| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano1 | Structured version Visualization version GIF version | ||
| Description: Zero is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(1) of [TakeutiZaring] p. 42. Note: Unlike most textbooks, our proofs of peano1 7884 through peano5 7889 do not use the Axiom of Infinity. Unlike Takeuti and Zaring, they also do not use the Axiom of Regularity. (Contributed by NM, 15-May-1994.) Avoid ax-un 7729. (Revised by BTernaryTau, 29-Nov-2024.) |
| Ref | Expression |
|---|---|
| peano1 | ⊢ ∅ ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon 6407 | . 2 ⊢ ∅ ∈ On | |
| 2 | 0ellim 6416 | . . 3 ⊢ (Lim 𝑥 → ∅ ∈ 𝑥) | |
| 3 | 2 | ax-gen 1795 | . 2 ⊢ ∀𝑥(Lim 𝑥 → ∅ ∈ 𝑥) |
| 4 | elom 7864 | . 2 ⊢ (∅ ∈ ω ↔ (∅ ∈ On ∧ ∀𝑥(Lim 𝑥 → ∅ ∈ 𝑥))) | |
| 5 | 1, 3, 4 | mpbir2an 711 | 1 ⊢ ∅ ∈ ω |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2108 ∅c0 4308 Oncon0 6352 Lim wlim 6353 ωcom 7861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 df-lim 6357 df-om 7862 |
| This theorem is referenced by: onnseq 8358 rdg0 8435 fr0g 8450 seqomlem3 8466 oa1suc 8543 o2p2e4 8553 om1 8554 oe1 8556 nna0r 8621 nnm0r 8622 nnmcl 8624 nnecl 8625 nnmsucr 8637 nnaword1 8641 nnaordex 8650 1onnALT 8653 oaabs2 8661 nnm1 8664 nneob 8668 omopth 8674 0fi 9056 snfiOLD 9058 0finOLD 9184 0sdom1domALT 9247 isinf 9268 nnunifi 9299 unblem2 9301 infn0 9312 infn0ALT 9313 unfilem3 9317 dffi3 9443 inf0 9635 infeq5i 9650 axinf2 9654 dfom3 9661 infdifsn 9671 noinfep 9674 cantnflt 9686 cnfcomlem 9713 cnfcom 9714 cnfcom2lem 9715 cnfcom3lem 9717 cnfcom3 9718 brttrcl2 9728 ttrcltr 9730 rnttrcl 9736 trcl 9742 rankdmr1 9815 rankeq0b 9874 cardlim 9986 infxpenc 10032 infxpenc2 10036 alephgeom 10096 alephfplem4 10121 ackbij1lem13 10245 ackbij1 10251 ackbij1b 10252 ominf4 10326 fin23lem16 10349 fin23lem31 10357 fin23lem40 10365 isf32lem9 10375 isf34lem7 10393 isf34lem6 10394 fin1a2lem6 10419 fin1a2lem7 10420 fin1a2lem11 10424 axdc3lem2 10465 axdc3lem4 10467 axdc4lem 10469 axcclem 10471 axdclem2 10534 pwfseqlem5 10677 omina 10705 wunex3 10755 1lt2pi 10919 1nn 12251 om2uzrani 13970 uzrdg0i 13977 fzennn 13986 axdc4uzlem 14001 hash1 14422 fnpr2o 17571 fvpr0o 17573 ltbwe 22002 2ndcdisj2 23395 precsexlem11 28171 noseq0 28236 noseqrdg0 28253 n0sbday 28296 dfnns2 28313 snct 32691 constrfiss 33785 constrext2chn 33793 nn0constr 33795 goelel3xp 35370 satfv0 35380 satfv1 35385 satf0 35394 satf00 35396 satf0suclem 35397 sat1el2xp 35401 fmla0 35404 fmlasuc0 35406 fmla1 35409 gonan0 35414 gonar 35417 goalr 35419 satffunlem1lem2 35425 satffunlem1 35429 satefvfmla0 35440 prv0 35452 nnuni 35744 0hf 36195 neibastop2lem 36378 bj-rdg0gALT 37089 rdgeqoa 37388 exrecfnlem 37397 finxp0 37409 onexomgt 43265 onexoegt 43268 omnord1 43329 oenord1 43340 oaomoencom 43341 cantnftermord 43344 cantnfub 43345 cantnf2 43349 dflim5 43353 oacl2g 43354 onmcl 43355 omabs2 43356 omcl2 43357 tfsconcat0b 43370 ofoaf 43379 ofoafo 43380 ofoaid1 43382 ofoaid2 43383 naddcnff 43386 naddcnffo 43388 naddcnfid1 43391 naddcnfid2 43392 0finon 43472 0iscard 43565 orbitinit 44981 omssaxinf2 45013 |
| Copyright terms: Public domain | W3C validator |