688
This theorem is referenced by:  omssnlim  7702  nnsuc  7705  cantnfp1lem2  9367  cantnflem1  9377  cnfcom2lem  9389  1oequni2o  35466  finxp1o  35490  finxpreclem4  35492
  Copyright terms: Public domain W3C validator