MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnlim Structured version   Visualization version   GIF version

Theorem nnlim 7805
Description: A natural number is not a limit ordinal. (Contributed by NM, 18-Oct-1995.)
Assertion
Ref Expression
nnlim (𝐴 ∈ ω → ¬ Lim 𝐴)

Proof of Theorem nnlim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nnord 7799 . . 3 (𝐴 ∈ ω → Ord 𝐴)
2 ordirr 6319 . . 3 (Ord 𝐴 → ¬ 𝐴𝐴)
31, 2syl 17 . 2 (𝐴 ∈ ω → ¬ 𝐴𝐴)
4 elom 7794 . . . 4 (𝐴 ∈ ω ↔ (𝐴 ∈ On ∧ ∀𝑥(Lim 𝑥𝐴𝑥)))
54simprbi 496 . . 3 (𝐴 ∈ ω → ∀𝑥(Lim 𝑥𝐴𝑥))
6 limeq 6313 . . . . 5 (𝑥 = 𝐴 → (Lim 𝑥 ↔ Lim 𝐴))
7 eleq2 2820 . . . . 5 (𝑥 = 𝐴 → (𝐴𝑥𝐴𝐴))
86, 7imbi12d 344 . . . 4 (𝑥 = 𝐴 → ((Lim 𝑥𝐴𝑥) ↔ (Lim 𝐴𝐴𝐴)))
98spcgv 3546 . . 3 (𝐴 ∈ ω → (∀𝑥(Lim 𝑥𝐴𝑥) → (Lim 𝐴𝐴𝐴)))
105, 9mpd 15 . 2 (𝐴 ∈ ω → (Lim 𝐴𝐴𝐴))
113, 10mtod 198 1 (𝐴 ∈ ω → ¬ Lim 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1539   = wceq 1541  wcel 2111  Ord word 6300  Oncon0 6301  Lim wlim 6302  ωcom 7791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-tr 5194  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-ord 6304  df-on 6305  df-lim 6306  df-om 7792
This theorem is referenced by:  omssnlim  7806  nnsuc  7809  cantnfp1lem2  9564  cantnflem1  9574  cnfcom2lem  9586  1oequni2o  37402  finxp1o  37426  finxpreclem4  37428  dflim5  43362
  Copyright terms: Public domain W3C validator