MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnlim Structured version   Visualization version   GIF version

Theorem nnlim 7859
Description: A natural number is not a limit ordinal. (Contributed by NM, 18-Oct-1995.)
Assertion
Ref Expression
nnlim (𝐴 ∈ ω → ¬ Lim 𝐴)

Proof of Theorem nnlim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nnord 7853 . . 3 (𝐴 ∈ ω → Ord 𝐴)
2 ordirr 6353 . . 3 (Ord 𝐴 → ¬ 𝐴𝐴)
31, 2syl 17 . 2 (𝐴 ∈ ω → ¬ 𝐴𝐴)
4 elom 7848 . . . 4 (𝐴 ∈ ω ↔ (𝐴 ∈ On ∧ ∀𝑥(Lim 𝑥𝐴𝑥)))
54simprbi 496 . . 3 (𝐴 ∈ ω → ∀𝑥(Lim 𝑥𝐴𝑥))
6 limeq 6347 . . . . 5 (𝑥 = 𝐴 → (Lim 𝑥 ↔ Lim 𝐴))
7 eleq2 2818 . . . . 5 (𝑥 = 𝐴 → (𝐴𝑥𝐴𝐴))
86, 7imbi12d 344 . . . 4 (𝑥 = 𝐴 → ((Lim 𝑥𝐴𝑥) ↔ (Lim 𝐴𝐴𝐴)))
98spcgv 3565 . . 3 (𝐴 ∈ ω → (∀𝑥(Lim 𝑥𝐴𝑥) → (Lim 𝐴𝐴𝐴)))
105, 9mpd 15 . 2 (𝐴 ∈ ω → (Lim 𝐴𝐴𝐴))
113, 10mtod 198 1 (𝐴 ∈ ω → ¬ Lim 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1538   = wceq 1540  wcel 2109  Ord word 6334  Oncon0 6335  Lim wlim 6336  ωcom 7845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-ord 6338  df-on 6339  df-lim 6340  df-om 7846
This theorem is referenced by:  omssnlim  7860  nnsuc  7863  cantnfp1lem2  9639  cantnflem1  9649  cnfcom2lem  9661  1oequni2o  37363  finxp1o  37387  finxpreclem4  37389  dflim5  43325
  Copyright terms: Public domain W3C validator