MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnlim Structured version   Visualization version   GIF version

Theorem nnlim 7316
Description: A natural number is not a limit ordinal. (Contributed by NM, 18-Oct-1995.)
Assertion
Ref Expression
nnlim (𝐴 ∈ ω → ¬ Lim 𝐴)

Proof of Theorem nnlim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nnord 7311 . . 3 (𝐴 ∈ ω → Ord 𝐴)
2 ordirr 5963 . . 3 (Ord 𝐴 → ¬ 𝐴𝐴)
31, 2syl 17 . 2 (𝐴 ∈ ω → ¬ 𝐴𝐴)
4 elom 7306 . . . 4 (𝐴 ∈ ω ↔ (𝐴 ∈ On ∧ ∀𝑥(Lim 𝑥𝐴𝑥)))
54simprbi 491 . . 3 (𝐴 ∈ ω → ∀𝑥(Lim 𝑥𝐴𝑥))
6 limeq 5957 . . . . 5 (𝑥 = 𝐴 → (Lim 𝑥 ↔ Lim 𝐴))
7 eleq2 2871 . . . . 5 (𝑥 = 𝐴 → (𝐴𝑥𝐴𝐴))
86, 7imbi12d 336 . . . 4 (𝑥 = 𝐴 → ((Lim 𝑥𝐴𝑥) ↔ (Lim 𝐴𝐴𝐴)))
98spcgv 3485 . . 3 (𝐴 ∈ ω → (∀𝑥(Lim 𝑥𝐴𝑥) → (Lim 𝐴𝐴𝐴)))
105, 9mpd 15 . 2 (𝐴 ∈ ω → (Lim 𝐴𝐴𝐴))
113, 10mtod 190 1 (𝐴 ∈ ω → ¬ Lim 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1651   = wceq 1653  wcel 2157  Ord word 5944  Oncon0 5945  Lim wlim 5946  ωcom 7303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2379  ax-ext 2781  ax-sep 4979  ax-nul 4987  ax-pr 5101  ax-un 7187
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2593  df-eu 2611  df-clab 2790  df-cleq 2796  df-clel 2799  df-nfc 2934  df-ne 2976  df-ral 3098  df-rex 3099  df-rab 3102  df-v 3391  df-sbc 3638  df-dif 3776  df-un 3778  df-in 3780  df-ss 3787  df-pss 3789  df-nul 4120  df-if 4282  df-sn 4373  df-pr 4375  df-tp 4377  df-op 4379  df-uni 4633  df-br 4848  df-opab 4910  df-tr 4950  df-eprel 5229  df-po 5237  df-so 5238  df-fr 5275  df-we 5277  df-ord 5948  df-on 5949  df-lim 5950  df-suc 5951  df-om 7304
This theorem is referenced by:  omssnlim  7317  nnsuc  7320  cantnfp1lem2  8830  cantnflem1  8840  cnfcom2lem  8852  1oequni2o  33718  finxp1o  33731  finxpreclem4  33733
  Copyright terms: Public domain W3C validator