Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnlim | Structured version Visualization version GIF version |
Description: A natural number is not a limit ordinal. (Contributed by NM, 18-Oct-1995.) |
Ref | Expression |
---|---|
nnlim | ⊢ (𝐴 ∈ ω → ¬ Lim 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnord 7695 | . . 3 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
2 | ordirr 6269 | . . 3 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ ω → ¬ 𝐴 ∈ 𝐴) |
4 | elom 7690 | . . . 4 ⊢ (𝐴 ∈ ω ↔ (𝐴 ∈ On ∧ ∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥))) | |
5 | 4 | simprbi 496 | . . 3 ⊢ (𝐴 ∈ ω → ∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥)) |
6 | limeq 6263 | . . . . 5 ⊢ (𝑥 = 𝐴 → (Lim 𝑥 ↔ Lim 𝐴)) | |
7 | eleq2 2827 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐴)) | |
8 | 6, 7 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝐴 → ((Lim 𝑥 → 𝐴 ∈ 𝑥) ↔ (Lim 𝐴 → 𝐴 ∈ 𝐴))) |
9 | 8 | spcgv 3525 | . . 3 ⊢ (𝐴 ∈ ω → (∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥) → (Lim 𝐴 → 𝐴 ∈ 𝐴))) |
10 | 5, 9 | mpd 15 | . 2 ⊢ (𝐴 ∈ ω → (Lim 𝐴 → 𝐴 ∈ 𝐴)) |
11 | 3, 10 | mtod 197 | 1 ⊢ (𝐴 ∈ ω → ¬ Lim 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 = wceq 1539 ∈ wcel 2108 Ord word 6250 Oncon0 6251 Lim wlim 6252 ωcom 7687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-lim 6256 df-om 7688 |
This theorem is referenced by: omssnlim 7702 nnsuc 7705 cantnfp1lem2 9367 cantnflem1 9377 cnfcom2lem 9389 1oequni2o 35466 finxp1o 35490 finxpreclem4 35492 |
Copyright terms: Public domain | W3C validator |