Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > peano1 | Structured version Visualization version GIF version |
Description: Zero is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(1) of [TakeutiZaring] p. 42. Note: Unlike most textbooks, our proofs of peano1 7710 through peano5 7714 do not use the Axiom of Infinity. Unlike Takeuti and Zaring, they also do not use the Axiom of Regularity. (Contributed by NM, 15-May-1994.) |
Ref | Expression |
---|---|
peano1 | ⊢ ∅ ∈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limom 7703 | . 2 ⊢ Lim ω | |
2 | 0ellim 6313 | . 2 ⊢ (Lim ω → ∅ ∈ ω) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∅ ∈ ω |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∅c0 4253 Lim wlim 6252 ωcom 7687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-om 7688 |
This theorem is referenced by: onnseq 8146 rdg0 8223 fr0g 8237 seqomlem3 8253 oa1suc 8323 o2p2e4 8333 om1 8335 oe1 8337 nna0r 8402 nnm0r 8403 nnmcl 8405 nnecl 8406 nnmsucr 8418 nnaword1 8422 nnaordex 8431 1onn 8432 oaabs2 8439 nnm1 8442 nneob 8446 omopth 8452 snfi 8788 0fin 8916 0sdom1dom 8950 findcard2OLD 8986 nnunifi 8995 unblem2 8997 infn0 9006 unfilem3 9010 dffi3 9120 inf0 9309 infeq5i 9324 axinf2 9328 dfom3 9335 infdifsn 9345 noinfep 9348 cantnflt 9360 cnfcomlem 9387 cnfcom 9388 cnfcom2lem 9389 cnfcom3lem 9391 cnfcom3 9392 trpredpred 9406 trcl 9417 rankdmr1 9490 rankeq0b 9549 cardlim 9661 infxpenc 9705 infxpenc2 9709 alephgeom 9769 alephfplem4 9794 ackbij1lem13 9919 ackbij1 9925 ackbij1b 9926 ominf4 9999 fin23lem16 10022 fin23lem31 10030 fin23lem40 10038 isf32lem9 10048 isf34lem7 10066 isf34lem6 10067 fin1a2lem6 10092 fin1a2lem7 10093 fin1a2lem11 10097 axdc3lem2 10138 axdc3lem4 10140 axdc4lem 10142 axcclem 10144 axdclem2 10207 pwfseqlem5 10350 omina 10378 wunex3 10428 1lt2pi 10592 1nn 11914 om2uzrani 13600 uzrdg0i 13607 fzennn 13616 axdc4uzlem 13631 hash1 14047 fnpr2o 17185 fvpr0o 17187 ltbwe 21155 2ndcdisj2 22516 snct 30950 goelel3xp 33210 satfv0 33220 satfv1 33225 satf0 33234 satf00 33236 satf0suclem 33237 sat1el2xp 33241 fmla0 33244 fmlasuc0 33246 fmla1 33249 gonan0 33254 gonar 33257 goalr 33259 satffunlem1lem2 33265 satffunlem1 33269 satefvfmla0 33280 prv0 33292 nnuni 33595 brttrcl2 33700 ttrcltr 33702 rnttrcl 33708 0hf 34406 neibastop2lem 34476 bj-rdg0gALT 35169 rdgeqoa 35468 exrecfnlem 35477 finxp0 35489 |
Copyright terms: Public domain | W3C validator |