MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trom Structured version   Visualization version   GIF version

Theorem trom 7721
Description: The class of finite ordinals ω is a transitive class. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
trom Tr ω

Proof of Theorem trom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr2 5193 . 2 (Tr ω ↔ ∀𝑦𝑥((𝑦𝑥𝑥 ∈ ω) → 𝑦 ∈ ω))
2 onelon 6291 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
32expcom 414 . . . . . 6 (𝑦𝑥 → (𝑥 ∈ On → 𝑦 ∈ On))
4 limord 6325 . . . . . . . . . . 11 (Lim 𝑧 → Ord 𝑧)
5 ordtr 6280 . . . . . . . . . . 11 (Ord 𝑧 → Tr 𝑧)
6 trel 5198 . . . . . . . . . . 11 (Tr 𝑧 → ((𝑦𝑥𝑥𝑧) → 𝑦𝑧))
74, 5, 63syl 18 . . . . . . . . . 10 (Lim 𝑧 → ((𝑦𝑥𝑥𝑧) → 𝑦𝑧))
87expd 416 . . . . . . . . 9 (Lim 𝑧 → (𝑦𝑥 → (𝑥𝑧𝑦𝑧)))
98com12 32 . . . . . . . 8 (𝑦𝑥 → (Lim 𝑧 → (𝑥𝑧𝑦𝑧)))
109a2d 29 . . . . . . 7 (𝑦𝑥 → ((Lim 𝑧𝑥𝑧) → (Lim 𝑧𝑦𝑧)))
1110alimdv 1919 . . . . . 6 (𝑦𝑥 → (∀𝑧(Lim 𝑧𝑥𝑧) → ∀𝑧(Lim 𝑧𝑦𝑧)))
123, 11anim12d 609 . . . . 5 (𝑦𝑥 → ((𝑥 ∈ On ∧ ∀𝑧(Lim 𝑧𝑥𝑧)) → (𝑦 ∈ On ∧ ∀𝑧(Lim 𝑧𝑦𝑧))))
13 elom 7715 . . . . 5 (𝑥 ∈ ω ↔ (𝑥 ∈ On ∧ ∀𝑧(Lim 𝑧𝑥𝑧)))
14 elom 7715 . . . . 5 (𝑦 ∈ ω ↔ (𝑦 ∈ On ∧ ∀𝑧(Lim 𝑧𝑦𝑧)))
1512, 13, 143imtr4g 296 . . . 4 (𝑦𝑥 → (𝑥 ∈ ω → 𝑦 ∈ ω))
1615imp 407 . . 3 ((𝑦𝑥𝑥 ∈ ω) → 𝑦 ∈ ω)
1716ax-gen 1798 . 2 𝑥((𝑦𝑥𝑥 ∈ ω) → 𝑦 ∈ ω)
181, 17mpgbir 1802 1 Tr ω
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537  wcel 2106  Tr wtr 5191  Ord word 6265  Oncon0 6266  Lim wlim 6267  ωcom 7712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270  df-lim 6271  df-om 7713
This theorem is referenced by:  ordom  7722  elnn  7723  omsinds  7733
  Copyright terms: Public domain W3C validator