| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano1 | Structured version Visualization version GIF version | ||
| Description: Zero is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(1) of [TakeutiZaring] p. 42. Note: Unlike most textbooks, our proofs of peano1 7865 through peano5 7869 do not use the Axiom of Infinity. Unlike Takeuti and Zaring, they also do not use the Axiom of Regularity. (Contributed by NM, 15-May-1994.) Avoid ax-un 7711. (Revised by BTernaryTau, 29-Nov-2024.) |
| Ref | Expression |
|---|---|
| peano1 | ⊢ ∅ ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon 6387 | . 2 ⊢ ∅ ∈ On | |
| 2 | 0ellim 6396 | . . 3 ⊢ (Lim 𝑥 → ∅ ∈ 𝑥) | |
| 3 | 2 | ax-gen 1795 | . 2 ⊢ ∀𝑥(Lim 𝑥 → ∅ ∈ 𝑥) |
| 4 | elom 7845 | . 2 ⊢ (∅ ∈ ω ↔ (∅ ∈ On ∧ ∀𝑥(Lim 𝑥 → ∅ ∈ 𝑥))) | |
| 5 | 1, 3, 4 | mpbir2an 711 | 1 ⊢ ∅ ∈ ω |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 ∅c0 4296 Oncon0 6332 Lim wlim 6333 ωcom 7842 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 df-lim 6337 df-om 7843 |
| This theorem is referenced by: onnseq 8313 rdg0 8389 fr0g 8404 seqomlem3 8420 oa1suc 8495 o2p2e4 8505 om1 8506 oe1 8508 nna0r 8573 nnm0r 8574 nnmcl 8576 nnecl 8577 nnmsucr 8589 nnaword1 8593 nnaordex 8602 1onnALT 8605 oaabs2 8613 nnm1 8616 nneob 8620 omopth 8626 0fi 9013 snfiOLD 9015 0finOLD 9134 0sdom1domALT 9186 isinf 9207 nnunifi 9238 unblem2 9240 infn0 9251 infn0ALT 9252 unfilem3 9256 dffi3 9382 inf0 9574 infeq5i 9589 axinf2 9593 dfom3 9600 infdifsn 9610 noinfep 9613 cantnflt 9625 cnfcomlem 9652 cnfcom 9653 cnfcom2lem 9654 cnfcom3lem 9656 cnfcom3 9657 brttrcl2 9667 ttrcltr 9669 rnttrcl 9675 trcl 9681 rankdmr1 9754 rankeq0b 9813 cardlim 9925 infxpenc 9971 infxpenc2 9975 alephgeom 10035 alephfplem4 10060 ackbij1lem13 10184 ackbij1 10190 ackbij1b 10191 ominf4 10265 fin23lem16 10288 fin23lem31 10296 fin23lem40 10304 isf32lem9 10314 isf34lem7 10332 isf34lem6 10333 fin1a2lem6 10358 fin1a2lem7 10359 fin1a2lem11 10363 axdc3lem2 10404 axdc3lem4 10406 axdc4lem 10408 axcclem 10410 axdclem2 10473 pwfseqlem5 10616 omina 10644 wunex3 10694 1lt2pi 10858 1nn 12197 om2uzrani 13917 uzrdg0i 13924 fzennn 13933 axdc4uzlem 13948 hash1 14369 fnpr2o 17520 fvpr0o 17522 ltbwe 21951 2ndcdisj2 23344 precsexlem11 28119 noseq0 28184 noseqrdg0 28201 n0sbday 28244 dfnns2 28261 snct 32637 constrfiss 33741 constrext2chn 33749 nn0constr 33751 goelel3xp 35335 satfv0 35345 satfv1 35350 satf0 35359 satf00 35361 satf0suclem 35362 sat1el2xp 35366 fmla0 35369 fmlasuc0 35371 fmla1 35374 gonan0 35379 gonar 35382 goalr 35384 satffunlem1lem2 35390 satffunlem1 35394 satefvfmla0 35405 prv0 35417 nnuni 35714 0hf 36165 neibastop2lem 36348 bj-rdg0gALT 37059 rdgeqoa 37358 exrecfnlem 37367 finxp0 37379 onexomgt 43230 onexoegt 43233 omnord1 43294 oenord1 43305 oaomoencom 43306 cantnftermord 43309 cantnfub 43310 cantnf2 43314 dflim5 43318 oacl2g 43319 onmcl 43320 omabs2 43321 omcl2 43322 tfsconcat0b 43335 ofoaf 43344 ofoafo 43345 ofoaid1 43347 ofoaid2 43348 naddcnff 43351 naddcnffo 43353 naddcnfid1 43356 naddcnfid2 43357 0finon 43437 0iscard 43530 orbitinit 44946 omssaxinf2 44978 |
| Copyright terms: Public domain | W3C validator |