MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trom Structured version   Visualization version   GIF version

Theorem trom 7854
Description: The class of finite ordinals ω is a transitive class. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
trom Tr ω

Proof of Theorem trom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr2 5219 . 2 (Tr ω ↔ ∀𝑦𝑥((𝑦𝑥𝑥 ∈ ω) → 𝑦 ∈ ω))
2 onelon 6360 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
32expcom 413 . . . . . 6 (𝑦𝑥 → (𝑥 ∈ On → 𝑦 ∈ On))
4 limord 6396 . . . . . . . . . . 11 (Lim 𝑧 → Ord 𝑧)
5 ordtr 6349 . . . . . . . . . . 11 (Ord 𝑧 → Tr 𝑧)
6 trel 5226 . . . . . . . . . . 11 (Tr 𝑧 → ((𝑦𝑥𝑥𝑧) → 𝑦𝑧))
74, 5, 63syl 18 . . . . . . . . . 10 (Lim 𝑧 → ((𝑦𝑥𝑥𝑧) → 𝑦𝑧))
87expd 415 . . . . . . . . 9 (Lim 𝑧 → (𝑦𝑥 → (𝑥𝑧𝑦𝑧)))
98com12 32 . . . . . . . 8 (𝑦𝑥 → (Lim 𝑧 → (𝑥𝑧𝑦𝑧)))
109a2d 29 . . . . . . 7 (𝑦𝑥 → ((Lim 𝑧𝑥𝑧) → (Lim 𝑧𝑦𝑧)))
1110alimdv 1916 . . . . . 6 (𝑦𝑥 → (∀𝑧(Lim 𝑧𝑥𝑧) → ∀𝑧(Lim 𝑧𝑦𝑧)))
123, 11anim12d 609 . . . . 5 (𝑦𝑥 → ((𝑥 ∈ On ∧ ∀𝑧(Lim 𝑧𝑥𝑧)) → (𝑦 ∈ On ∧ ∀𝑧(Lim 𝑧𝑦𝑧))))
13 elom 7848 . . . . 5 (𝑥 ∈ ω ↔ (𝑥 ∈ On ∧ ∀𝑧(Lim 𝑧𝑥𝑧)))
14 elom 7848 . . . . 5 (𝑦 ∈ ω ↔ (𝑦 ∈ On ∧ ∀𝑧(Lim 𝑧𝑦𝑧)))
1512, 13, 143imtr4g 296 . . . 4 (𝑦𝑥 → (𝑥 ∈ ω → 𝑦 ∈ ω))
1615imp 406 . . 3 ((𝑦𝑥𝑥 ∈ ω) → 𝑦 ∈ ω)
1716ax-gen 1795 . 2 𝑥((𝑦𝑥𝑥 ∈ ω) → 𝑦 ∈ ω)
181, 17mpgbir 1799 1 Tr ω
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538  wcel 2109  Tr wtr 5217  Ord word 6334  Oncon0 6335  Lim wlim 6336  ωcom 7845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-ord 6338  df-on 6339  df-lim 6340  df-om 7846
This theorem is referenced by:  ordom  7855  elnn  7856  omsinds  7866
  Copyright terms: Public domain W3C validator