MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trom Structured version   Visualization version   GIF version

Theorem trom 7851
Description: The class of finite ordinals ω is a transitive class. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
trom Tr ω

Proof of Theorem trom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr2 5216 . 2 (Tr ω ↔ ∀𝑦𝑥((𝑦𝑥𝑥 ∈ ω) → 𝑦 ∈ ω))
2 onelon 6357 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
32expcom 413 . . . . . 6 (𝑦𝑥 → (𝑥 ∈ On → 𝑦 ∈ On))
4 limord 6393 . . . . . . . . . . 11 (Lim 𝑧 → Ord 𝑧)
5 ordtr 6346 . . . . . . . . . . 11 (Ord 𝑧 → Tr 𝑧)
6 trel 5223 . . . . . . . . . . 11 (Tr 𝑧 → ((𝑦𝑥𝑥𝑧) → 𝑦𝑧))
74, 5, 63syl 18 . . . . . . . . . 10 (Lim 𝑧 → ((𝑦𝑥𝑥𝑧) → 𝑦𝑧))
87expd 415 . . . . . . . . 9 (Lim 𝑧 → (𝑦𝑥 → (𝑥𝑧𝑦𝑧)))
98com12 32 . . . . . . . 8 (𝑦𝑥 → (Lim 𝑧 → (𝑥𝑧𝑦𝑧)))
109a2d 29 . . . . . . 7 (𝑦𝑥 → ((Lim 𝑧𝑥𝑧) → (Lim 𝑧𝑦𝑧)))
1110alimdv 1916 . . . . . 6 (𝑦𝑥 → (∀𝑧(Lim 𝑧𝑥𝑧) → ∀𝑧(Lim 𝑧𝑦𝑧)))
123, 11anim12d 609 . . . . 5 (𝑦𝑥 → ((𝑥 ∈ On ∧ ∀𝑧(Lim 𝑧𝑥𝑧)) → (𝑦 ∈ On ∧ ∀𝑧(Lim 𝑧𝑦𝑧))))
13 elom 7845 . . . . 5 (𝑥 ∈ ω ↔ (𝑥 ∈ On ∧ ∀𝑧(Lim 𝑧𝑥𝑧)))
14 elom 7845 . . . . 5 (𝑦 ∈ ω ↔ (𝑦 ∈ On ∧ ∀𝑧(Lim 𝑧𝑦𝑧)))
1512, 13, 143imtr4g 296 . . . 4 (𝑦𝑥 → (𝑥 ∈ ω → 𝑦 ∈ ω))
1615imp 406 . . 3 ((𝑦𝑥𝑥 ∈ ω) → 𝑦 ∈ ω)
1716ax-gen 1795 . 2 𝑥((𝑦𝑥𝑥 ∈ ω) → 𝑦 ∈ ω)
181, 17mpgbir 1799 1 Tr ω
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538  wcel 2109  Tr wtr 5214  Ord word 6331  Oncon0 6332  Lim wlim 6333  ωcom 7842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335  df-on 6336  df-lim 6337  df-om 7843
This theorem is referenced by:  ordom  7852  elnn  7853  omsinds  7863
  Copyright terms: Public domain W3C validator