![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > peano1 | Structured version Visualization version GIF version |
Description: Zero is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(1) of [TakeutiZaring] p. 42. Note: Unlike most textbooks, our proofs of peano1 7927 through peano5 7932 do not use the Axiom of Infinity. Unlike Takeuti and Zaring, they also do not use the Axiom of Regularity. (Contributed by NM, 15-May-1994.) Avoid ax-un 7770. (Revised by BTernaryTau, 29-Nov-2024.) |
Ref | Expression |
---|---|
peano1 | ⊢ ∅ ∈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elon 6449 | . 2 ⊢ ∅ ∈ On | |
2 | 0ellim 6458 | . . 3 ⊢ (Lim 𝑥 → ∅ ∈ 𝑥) | |
3 | 2 | ax-gen 1793 | . 2 ⊢ ∀𝑥(Lim 𝑥 → ∅ ∈ 𝑥) |
4 | elom 7906 | . 2 ⊢ (∅ ∈ ω ↔ (∅ ∈ On ∧ ∀𝑥(Lim 𝑥 → ∅ ∈ 𝑥))) | |
5 | 1, 3, 4 | mpbir2an 710 | 1 ⊢ ∅ ∈ ω |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 ∈ wcel 2108 ∅c0 4352 Oncon0 6395 Lim wlim 6396 ωcom 7903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-lim 6400 df-om 7904 |
This theorem is referenced by: onnseq 8400 rdg0 8477 fr0g 8492 seqomlem3 8508 oa1suc 8587 o2p2e4 8597 om1 8598 oe1 8600 nna0r 8665 nnm0r 8666 nnmcl 8668 nnecl 8669 nnmsucr 8681 nnaword1 8685 nnaordex 8694 1onnALT 8697 oaabs2 8705 nnm1 8708 nneob 8712 omopth 8718 0fi 9108 snfiOLD 9110 0finOLD 9237 0sdom1domALT 9302 isinf 9323 nnunifi 9355 unblem2 9357 infn0 9368 infn0ALT 9369 unfilem3 9373 dffi3 9500 inf0 9690 infeq5i 9705 axinf2 9709 dfom3 9716 infdifsn 9726 noinfep 9729 cantnflt 9741 cnfcomlem 9768 cnfcom 9769 cnfcom2lem 9770 cnfcom3lem 9772 cnfcom3 9773 brttrcl2 9783 ttrcltr 9785 rnttrcl 9791 trcl 9797 rankdmr1 9870 rankeq0b 9929 cardlim 10041 infxpenc 10087 infxpenc2 10091 alephgeom 10151 alephfplem4 10176 ackbij1lem13 10300 ackbij1 10306 ackbij1b 10307 ominf4 10381 fin23lem16 10404 fin23lem31 10412 fin23lem40 10420 isf32lem9 10430 isf34lem7 10448 isf34lem6 10449 fin1a2lem6 10474 fin1a2lem7 10475 fin1a2lem11 10479 axdc3lem2 10520 axdc3lem4 10522 axdc4lem 10524 axcclem 10526 axdclem2 10589 pwfseqlem5 10732 omina 10760 wunex3 10810 1lt2pi 10974 1nn 12304 om2uzrani 14003 uzrdg0i 14010 fzennn 14019 axdc4uzlem 14034 hash1 14453 fnpr2o 17617 fvpr0o 17619 ltbwe 22085 2ndcdisj2 23486 precsexlem11 28259 noseq0 28314 noseqrdg0 28331 n0sbday 28372 dfnns2 28380 snct 32727 goelel3xp 35316 satfv0 35326 satfv1 35331 satf0 35340 satf00 35342 satf0suclem 35343 sat1el2xp 35347 fmla0 35350 fmlasuc0 35352 fmla1 35355 gonan0 35360 gonar 35363 goalr 35365 satffunlem1lem2 35371 satffunlem1 35375 satefvfmla0 35386 prv0 35398 nnuni 35689 0hf 36141 neibastop2lem 36326 bj-rdg0gALT 37037 rdgeqoa 37336 exrecfnlem 37345 finxp0 37357 onexomgt 43202 onexoegt 43205 omnord1 43267 oenord1 43278 oaomoencom 43279 cantnftermord 43282 cantnfub 43283 cantnf2 43287 dflim5 43291 oacl2g 43292 onmcl 43293 omabs2 43294 omcl2 43295 tfsconcat0b 43308 ofoaf 43317 ofoafo 43318 ofoaid1 43320 ofoaid2 43321 naddcnff 43324 naddcnffo 43326 naddcnfid1 43329 naddcnfid2 43330 0finon 43410 0iscard 43503 |
Copyright terms: Public domain | W3C validator |