| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano1 | Structured version Visualization version GIF version | ||
| Description: Zero is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(1) of [TakeutiZaring] p. 42. Note: Unlike most textbooks, our proofs of peano1 7819 through peano5 7823 do not use the Axiom of Infinity. Unlike Takeuti and Zaring, they also do not use the Axiom of Regularity. (Contributed by NM, 15-May-1994.) Avoid ax-un 7668. (Revised by BTernaryTau, 29-Nov-2024.) |
| Ref | Expression |
|---|---|
| peano1 | ⊢ ∅ ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon 6361 | . 2 ⊢ ∅ ∈ On | |
| 2 | 0ellim 6370 | . . 3 ⊢ (Lim 𝑥 → ∅ ∈ 𝑥) | |
| 3 | 2 | ax-gen 1796 | . 2 ⊢ ∀𝑥(Lim 𝑥 → ∅ ∈ 𝑥) |
| 4 | elom 7799 | . 2 ⊢ (∅ ∈ ω ↔ (∅ ∈ On ∧ ∀𝑥(Lim 𝑥 → ∅ ∈ 𝑥))) | |
| 5 | 1, 3, 4 | mpbir2an 711 | 1 ⊢ ∅ ∈ ω |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 ∈ wcel 2111 ∅c0 4280 Oncon0 6306 Lim wlim 6307 ωcom 7796 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 df-on 6310 df-lim 6311 df-om 7797 |
| This theorem is referenced by: onnseq 8264 rdg0 8340 fr0g 8355 seqomlem3 8371 oa1suc 8446 o2p2e4 8456 om1 8457 oe1 8459 nna0r 8524 nnm0r 8525 nnmcl 8527 nnecl 8528 nnmsucr 8540 nnaword1 8544 nnaordex 8553 1onnALT 8556 oaabs2 8564 nnm1 8567 nneob 8571 omopth 8577 0fi 8964 0sdom1domALT 9131 isinf 9149 nnunifi 9175 unblem2 9177 infn0 9186 infn0ALT 9187 unfilem3 9191 dffi3 9315 inf0 9511 infeq5i 9526 axinf2 9530 dfom3 9537 infdifsn 9547 noinfep 9550 cantnflt 9562 cnfcomlem 9589 cnfcom 9590 cnfcom2lem 9591 cnfcom3lem 9593 cnfcom3 9594 brttrcl2 9604 ttrcltr 9606 rnttrcl 9612 trcl 9618 rankdmr1 9694 rankeq0b 9753 cardlim 9865 infxpenc 9909 infxpenc2 9913 alephgeom 9973 alephfplem4 9998 ackbij1lem13 10122 ackbij1 10128 ackbij1b 10129 ominf4 10203 fin23lem16 10226 fin23lem31 10234 fin23lem40 10242 isf32lem9 10252 isf34lem7 10270 isf34lem6 10271 fin1a2lem6 10296 fin1a2lem7 10297 fin1a2lem11 10301 axdc3lem2 10342 axdc3lem4 10344 axdc4lem 10346 axcclem 10348 axdclem2 10411 pwfseqlem5 10554 omina 10582 wunex3 10632 1lt2pi 10796 1nn 12136 om2uzrani 13859 uzrdg0i 13866 fzennn 13875 axdc4uzlem 13890 hash1 14311 fnpr2o 17461 fvpr0o 17463 ltbwe 21979 2ndcdisj2 23372 precsexlem11 28155 noseq0 28220 noseqrdg0 28237 n0sbday 28280 dfnns2 28297 snct 32695 constrfiss 33764 constrext2chn 33772 nn0constr 33774 fineqvnttrclselem1 35141 fineqvnttrclse 35144 goelel3xp 35392 satfv0 35402 satfv1 35407 satf0 35416 satf00 35418 satf0suclem 35419 sat1el2xp 35423 fmla0 35426 fmlasuc0 35428 fmla1 35431 gonan0 35436 gonar 35439 goalr 35441 satffunlem1lem2 35447 satffunlem1 35451 satefvfmla0 35462 prv0 35474 nnuni 35771 0hf 36219 neibastop2lem 36402 bj-rdg0gALT 37113 rdgeqoa 37412 exrecfnlem 37421 finxp0 37433 onexomgt 43282 onexoegt 43285 omnord1 43346 oenord1 43357 oaomoencom 43358 cantnftermord 43361 cantnfub 43362 cantnf2 43366 dflim5 43370 oacl2g 43371 onmcl 43372 omabs2 43373 omcl2 43374 tfsconcat0b 43387 ofoaf 43396 ofoafo 43397 ofoaid1 43399 ofoaid2 43400 naddcnff 43403 naddcnffo 43405 naddcnfid1 43408 naddcnfid2 43409 0finon 43489 0iscard 43582 orbitinit 44997 omssaxinf2 45029 |
| Copyright terms: Public domain | W3C validator |