| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano1 | Structured version Visualization version GIF version | ||
| Description: Zero is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(1) of [TakeutiZaring] p. 42. Note: Unlike most textbooks, our proofs of peano1 7845 through peano5 7849 do not use the Axiom of Infinity. Unlike Takeuti and Zaring, they also do not use the Axiom of Regularity. (Contributed by NM, 15-May-1994.) Avoid ax-un 7691. (Revised by BTernaryTau, 29-Nov-2024.) |
| Ref | Expression |
|---|---|
| peano1 | ⊢ ∅ ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon 6375 | . 2 ⊢ ∅ ∈ On | |
| 2 | 0ellim 6384 | . . 3 ⊢ (Lim 𝑥 → ∅ ∈ 𝑥) | |
| 3 | 2 | ax-gen 1795 | . 2 ⊢ ∀𝑥(Lim 𝑥 → ∅ ∈ 𝑥) |
| 4 | elom 7825 | . 2 ⊢ (∅ ∈ ω ↔ (∅ ∈ On ∧ ∀𝑥(Lim 𝑥 → ∅ ∈ 𝑥))) | |
| 5 | 1, 3, 4 | mpbir2an 711 | 1 ⊢ ∅ ∈ ω |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 ∅c0 4292 Oncon0 6320 Lim wlim 6321 ωcom 7822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-ord 6323 df-on 6324 df-lim 6325 df-om 7823 |
| This theorem is referenced by: onnseq 8290 rdg0 8366 fr0g 8381 seqomlem3 8397 oa1suc 8472 o2p2e4 8482 om1 8483 oe1 8485 nna0r 8550 nnm0r 8551 nnmcl 8553 nnecl 8554 nnmsucr 8566 nnaword1 8570 nnaordex 8579 1onnALT 8582 oaabs2 8590 nnm1 8593 nneob 8597 omopth 8603 0fi 8990 snfiOLD 8992 0finOLD 9111 0sdom1domALT 9163 isinf 9183 nnunifi 9214 unblem2 9216 infn0 9227 infn0ALT 9228 unfilem3 9232 dffi3 9358 inf0 9550 infeq5i 9565 axinf2 9569 dfom3 9576 infdifsn 9586 noinfep 9589 cantnflt 9601 cnfcomlem 9628 cnfcom 9629 cnfcom2lem 9630 cnfcom3lem 9632 cnfcom3 9633 brttrcl2 9643 ttrcltr 9645 rnttrcl 9651 trcl 9657 rankdmr1 9730 rankeq0b 9789 cardlim 9901 infxpenc 9947 infxpenc2 9951 alephgeom 10011 alephfplem4 10036 ackbij1lem13 10160 ackbij1 10166 ackbij1b 10167 ominf4 10241 fin23lem16 10264 fin23lem31 10272 fin23lem40 10280 isf32lem9 10290 isf34lem7 10308 isf34lem6 10309 fin1a2lem6 10334 fin1a2lem7 10335 fin1a2lem11 10339 axdc3lem2 10380 axdc3lem4 10382 axdc4lem 10384 axcclem 10386 axdclem2 10449 pwfseqlem5 10592 omina 10620 wunex3 10670 1lt2pi 10834 1nn 12173 om2uzrani 13893 uzrdg0i 13900 fzennn 13909 axdc4uzlem 13924 hash1 14345 fnpr2o 17496 fvpr0o 17498 ltbwe 21927 2ndcdisj2 23320 precsexlem11 28095 noseq0 28160 noseqrdg0 28177 n0sbday 28220 dfnns2 28237 snct 32610 constrfiss 33714 constrext2chn 33722 nn0constr 33724 goelel3xp 35308 satfv0 35318 satfv1 35323 satf0 35332 satf00 35334 satf0suclem 35335 sat1el2xp 35339 fmla0 35342 fmlasuc0 35344 fmla1 35347 gonan0 35352 gonar 35355 goalr 35357 satffunlem1lem2 35363 satffunlem1 35367 satefvfmla0 35378 prv0 35390 nnuni 35687 0hf 36138 neibastop2lem 36321 bj-rdg0gALT 37032 rdgeqoa 37331 exrecfnlem 37340 finxp0 37352 onexomgt 43203 onexoegt 43206 omnord1 43267 oenord1 43278 oaomoencom 43279 cantnftermord 43282 cantnfub 43283 cantnf2 43287 dflim5 43291 oacl2g 43292 onmcl 43293 omabs2 43294 omcl2 43295 tfsconcat0b 43308 ofoaf 43317 ofoafo 43318 ofoaid1 43320 ofoaid2 43321 naddcnff 43324 naddcnffo 43326 naddcnfid1 43329 naddcnfid2 43330 0finon 43410 0iscard 43503 orbitinit 44919 omssaxinf2 44951 |
| Copyright terms: Public domain | W3C validator |