| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano1 | Structured version Visualization version GIF version | ||
| Description: Zero is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(1) of [TakeutiZaring] p. 42. Note: Unlike most textbooks, our proofs of peano1 7868 through peano5 7872 do not use the Axiom of Infinity. Unlike Takeuti and Zaring, they also do not use the Axiom of Regularity. (Contributed by NM, 15-May-1994.) Avoid ax-un 7714. (Revised by BTernaryTau, 29-Nov-2024.) |
| Ref | Expression |
|---|---|
| peano1 | ⊢ ∅ ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon 6390 | . 2 ⊢ ∅ ∈ On | |
| 2 | 0ellim 6399 | . . 3 ⊢ (Lim 𝑥 → ∅ ∈ 𝑥) | |
| 3 | 2 | ax-gen 1795 | . 2 ⊢ ∀𝑥(Lim 𝑥 → ∅ ∈ 𝑥) |
| 4 | elom 7848 | . 2 ⊢ (∅ ∈ ω ↔ (∅ ∈ On ∧ ∀𝑥(Lim 𝑥 → ∅ ∈ 𝑥))) | |
| 5 | 1, 3, 4 | mpbir2an 711 | 1 ⊢ ∅ ∈ ω |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 ∅c0 4299 Oncon0 6335 Lim wlim 6336 ωcom 7845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 df-lim 6340 df-om 7846 |
| This theorem is referenced by: onnseq 8316 rdg0 8392 fr0g 8407 seqomlem3 8423 oa1suc 8498 o2p2e4 8508 om1 8509 oe1 8511 nna0r 8576 nnm0r 8577 nnmcl 8579 nnecl 8580 nnmsucr 8592 nnaword1 8596 nnaordex 8605 1onnALT 8608 oaabs2 8616 nnm1 8619 nneob 8623 omopth 8629 0fi 9016 snfiOLD 9018 0finOLD 9140 0sdom1domALT 9193 isinf 9214 nnunifi 9245 unblem2 9247 infn0 9258 infn0ALT 9259 unfilem3 9263 dffi3 9389 inf0 9581 infeq5i 9596 axinf2 9600 dfom3 9607 infdifsn 9617 noinfep 9620 cantnflt 9632 cnfcomlem 9659 cnfcom 9660 cnfcom2lem 9661 cnfcom3lem 9663 cnfcom3 9664 brttrcl2 9674 ttrcltr 9676 rnttrcl 9682 trcl 9688 rankdmr1 9761 rankeq0b 9820 cardlim 9932 infxpenc 9978 infxpenc2 9982 alephgeom 10042 alephfplem4 10067 ackbij1lem13 10191 ackbij1 10197 ackbij1b 10198 ominf4 10272 fin23lem16 10295 fin23lem31 10303 fin23lem40 10311 isf32lem9 10321 isf34lem7 10339 isf34lem6 10340 fin1a2lem6 10365 fin1a2lem7 10366 fin1a2lem11 10370 axdc3lem2 10411 axdc3lem4 10413 axdc4lem 10415 axcclem 10417 axdclem2 10480 pwfseqlem5 10623 omina 10651 wunex3 10701 1lt2pi 10865 1nn 12204 om2uzrani 13924 uzrdg0i 13931 fzennn 13940 axdc4uzlem 13955 hash1 14376 fnpr2o 17527 fvpr0o 17529 ltbwe 21958 2ndcdisj2 23351 precsexlem11 28126 noseq0 28191 noseqrdg0 28208 n0sbday 28251 dfnns2 28268 snct 32644 constrfiss 33748 constrext2chn 33756 nn0constr 33758 goelel3xp 35342 satfv0 35352 satfv1 35357 satf0 35366 satf00 35368 satf0suclem 35369 sat1el2xp 35373 fmla0 35376 fmlasuc0 35378 fmla1 35381 gonan0 35386 gonar 35389 goalr 35391 satffunlem1lem2 35397 satffunlem1 35401 satefvfmla0 35412 prv0 35424 nnuni 35721 0hf 36172 neibastop2lem 36355 bj-rdg0gALT 37066 rdgeqoa 37365 exrecfnlem 37374 finxp0 37386 onexomgt 43237 onexoegt 43240 omnord1 43301 oenord1 43312 oaomoencom 43313 cantnftermord 43316 cantnfub 43317 cantnf2 43321 dflim5 43325 oacl2g 43326 onmcl 43327 omabs2 43328 omcl2 43329 tfsconcat0b 43342 ofoaf 43351 ofoafo 43352 ofoaid1 43354 ofoaid2 43355 naddcnff 43358 naddcnffo 43360 naddcnfid1 43363 naddcnfid2 43364 0finon 43444 0iscard 43537 orbitinit 44953 omssaxinf2 44985 |
| Copyright terms: Public domain | W3C validator |