![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trom | Structured version Visualization version GIF version |
Description: The class of finite ordinals ω is a transitive class. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
trom | ⊢ Tr ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftr2 5258 | . 2 ⊢ (Tr ω ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ ω) → 𝑦 ∈ ω)) | |
2 | onelon 6380 | . . . . . . 7 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ On) | |
3 | 2 | expcom 413 | . . . . . 6 ⊢ (𝑦 ∈ 𝑥 → (𝑥 ∈ On → 𝑦 ∈ On)) |
4 | limord 6415 | . . . . . . . . . . 11 ⊢ (Lim 𝑧 → Ord 𝑧) | |
5 | ordtr 6369 | . . . . . . . . . . 11 ⊢ (Ord 𝑧 → Tr 𝑧) | |
6 | trel 5265 | . . . . . . . . . . 11 ⊢ (Tr 𝑧 → ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑧)) | |
7 | 4, 5, 6 | 3syl 18 | . . . . . . . . . 10 ⊢ (Lim 𝑧 → ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑧)) |
8 | 7 | expd 415 | . . . . . . . . 9 ⊢ (Lim 𝑧 → (𝑦 ∈ 𝑥 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧))) |
9 | 8 | com12 32 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝑥 → (Lim 𝑧 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧))) |
10 | 9 | a2d 29 | . . . . . . 7 ⊢ (𝑦 ∈ 𝑥 → ((Lim 𝑧 → 𝑥 ∈ 𝑧) → (Lim 𝑧 → 𝑦 ∈ 𝑧))) |
11 | 10 | alimdv 1911 | . . . . . 6 ⊢ (𝑦 ∈ 𝑥 → (∀𝑧(Lim 𝑧 → 𝑥 ∈ 𝑧) → ∀𝑧(Lim 𝑧 → 𝑦 ∈ 𝑧))) |
12 | 3, 11 | anim12d 608 | . . . . 5 ⊢ (𝑦 ∈ 𝑥 → ((𝑥 ∈ On ∧ ∀𝑧(Lim 𝑧 → 𝑥 ∈ 𝑧)) → (𝑦 ∈ On ∧ ∀𝑧(Lim 𝑧 → 𝑦 ∈ 𝑧)))) |
13 | elom 7852 | . . . . 5 ⊢ (𝑥 ∈ ω ↔ (𝑥 ∈ On ∧ ∀𝑧(Lim 𝑧 → 𝑥 ∈ 𝑧))) | |
14 | elom 7852 | . . . . 5 ⊢ (𝑦 ∈ ω ↔ (𝑦 ∈ On ∧ ∀𝑧(Lim 𝑧 → 𝑦 ∈ 𝑧))) | |
15 | 12, 13, 14 | 3imtr4g 296 | . . . 4 ⊢ (𝑦 ∈ 𝑥 → (𝑥 ∈ ω → 𝑦 ∈ ω)) |
16 | 15 | imp 406 | . . 3 ⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ ω) → 𝑦 ∈ ω) |
17 | 16 | ax-gen 1789 | . 2 ⊢ ∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ ω) → 𝑦 ∈ ω) |
18 | 1, 17 | mpgbir 1793 | 1 ⊢ Tr ω |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1531 ∈ wcel 2098 Tr wtr 5256 Ord word 6354 Oncon0 6355 Lim wlim 6356 ωcom 7849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-tr 5257 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-ord 6358 df-on 6359 df-lim 6360 df-om 7850 |
This theorem is referenced by: ordom 7859 elnn 7860 omsinds 7870 |
Copyright terms: Public domain | W3C validator |