MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trom Structured version   Visualization version   GIF version

Theorem trom 7631
Description: The class of finite ordinals ω is a transitive class. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
trom Tr ω

Proof of Theorem trom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr2 5148 . 2 (Tr ω ↔ ∀𝑦𝑥((𝑦𝑥𝑥 ∈ ω) → 𝑦 ∈ ω))
2 onelon 6216 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
32expcom 417 . . . . . 6 (𝑦𝑥 → (𝑥 ∈ On → 𝑦 ∈ On))
4 limord 6250 . . . . . . . . . . 11 (Lim 𝑧 → Ord 𝑧)
5 ordtr 6205 . . . . . . . . . . 11 (Ord 𝑧 → Tr 𝑧)
6 trel 5153 . . . . . . . . . . 11 (Tr 𝑧 → ((𝑦𝑥𝑥𝑧) → 𝑦𝑧))
74, 5, 63syl 18 . . . . . . . . . 10 (Lim 𝑧 → ((𝑦𝑥𝑥𝑧) → 𝑦𝑧))
87expd 419 . . . . . . . . 9 (Lim 𝑧 → (𝑦𝑥 → (𝑥𝑧𝑦𝑧)))
98com12 32 . . . . . . . 8 (𝑦𝑥 → (Lim 𝑧 → (𝑥𝑧𝑦𝑧)))
109a2d 29 . . . . . . 7 (𝑦𝑥 → ((Lim 𝑧𝑥𝑧) → (Lim 𝑧𝑦𝑧)))
1110alimdv 1924 . . . . . 6 (𝑦𝑥 → (∀𝑧(Lim 𝑧𝑥𝑧) → ∀𝑧(Lim 𝑧𝑦𝑧)))
123, 11anim12d 612 . . . . 5 (𝑦𝑥 → ((𝑥 ∈ On ∧ ∀𝑧(Lim 𝑧𝑥𝑧)) → (𝑦 ∈ On ∧ ∀𝑧(Lim 𝑧𝑦𝑧))))
13 elom 7625 . . . . 5 (𝑥 ∈ ω ↔ (𝑥 ∈ On ∧ ∀𝑧(Lim 𝑧𝑥𝑧)))
14 elom 7625 . . . . 5 (𝑦 ∈ ω ↔ (𝑦 ∈ On ∧ ∀𝑧(Lim 𝑧𝑦𝑧)))
1512, 13, 143imtr4g 299 . . . 4 (𝑦𝑥 → (𝑥 ∈ ω → 𝑦 ∈ ω))
1615imp 410 . . 3 ((𝑦𝑥𝑥 ∈ ω) → 𝑦 ∈ ω)
1716ax-gen 1803 . 2 𝑥((𝑦𝑥𝑥 ∈ ω) → 𝑦 ∈ ω)
181, 17mpgbir 1807 1 Tr ω
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wal 1541  wcel 2112  Tr wtr 5146  Ord word 6190  Oncon0 6191  Lim wlim 6192  ωcom 7622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-11 2160  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-ne 2933  df-ral 3056  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-tr 5147  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-ord 6194  df-on 6195  df-lim 6196  df-om 7623
This theorem is referenced by:  ordom  7632  elnn  7633  omsinds  7643
  Copyright terms: Public domain W3C validator