| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano1 | Structured version Visualization version GIF version | ||
| Description: Zero is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(1) of [TakeutiZaring] p. 42. Note: Unlike most textbooks, our proofs of peano1 7822 through peano5 7826 do not use the Axiom of Infinity. Unlike Takeuti and Zaring, they also do not use the Axiom of Regularity. (Contributed by NM, 15-May-1994.) Avoid ax-un 7671. (Revised by BTernaryTau, 29-Nov-2024.) |
| Ref | Expression |
|---|---|
| peano1 | ⊢ ∅ ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon 6362 | . 2 ⊢ ∅ ∈ On | |
| 2 | 0ellim 6371 | . . 3 ⊢ (Lim 𝑥 → ∅ ∈ 𝑥) | |
| 3 | 2 | ax-gen 1795 | . 2 ⊢ ∀𝑥(Lim 𝑥 → ∅ ∈ 𝑥) |
| 4 | elom 7802 | . 2 ⊢ (∅ ∈ ω ↔ (∅ ∈ On ∧ ∀𝑥(Lim 𝑥 → ∅ ∈ 𝑥))) | |
| 5 | 1, 3, 4 | mpbir2an 711 | 1 ⊢ ∅ ∈ ω |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 ∅c0 4284 Oncon0 6307 Lim wlim 6308 ωcom 7799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-tr 5200 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6310 df-on 6311 df-lim 6312 df-om 7800 |
| This theorem is referenced by: onnseq 8267 rdg0 8343 fr0g 8358 seqomlem3 8374 oa1suc 8449 o2p2e4 8459 om1 8460 oe1 8462 nna0r 8527 nnm0r 8528 nnmcl 8530 nnecl 8531 nnmsucr 8543 nnaword1 8547 nnaordex 8556 1onnALT 8559 oaabs2 8567 nnm1 8570 nneob 8574 omopth 8580 0fi 8967 snfiOLD 8969 0finOLD 9084 0sdom1domALT 9136 isinf 9154 nnunifi 9180 unblem2 9182 infn0 9191 infn0ALT 9192 unfilem3 9196 dffi3 9321 inf0 9517 infeq5i 9532 axinf2 9536 dfom3 9543 infdifsn 9553 noinfep 9556 cantnflt 9568 cnfcomlem 9595 cnfcom 9596 cnfcom2lem 9597 cnfcom3lem 9599 cnfcom3 9600 brttrcl2 9610 ttrcltr 9612 rnttrcl 9618 trcl 9624 rankdmr1 9697 rankeq0b 9756 cardlim 9868 infxpenc 9912 infxpenc2 9916 alephgeom 9976 alephfplem4 10001 ackbij1lem13 10125 ackbij1 10131 ackbij1b 10132 ominf4 10206 fin23lem16 10229 fin23lem31 10237 fin23lem40 10245 isf32lem9 10255 isf34lem7 10273 isf34lem6 10274 fin1a2lem6 10299 fin1a2lem7 10300 fin1a2lem11 10304 axdc3lem2 10345 axdc3lem4 10347 axdc4lem 10349 axcclem 10351 axdclem2 10414 pwfseqlem5 10557 omina 10585 wunex3 10635 1lt2pi 10799 1nn 12139 om2uzrani 13859 uzrdg0i 13866 fzennn 13875 axdc4uzlem 13890 hash1 14311 fnpr2o 17461 fvpr0o 17463 ltbwe 21949 2ndcdisj2 23342 precsexlem11 28124 noseq0 28189 noseqrdg0 28206 n0sbday 28249 dfnns2 28266 snct 32656 constrfiss 33718 constrext2chn 33726 nn0constr 33728 goelel3xp 35321 satfv0 35331 satfv1 35336 satf0 35345 satf00 35347 satf0suclem 35348 sat1el2xp 35352 fmla0 35355 fmlasuc0 35357 fmla1 35360 gonan0 35365 gonar 35368 goalr 35370 satffunlem1lem2 35376 satffunlem1 35380 satefvfmla0 35391 prv0 35403 nnuni 35700 0hf 36151 neibastop2lem 36334 bj-rdg0gALT 37045 rdgeqoa 37344 exrecfnlem 37353 finxp0 37365 onexomgt 43214 onexoegt 43217 omnord1 43278 oenord1 43289 oaomoencom 43290 cantnftermord 43293 cantnfub 43294 cantnf2 43298 dflim5 43302 oacl2g 43303 onmcl 43304 omabs2 43305 omcl2 43306 tfsconcat0b 43319 ofoaf 43328 ofoafo 43329 ofoaid1 43331 ofoaid2 43332 naddcnff 43335 naddcnffo 43337 naddcnfid1 43340 naddcnfid2 43341 0finon 43421 0iscard 43514 orbitinit 44930 omssaxinf2 44962 |
| Copyright terms: Public domain | W3C validator |